Adaptability to climate change in forestry species: drou anatomy of ponderosa pines growing at different comp

Forest Systems 21, 162 DOI: 10.5424/fs/2112211-12586

Citation Report

#	Article	IF	CITATIONS
1	Short- and long-term responses to seasonal drought in ponderosa pines growing at different plantation densities in Patagonia, South America. Trees - Structure and Function, 2012, 26, 1905-1917.	0.9	6
2	Ecology of the woodwasp <i>Sirex noctilio</i> : Tackling the challenge of successful pest management. International Journal of Pest Management, 2012, 58, 249-256.	0.9	26
3	Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Change Biology, 2013, 19, 2303-2338.	4.2	316
4	Effects of the time of drought occurrence within the growing season on growth and survival of Pinus ponderosa seedlings. Trees - Structure and Function, 2014, 28, 745.	0.9	13
5	Intra-annual wood anatomical features of high-elevation conifers in the Great Basin, USA. Dendrochronologia, 2014, 32, 303-312.	1.0	13
6	Patterns of resource use efficiency in relation to intra-specific competition, size of the trees and resource availability in ponderosa pine. Forest Ecology and Management, 2014, 312, 231-238.	1.4	13
7	Variation in Wood Structure of Acacia senegal (L.) Willd Under Different Rainfall Levels in Western Sudan. Journal of Forest Research: Open Access, 2015, 04, .	0.0	0
8	Ecophysiological basis of wood formation in ponderosa pine: Linking water flux patterns with wood microdensity variables. Forest Ecology and Management, 2015, 346, 31-40.	1.4	7
9	The genetics of drought tolerance in conifers. New Phytologist, 2017, 216, 1034-1048.	3.5	133
10	Does elevated air humidity modify hydraulically relevant anatomical traits of wood in Betula pendula?. Trees - Structure and Function, 2019, 33, 1361-1371.	0.9	5
11	Wood properties of black spruce (Picea mariana (Mill.) BSP) in relation to ring width and tree height in even- and uneven-aged boreal stands. Annals of Forest Science, 2019, 76, 1.	0.8	8
12	Annual Variations in Norway Spruce Xylem Studied Using Infrared Micro-spectroscopy. Forests, 2019, 10, 164.	0.9	4
13	Wood anatomy of Ceiba speciosa (A. StHil.) Ravenna under urban pollution. IAWA Journal, 2020, 41, 30-47.	2.7	3
14	Implications of Reduced Stand Density on Tree Growth and Drought Susceptibility: A Study of Three Species under Varying Climate. Forests, 2020, 11, 627.	0.9	27
15	Effects of urbanization on the wood anatomy of Guarea guidonia, an evergreen species of the Atlantic Forest. Trees - Structure and Function, 0, , 1.	0.9	4
16	Multiyear impacts of partial throughfall exclusion on Buxus sempervirens in a Mediterranean forest. Forest Systems, 2013, 22, 202.	0.1	2
17	The potential effect of climate change on the establishment of invasive pines in Patagonia. Plant Ecology, 0, , .	0.7	0