A global anthropogenic emission inventory of atmosphe fuel-specific sources (1970–2017): an application of the (CEDS)

Earth System Science Data 12, 3413-3442 DOI: 10.5194/essd-12-3413-2020

Citation Report

#	Article	IF	CITATIONS
1	The nitrogen decade: mobilizing global action on nitrogen to 2030 and beyond. One Earth, 2021, 4, 10-14.	3.6	66
3	Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. Atmospheric Chemistry and Physics, 2021, 21, 1889-1916.	1.9	14
7	US COVIDâ€19 Shutdown Demonstrates Importance of Background NO ₂ in Inferring NO _x Emissions From Satellite NO ₂ Observations. Geophysical Research Letters, 2021, 48, e2021GL092783.	1.5	38
11	Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nature Communications, 2021, 12, 3594.	5.8	199
12	Impact of international shipping emissions on ozone and PM _{2.5} in East Asia during summer: the important role of HONO and ClNO ₂ . Atmospheric Chemistry and Physics, 2021, 21, 8747-8759.	1.9	6
15	African anthropogenic emissions inventory for gases and particles from 1990 to 2015. Earth System Science Data, 2021, 13, 3691-3705.	3.7	17
16	Seasonal distribution and drivers of surface fine particulate matter and organic aerosol over the Indo-Gangetic Plain. Atmospheric Chemistry and Physics, 2021, 21, 10881-10909.	1.9	15
17	Effects of Ozone Isotopologue Formation on the Clumpedâ€Isotope Composition of Atmospheric O ₂ . Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034770.	1.2	6
20	Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geoscientific Model Development, 2021, 14, 5487-5506.	1.3	23
21	Ship emissions around China under gradually promoted control policies from 2016 to 2019. Atmospheric Chemistry and Physics, 2021, 21, 13835-13853.	1.9	37
23	A satellite-data-driven framework to rapidly quantify air-basin-scale NO _{<i>x</i>} emissions and its application to the Po Valley during the COVID-19 pandemic. Atmospheric Chemistry and Physics, 2021, 21, 13311-13332.	1.9	13
24	Satellite-based estimates of nitrogen oxide and methane emissions from gas flaring and oil production activities in Sakha Republic, Russia. Atmospheric Environment: X, 2021, 11, 100114.	0.8	19
25	Urban NO _x emissions around the world declined faster than anticipated between 2005 and 2019. Environmental Research Letters, 2021, 16, 115004.	2.2	17
26	Long-term trends in nitrogen oxides concentrations and on-road vehicle emission factors in Copenhagen, London and Stockholm. Environmental Pollution, 2021, 290, 118105.	3.7	15
28	Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model. Atmospheric Chemistry and Physics, 2021, 21, 15901-15927.	1.9	10
30	Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect. Atmospheric Chemistry and Physics, 2021, 21, 16051-16065.	1.9	9
31	High-resolution seasonal and decadal inventory of anthropogenic gas-phase and particle emissions for Argentina. Earth System Science Data, 2021, 13, 5027-5069.	3.7	12
32	Near-real-time global gridded daily CO2 emissions. Innovation(China), 2022, 3, 100182.	5.2	24

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
33	Will open waste burning become India's largest air pollution source?. Environmental Pollution, 2022, 292, 118310.	3.7	12
34	COVID-19 lockdown closures of emissions sources in India: Lessons for air quality and climate policy. Journal of Environmental Management, 2022, 302, 114079.	3.8	15
35	Inequality in historical transboundary anthropogenic PM2.5 health impacts. Science Bulletin, 2022, 67, 437-444.	4.3	13
36	Energy consumption, pollution haven hypothesis, and Environmental Kuznets Curve: Examining the environment–economy link in belt and road initiative countries. Energy, 2022, 239, 122559.	4.5	67
37	lsotopic constraints on sources, production, and phase partitioning for nitrate in the atmosphere and snowfall in coastal East Antarctica. Earth and Planetary Science Letters, 2022, 578, 117300.	1.8	15
38	A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth System Science Data, 2021, 13, 5213-5252.	3.7	68
39	Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology. Environmental Research Letters, 2021, 16, 124069.	2.2	35
40	Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environment International, 2022, 159, 107020.	4.8	68
41	Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets. Lancet Planetary Health, The, 2022, 6, e49-e58.	5.1	95
42	Marine Air Pollution in Israel: Extent, Proposed Mitigation Targets, Benefits and Feasibility. Atmosphere, 2022, 13, 241.	1.0	4
43	Sectorâ€Based Topâ€Down Estimates of NO _{<i>x</i>} , SO ₂ , and CO Emissions in East Asia. Geophysical Research Letters, 2022, 49, .	1.5	21
44	Efficient Production of Carbonyl Sulfide in the Lowâ€NO _x Oxidation of Dimethyl Sulfide. Geophysical Research Letters, 2022, 49, .	1.5	16
45	The effectiveness of emission control policies in regulating air pollution over coastal ports of China: Spatiotemporal variations of NO2 and SO2. Ocean and Coastal Management, 2022, 219, 106064.	2.0	22
46	CAMS-REC-v4: a state-of-the-art high-resolution European emission inventory for air quality modelling. Earth System Science Data, 2022, 14, 491-515.	3.7	53
47	The drivers and health risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020. Atmospheric Chemistry and Physics, 2021, 21, 18589-18608.	1.9	12
48	Review of Atmospheric Environmental Change from Earth Observing Satellites. Asian Journal of Atmospheric Environment, 2022, 16, 1-13.	0.4	4
49	High-resolution spatial-distribution maps of road transport exhaust emissions in Chile, 1990–2020. Earth System Science Data, 2022, 14, 1359-1376.	3.7	10
50	Chemical characteristics and source apportionment of particulate matter (PM2.5) in Dammam, Saudi Arabia: Impact of dust storms. Atmospheric Environment: X, 2022, 14, 100164.	0.8	3

CITATION REPORT

#	Article	IF	CITATIONS
51	Quantifying brown carbon light absorption in real-world biofuel combustion emissions. Aerosol Science and Technology, 2022, 56, 502-516.	1.5	3
52	Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018. Science Advances, 2022, 8, eabm4435.	4.7	31
54	Differential Mortality Risks Associated With PM2.5 Components. Epidemiology, 2022, 33, 167-175.	1.2	26
55	4Dâ€Var Inversion of European NH ₃ Emissions Using CrIS NH ₃ Measurements and GEOSâ€Chem Adjoint With Biâ€Directional and Uniâ€Directional Flux Schemes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
56	Clusterâ€Enhanced Ensemble Learning for Mapping Global Monthly Surface Ozone From 2003 to 2019. Geophysical Research Letters, 2022, 49, .	1.5	10
58	Source Sector Mitigation of Solar Energy Generation Losses Attributable to Particulate Matter Pollution. Environmental Science & Technology, 2022, 56, 8619-8628.	4.6	1
60	Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-anthropogenic PM _{2.5} . Environmental Science and Technology Letters, 2022, 9, 501-506.	3.9	41
61	The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport. Energy Policy, 2022, 168, 113021.	4.2	14
62	Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environmental Pollution, 2022, 308, 119645.	3.7	4
63	Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe. Atmospheric Chemistry and Physics, 2022, 22, 8683-8699.	1.9	11
64	Snow Nitrate Isotopes in Central Antarctica Record the Prolonged Period of Stratospheric Ozone Depletion From â^¼1960 to 2000. Geophysical Research Letters, 2022, 49, .	1.5	4
65	NMVOC emissions and their formation into secondary organic aerosols over India using WRF-Chem model. Atmospheric Environment, 2022, 287, 119254.	1.9	8
66	Short-term effects of fine particulate matter constituents on myocardial infarction death. Journal of Environmental Sciences, 2023, 133, 60-69.	3.2	2
67	Simulating the radiative forcing of oceanic dimethylsulfideÂ(DMS) in Asia based on machine learning estimates. Atmospheric Chemistry and Physics, 2022, 22, 9583-9600.	1.9	3
68	Estimating mass-absorption cross-section of ambient black carbon aerosols: Theoretical, empirical, and machine learning models. Aerosol Science and Technology, 2022, 56, 980-997.	1.5	2
69	Effectiveness of emissions standards on automotive evaporative emissions in Europe under normal and extreme temperature conditions. Environmental Research Communications, 2022, 4, 081003.	0.9	1
70	The Contribution of Local Anthropogenic Emissions to Air Pollutants in Lhasa on the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
71	Application of machine learning approaches in the analysis of mass absorption cross-section of black carbon aerosols: Aerosol composition dependencies and sensitivity analyses. Aerosol Science and Technology, 2022, 56, 998-1008.	1.5	4

CITATION REPORT

#	Article	IF	CITATIONS
72	High-Resolution Ammonia Emissions from Nitrogen Fertilizer Application in China during 2005–2020. Atmosphere, 2022, 13, 1297.	1.0	4
73	Plants and related carbon cycling under elevated ground-level ozone: A mini review. Applied Geochemistry, 2022, 144, 105400.	1.4	8
74	Evolution of India's PM _{2.5} pollution between 1998 and 2020 using global reanalysis fields coupled with satellite observations and fuel consumption patterns. Environmental Science Atmospheres, 2022, 2, 1502-1515.	0.9	3
75	Aerosol and precursor gas emissions. , 2022, , 299-342.		2
76	Elucidating the impacts of COVID-19 lockdown on air quality and ozone chemical characteristics in India. Environmental Science Atmospheres, 2022, 2, 1183-1207.	0.9	3
77	The research hotspots and trends of volatile organic compound emissions from anthropogenic and natural sources: A systematic quantitative review. Environmental Research, 2023, 216, 114386.	3.7	14
78	Is Anthropogenic Global Warming Accelerating?. Journal of Climate, 2022, 35, 7873-7890.	1.2	13
79	Compositional Constraints are Vital for Atmospheric PM _{2.5} Source Attribution over India. ACS Earth and Space Chemistry, 2022, 6, 2432-2445.	1.2	2
80	Cirrus cloud thinning using a more physically based ice microphysics scheme in the ECHAM-HAM general circulation model. Atmospheric Chemistry and Physics, 2022, 22, 11455-11484.	1.9	5
81	Historical transboundary ozone health impact linked to affluence. Environmental Research Letters, 2022, 17, 104014.	2.2	1
82	Response of Anthropogenic Volatile Organic Compound Emissions to Urbanization in Asia Probed With TROPOMI and VIIRS Satellite Observations. Geophysical Research Letters, 2022, 49, .	1.5	4
83	Rapidly Changing Emissions Drove Substantial Surface and Tropospheric Ozone Increases Over Southeast Asia. Geophysical Research Letters, 2022, 49, .	1.5	9
84	Multiyear emissions of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue as well as their key driving forces in China. Earth System Science Data, 2022, 14, 4757-4775.	3.7	2
85	Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. Atmospheric Chemistry and Physics, 2022, 22, 13753-13782.	1.9	18
86	A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies. Geoscientific Model Development, 2022, 15, 7767-7789.	1.3	1
87	Improvement of the Aerosol Forecast and Analysis Over East Asia With Joint Assimilation of Two Geostationary Satellite Observations. Geophysical Research Letters, 2022, 49, .	1.5	0
88	Improvement and Uncertainties of Global Simulation of Sulfate Concentration and Radiative Forcing in CESM2. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
89	Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station. Atmospheric Chemistry and Physics, 2022, 22, 14037-14058.	1.9	4

#	Article	IF	CITATIONS
90	Change in Tropospheric Ozone in the Recent Decades and Its Contribution to Global Total Ozone. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
91	Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050. Energy Reports, 2022, 8, 14124-14143.	2.5	34
92	Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?. Atmospheric Chemistry and Physics, 2022, 22, 14751-14782.	1.9	4
93	Widespread missing super-emitters of nitrogen oxides across China inferred from year-round satellite observations. Science of the Total Environment, 2022, , 161157.	3.9	Ο
94	Vapors Are Lost to Walls, Not to Particles on the Wall: Artifact-Corrected Parameters from Chamber Experiments and Implications for Global Secondary Organic Aerosol. Environmental Science & Technology, 2023, 57, 53-63.	4.6	7
95	Mortality Attributable to Ambient Air Pollution: A Review of Global Estimates. GeoHealth, 2023, 7, .	1.9	24
96	Inferring and evaluating satellite-based constraints on NO _{<i>x</i>} emissions estimates in air quality simulations. Atmospheric Chemistry and Physics, 2022, 22, 15981-16001.	1.9	3
97	Cluster-based characterization of multi-dimensional tropospheric ozone variability in coastal regions: an analysis of lidar measurements and model results. Atmospheric Chemistry and Physics, 2022, 22, 15313-15331.	1.9	5
98	Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature, 2022, 612, 477-482.	13.7	71
99	The Effects of Trash, Residential Biofuel, and Open Biomass Burning Emissions on Local and Transported PM _{2.5} and Its Attributed Mortality in Africa. GeoHealth, 2023, 7, .	1.9	5
100	Underestimated Passive Volcanic Sulfur Degassing Implies Overestimated Anthropogenic Aerosol Forcing. Geophysical Research Letters, 2023, 50, .	1.5	10
101	Large mitigation potential of smoke PM _{2.5} in the US from human-ignited fires. Environmental Research Letters, 2023, 18, 014002.	2.2	1
102	High efficiency of nitric acid controls in alleviating particulate nitrate in livestock and urban areas in South Korea. Environmental Science Atmospheres, 2023, 3, 422-433.	0.9	1
103	Future air quality and premature mortality in Korea. Science of the Total Environment, 2023, 865, 161134.	3.9	0
104	China's embodied environmental impact on the Global Commons through provincial and spillover perspectives. Environmental Research Letters, 2023, 18, 034003.	2.2	2
105	Updating and Evaluating Anthropogenic Emissions for NOAA's Global Ensemble Forecast Systems for Aerosols (GEFS-Aerosols): Application of an SO2 Bias-Scaling Method. Atmosphere, 2023, 14, 234.	1.0	1
106	Nitrate chemistry in the northeast US – Part 1: Nitrogen isotope seasonality tracks nitrate formation chemistry. Atmospheric Chemistry and Physics, 2023, 23, 4185-4201.	1.9	4
107	Foreign emissions exacerbate PM _{2.5} pollution in China through nitrate chemistry. Atmospheric Chemistry and Physics, 2023, 23, 4149-4163.	1.9	2

#	Article	IF	CITATIONS
108	Inter-regional environmental inequality under lasting pandemic exacerbated by residential response. Science of the Total Environment, 2023, 879, 163191.	3.9	1
109	Diverse changes in shipping emissions around the Western Pacific ports under the coeffect of the epidemic and fuel oil policy. Science of the Total Environment, 2023, 879, 162892.	3.9	4
111	Near-real-time global gridded daily CO2 emissions 2021. Scientific Data, 2023, 10, .	2.4	8
112	Urban policy interventions to reduce traffic-related emissions and air pollution: A systematic evidence map. Environment International, 2023, 172, 107805.	4.8	17
113	Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model. Geoscientific Model Development, 2023, 16, 1053-1081.	1.3	3
114	On-road remote sensing of vehicles in Dublin: Measurement and emission factor estimation. Transportation Research, Part D: Transport and Environment, 2023, 117, 103620.	3.2	5
115	Air pollution governance in China and India: Comparison and implications. Environmental Science and Policy, 2023, 142, 112-120.	2.4	3
116	A global review of the state of the evidence of household air pollution's contribution to ambient fine particulate matter and their related health impacts. Environment International, 2023, 173, 107835.	4.8	7
117	UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model. Geoscientific Model Development, 2023, 16, 1569-1600.	1.3	4
118	High-resolution carbon neutrality mapping and a heterogeneity analysis for China's two typical megalopolises. Urban Climate, 2023, 49, 101488.	2.4	1
119	Nitrate chemistry in the northeast US – Part 2: Oxygen isotopes reveal differences in particulate and gas-phase formation. Atmospheric Chemistry and Physics, 2023, 23, 4203-4219.	1.9	3
120	Sevenfold variation in global feeding capacity depends on diets, land use and nitrogen management. Nature Food, 2023, 4, 372-383.	6.2	5
121	A global spatial-temporal land use regression model for nitrogen dioxide air pollution. Frontiers in Environmental Science, 0, 11, .	1.5	4
127	Assessment of Air Quality Before and After the COVID-19 Pandemic in Indonesia. Springer Geography, 2023, , 957-979.	0.3	0
136	Anthropogenic Emissions Inventories of Air Pollutants. , 2023, , 1-50.		0
163	Anthropogenic Emissions Inventories of Air Pollutants. , 2023, , 3-52.		0
197	Santé et environnement. , 2022, , 289-305.		0