The Global Methane Budget 2000–2017

Earth System Science Data 12, 1561-1623

DOI: 10.5194/essd-12-1561-2020

Citation Report

#	Article	IF	CITATIONS
1	A Remote Sensing Technique to Upscale Methane Emission Flux in a Subtropical Peatland. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG006002.	1.3	6
2	Plant species determine tidal wetland methane response to sea level rise. Nature Communications, 2020, 11, 5154.	5.8	24
3	The Isotopic Imprint of Life on an Evolving Planet. Space Science Reviews, 2020, 216, 1.	3.7	3
5	Soil Is a Net Source of Methane in Tropical African Forests. Forests, 2020, 11, 1157.	0.9	2
6	Detection of fossil-fuel CO2Âplummet in China due to COVID-19 by observation at Hateruma. Scientific Reports, 2020, 10, 18688.	1.6	22
7	A New Approach to LCA Evaluation of Lamb Meat Production in Two Different Breeding Systems in Northern Italy. Frontiers in Veterinary Science, 2020, 7, 651.	0.9	13
8	Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agricultural and Forest Meteorology, 2020, 295, 108167.	1.9	25
9	Moving toward Net-Zero Emissions Requires New Alliances for Carbon Dioxide Removal. One Earth, 2020, 3, 145-149.	3.6	61
10	Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006678.	1.9	34
11	Bottom-up evaluation of the regional methane budget of northern lands from 1980 to 2015. Polar Science, 2021, 27, 100558.	0.5	5
12	Advances and Fundamental Understanding of Electrocatalytic Methane Oxidation. ChemCatChem, 2021, 13, 787-805.	1.8	13
13	Estimation of CH4 emissions from the East Siberian Arctic Shelf based on atmospheric observations aboard the R/V Mirai during fall cruises from 2012 to 2017. Polar Science, 2021, 27, 100571.	0.5	11
14	Pricing Methane Emissions from Oil and Gas Production. SSRN Electronic Journal, 0, , .	0.4	1
15	Basic Information About Tropical Peatland Ecosystems. , 2021, , 3-62.		6
16	Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories $1959 \hat{a} \in (2018. \text{Scientific Data}, 2021, 8, 2.$	2.4	56
17	Carbon sequestration: counterintuitive feedback of plant growth. Quantitative Plant Biology, 2021, 2,	0.8	O
18	Natural Capital-Based Societies in the Tropics. , 2021, , 197-245.		1
19	A future perspective of historical contributions to climate change. Climatic Change, 2021, 164, 1.	1.7	6

#	ARTICLE	IF	CITATIONS
20	Emissions from the Oil and Gas Sectors, Coal Mining and Ruminant Farming Drive Methane Growth over the Past Three Decades. Journal of the Meteorological Society of Japan, 2021, 99, 309-337.	0.7	38
21	Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmospheric Measurement Techniques, 2021, 14, 665-684.	1.2	104
22	The neglected contribution of mound-building termites on CH4 emissions in Brazilian pastures. Revista Brasileira De Zootecnia, 2021, 50, .	0.3	3
23	Soil carbon flux research in the Asian region: Review and future perspectives. J Agricultural Meteorology, 2021, 77, 24-51.	0.8	8
24	Mobile autonomous methane monitoring stations for emission measurement. APPEA Journal, 2021, 61, 425.	0.4	0
25	Ecosystem Collapse and Climate Change: An Introduction. Ecological Studies, 2021, , 1-9.	0.4	4
26	Reduction of Non-CO2 Greenhouse Gas Emissions by Catalytic Processes. , 2021, , 1-44.		0
27	Effects of thallium exposure on intestinal microbial community and organ functions in zebrafish (Danio rerio). Elementa, 2021, 9, .	1.1	10
28	Unmanned aerial systems for trace gases. , 2021, , 321-343.		1
29	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	1.9	65
30	Phytoplankton photosynthesis: an unexplored source of biogenic methane emission from oxic environments. Journal of Plankton Research, 2021, 43, 822-830.	0.8	15
31	Investigating methane emissions from geologic microseepage in Western New York State, United States. Elementa, 2021, 9, .	1.1	0
32	Detection and quantification of CH ₄ plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data. Atmospheric Measurement Techniques, 2021, 14, 1267-1291.	1.2	16
33	New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences (Switzerland), 2021, 11, 71.	1.0	34
34	Digging deeper into cutting methane emissions from the oil and gas industry in the era of volatile prices. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	1.0	5
35	Lower oceanic & amp; lt; l& amp; lt; l'& amp; lt; l'& amp; lt; sup & amp; lt; l'a & amp; lt; l'sup & amp; lt; l'a during the last interglacial period compared to the Holocene. Climate of the Past, 2021, 17, 507-528.	1.3	3
36	Microbial Functional Responses Explain Alpine Soil Carbon Fluxes under Future Climate Scenarios. MBio, 2021, 12, .	1.8	10
37	Rain-fed pulses of methane from East Africa during 2018–2019 contributed to atmospheric growth rate. Environmental Research Letters, 2021, 16, 024021.	2.2	28

#	Article	IF	CITATIONS
39	Seasonal Variations of SF ₆ , CO ₂ , CH ₄ , and N ₂ O in the UT/LS Region due to Emissions, Transport, and Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033541.	1.2	13
40	Interannual variability on methane emissions in monsoon Asia derived from GOSAT and surface observations. Environmental Research Letters, 2021, 16, 024040.	2.2	14
41	Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiology Reviews, 2021, 45, .	3.9	49
42	Microbial production and consumption of hydrocarbons in the global ocean. Nature Microbiology, 2021, 6, 489-498.	5.9	56
43	Methane and Nitrous Oxide Emissions Complicate Coastal Blue Carbon Assessments. Global Biogeochemical Cycles, 2021, 35, e2020GB006858.	1.9	86
44	Diverging responses of high-latitude CO ₂ and CH ₄ emissions in idealized climate change scenarios. Cryosphere, 2021, 15, 1097-1130.	1.5	13
45	Continuous Dynamics of Dissolved Methane Over 2 Years and its Carbon Isotopes (δ ¹³ C,) Tj ETQq0 (Biogeosciences, 2021, 126, e2020JG006038.	0 0 rgBT 1.3	/Overlock 10 12
46	Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH ₄ ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics, 2021, 21, 4637-4657.	1.9	55
47	Methane dynamics in three different Siberian water bodies under winter and summer conditions. Biogeosciences, 2021, 18, 2047-2061.	1.3	5
48	Critical inundation level for methane emissions from wetlands. Environmental Research Letters, 2021, 16, 044038.	2.2	17
49	Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments. Biogeosciences, 2021, 18, 2091-2106.	1.3	10
50	Dissolved methane in the water column of the Saguenay Fjord. Marine Chemistry, 2021, 230, 103926.	0.9	8
51	Studies of SLCPs, greenhouse gases, and their interaction with the terrestrial ecosystem during the ArCS project. Polar Science, 2021, 27, 100635.	0.5	1
52	Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen. Geobiology, 2021, 19, 342-363.	1.1	23
53	2010â€"2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane. Atmospheric Chemistry and Physics, 2021, 21, 4339-4356.	1.9	45
54	Effects of Using High Resolution Satelliteâ€Based Inundation Time Series to Estimate Methane Fluxes From Forested Wetlands. Geophysical Research Letters, 2021, 48, e2021GL092556.	1.5	20
55	A comparative study of anthropogenic CH ₄ emissions over China based on the ensembles of bottom-up inventories. Earth System Science Data, 2021, 13, 1073-1088.	3.7	20
56	Observations of greenhouse gases as climate indicators. Climatic Change, 2021, 165, 12.	1.7	30

#	Article	IF	CITATIONS
57	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	1.9	68
58	High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmospheric Measurement Techniques, 2021, 14, 2771-2785.	1.2	57
59	Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 2021, 12, 2266.	5.8	34
60	GOSAT CH4 Vertical Profiles over the Indian Subcontinent: Effect of a Priori and Averaging Kernels for Climate Applications. Remote Sensing, 2021, 13, 1677.	1.8	4
61	Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmospheric Chemistry and Physics, 2021, 21, 5655-5683.	1.9	64
62	Greenhouse gas emissions associated with urban water infrastructure: What we have learnt from China's practice. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1529.	2.8	28
63	Juxtaposing the spatiotemporal drivers of sediment CO2, CH4, and N2O effluxes along ecoregional, wet-dry, and diurnal gradients. Atmospheric Pollution Research, 2021, 12, 160-171.	1.8	2
64	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	5.4	388
69	The role of termite CH& It; sub& gt; 4& It; sub& gt; emissions on the ecosystem scale: a case study in the Amazon rainforest. Biogeosciences, 2021, 18, 2609-2625.	1.3	5
70	Controlling Factors of Methane in Tropical Lakes of Different Depths. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005828.	1.3	4
71	Global Warming Potential Is Not an Ecosystem Property. Ecosystems, 2021, 24, 2079-2089.	1.6	24
73	Spatiotemporal Assessment of GHG Emissions and Nutrient Sequestration Linked to Agronutrient Runoff in Global Wetlands. Global Biogeochemical Cycles, 2021, 35, e2020GB006816.	1.9	18
75	Estimate greenhouse gas emissions from water-saving and drought-resistance rice paddies by deNitrification-deComposition model. Clean Technologies and Environmental Policy, 2022, 24, 161-171.	2.1	9
76	A Computational Framework for Identifying Promoter Sequences in Nonmodel Organisms Using RNA-seq Data Sets. ACS Synthetic Biology, 2021, 10, 1394-1405.	1.9	15
77	Spatial Distribution of Dissolved Methane Over Extreme Oceanographic Gradients in the Subtropical Eastern South Pacific (17° to 37°S). Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016925.	1.0	3
78	The Facility Level and Area Methane Emissions inventory for the Greater Toronto Area (FLAME-GTA). Atmospheric Environment, 2021, 252, 118319.	1.9	4
79	Methanogenesis exceeds <scp>CH₄</scp> consumption in eutrophic lake sediments. Limnology and Oceanography Letters, 2021, 6, 173-181.	1.6	23
80	Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming. Environmental Research Letters, 2021, 16, 054042.	2.2	128

#	Article	IF	CITATIONS
81	Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Frontiers in Microbiology, 2021, 12, 678057.	1.5	80
82	Direct measurements from shut-in and other abandoned wells in the Permian Basin of Texas indicate some wells are a major source of methane emissions and produced water. Environmental Research Letters, 2021, 16, 054081.	2.2	23
83	Spectral calibration of the MethaneAIR instrument. Atmospheric Measurement Techniques, 2021, 14, 3737-3753.	1.2	11
84	Hidden Processes During Seasonal Isolation of a High-Altitude Watershed. Frontiers in Earth Science, 2021, 9, .	0.8	3
85	Seasonal Variation of Methane Microseepage in the Dawanqi Oilfield (China): A Possible Climatic Control. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034637.	1.2	3
86	Influence of permafrost thaw on an extreme geologic methane seep. Permafrost and Periglacial Processes, 2021, 32, 484-502.	1.5	8
87	Whole″ake methane emissions from two temperate shallow lakes with fluctuating water levels: Relevance of spatiotemporal patterns. Limnology and Oceanography, 2021, 66, 2455-2469.	1.6	15
88	New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. New Phytologist, 2021, 231, 524-536.	3 . 5	23
89	Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Earth System Dynamics, 2021, 12, 513-544.	2.7	6
90	Methane dynamics of high-elevation lakes in the Sierra Nevada California: the role of elevation, temperature, and inorganic nutrients. Inland Waters, 2021, 11, 267-277.	1.1	3
91	Making farming more sustainable by helping farmers to decide rather than telling them what to do. Environmental Research Letters, 2021, 16, 055033.	2.2	7
92	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	4.2	59
93	Analysis of Oil and Gas Ethane and Methane Emissions in the Southcentral and Eastern United States Using Four Seasons of Continuous Aircraft Ethane Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034194.	1.2	16
94	Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate. Earth System Dynamics, 2021, 12, 545-579.	2.7	14
95	A new automated method for highâ€throughput carbon and hydrogen isotope analysis of gaseous and dissolved methane at atmospheric concentrations. Rapid Communications in Mass Spectrometry, 2021, 35, e9086.	0.7	2
96	The Key Role of Production Efficiency Changes in Livestock Methane Emission Mitigation. AGU Advances, 2021, 2, e2021AV000391.	2.3	39
97	Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth System Science Data, 2021, 13, 2001-2023.	3.7	47
98	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	3.7	16

#	ARTICLE	IF	CITATIONS
99	Diversity of dimethylsulfideâ€degrading methanogens and sulfateâ€reducing bacteria in anoxic sediments along the Medway Estuary, <scp>UK</scp> . Environmental Microbiology, 2021, 23, 4434-4449.	1.8	7
101	Deciphering cryptic methane cycling: Coupling of methylotrophic methanogenesis and anaerobic oxidation of methane in hypersaline coastal wetland sediment. Geochimica Et Cosmochimica Acta, 2021, 302, 160-174.	1.6	7
102	Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019. Remote Sensing, 2021, 13, 2266.	1.8	7
103	Improved Constraints on Global Methane Emissions and Sinks Using <i>Î′</i> ¹³ C H ₄ . Global Biogeochemical Cycles, 2021, 35, e2021GB007000.	1.9	50
105	Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model. Atmospheric Chemistry and Physics, 2021, 21, 8413-8436.	1.9	28
106	Finding the Missing Link in Methane Emission Inventories Using Aircraft and Mobile Observations. Asia-Pacific Journal of Atmospheric Sciences, 0, , 1.	1.3	2
107	Satellite-based survey of extreme methane emissions in the Permian basin. Science Advances, 2021, 7, .	4.7	66
108	Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures. Biogeosciences, 2021, 18, 3505-3527.	1.3	6
109	Yearâ€2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (Gâ€res) Model. Global Biogeochemical Cycles, 2021, 35, e2020G8006888.	1.9	44
110	Underestimates of methane from intensively raised animals could undermine goals of sustainable development. Environmental Research Letters, 2021, 16, 063006.	2.2	7
111	Do methanotrophs drive phosphorus mineralization in soil ecosystem?. Canadian Journal of Microbiology, 2021, 67, 464-475.	0.8	2
112	Gas Pressure Dynamics in Small and Mid-Size Lakes. Water (Switzerland), 2021, 13, 1824.	1.2	7
113	On the climate benefit of a coal-to-gas shift in Germany's electric power sector. Scientific Reports, 2021, 11, 11453.	1.6	28
114	A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 2021, 16, 073005.	2.2	421
115	Effects of seasonal inundation on methane fluxes from forested freshwater wetlands. Environmental Research Letters, 2021, 16, 084016.	2.2	19
117	Warming and eutrophication interactively drive changes in the methane-oxidizing community of shallow lakes. ISME Communications, 2021, 1, .	1.7	13
119	Temporal methane variability in the water column of an area of seasonal coastal upwelling: A study based on a 12Âyear time series. Progress in Oceanography, 2021, 195, 102589.	1.5	3
120	Global Uptake of Atmospheric Methane by Soil From 1900 to 2100. Global Biogeochemical Cycles, 2021, 35, e2020GB006774.	1.9	9

#	Article	IF	CITATIONS
121	Methane in the Danube Delta: the importance of spatial patterns and diel cycles for atmospheric emission estimates. Biogeosciences, 2021, 18, 3961-3979.	1.3	5
122	Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption. ISME Journal, 2022, 16, 10-25.	4.4	4
123	Estimating Remaining Carbon Budgets Using Temperature Responses Informed by CMIP6. Frontiers in Climate, $2021, 3, .$	1.3	0
124	Large Seasonal and Habitat Differences in Methane Ebullition on the Amazon Floodplain. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005911.	1.3	7
125	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
126	Enzymes, <i>In Vivo</i> Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chemical Reviews, 2021, 121, 10367-10451.	23.0	111
127	Optimal drainage timing for mitigating methane emissions from rice paddy fields. Geoderma, 2021, 394, 114986.	2.3	15
128	Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018. Atmospheric Chemistry and Physics, 2021, 21, 10643-10669.	1.9	13
129	Spatiotemporal variability and origin of CO ₂ and CH ₄ tree stem fluxes in an upland forest. Global Change Biology, 2021, 27, 4879-4893.	4.2	16
130	Onshore Thermokarst Primes Subsea Permafrost Degradation. Geophysical Research Letters, 2021, 48, e2021GL093881.	1.5	12
131	Ethane measurement by Picarro CRDS G2201-i in laboratory and field conditions: potential and limitations. Atmospheric Measurement Techniques, 2021, 14, 5049-5069.	1.2	8
132	Metabolic flexibility of aerobic methanotrophs under anoxic conditions in Arctic lake sediments. ISME Journal, 2022, 16, 78-90.	4.4	25
133	Methane emissions and $\hat{l}'13C$ composition from beef steers consuming increasing proportions of sericea lespedeza hay on bermudagrass hay diets. Journal of Animal Science, 2021, 99, .	0.2	6
134	Atmospheric methane underestimated in future climate projections. Environmental Research Letters, 2021, 16, 094006.	2.2	14
137	Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
138	Carbon isotopic characterisation and oxidation of UK landfill methane emissions by atmospheric measurements. Waste Management, 2021, 132, 162-175.	3.7	11
139	Spatial Distribution of CO ₂ , CH ₄ , and N ₂ O in the Great Barrier Reef Revealed Through High Resolution Sampling and Isotopic Analysis. Geophysical Research Letters, 2021, 48, e2021GL092534.	1.5	8
140	Hydroxyl Radical (OH) Response to Meteorological Forcing and Implication for the Methane Budget. Geophysical Research Letters, 2021, 48, e2021GL094140.	1.5	7

#	Article	IF	CITATIONS
141	Redox Properties of Peat Particulate Organic Matter: Quantification of Electron Accepting Capacities and Assessment of Electron Transfer Reversibility. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006329.	1.3	8
142	Sustainedâ€Flux Global Warming Potential Driven by Nitrogen Inflow and Hydroperiod in a Model of Great Lakes Coastal Wetlands. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006242.	1.3	0
143	Shipborne measurements of methane and carbon dioxide in the Middle East and Mediterranean areas and the contribution from oil and gas emissions. Atmospheric Chemistry and Physics, 2021, 21, 12443-12462.	1.9	16
144	The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies. Geoscientific Model Development, 2021, 14 , $5331-5354$.	1.3	15
145	Seasonal and weather-related controls on methane emissions from the stems of mature trees in a cool-temperate forested wetland. Biogeochemistry, 2021, 156, 211-230.	1.7	8
146	Diel variation of CH4 emission fluxes in a small artificial lake: Toward more accurate methods of observation. Science of the Total Environment, 2021, 784, 147146.	3.9	8
147	Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. Atmospheric Chemistry and Physics, 2021, 21, 12631-12647.	1.9	23
148	Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute?. Environmental Science and Policy, 2021, 122, 116-126.	2.4	23
149	Reduced-cost construction of Jacobian matrices for high-resolution inversions of satellite observations of atmospheric composition. Atmospheric Measurement Techniques, 2021, 14, 5521-5534.	1.2	5
150	Seasonal Variation of Methane Fluxes in a Mangrove Ecosystem in South India: An Eddy Covariance-Based Approach. Estuaries and Coasts, 2022, 45, 551-566.	1.0	4
151	Permanent Gas Emission from the Seyakha Crater of Gas Blowout, Yamal Peninsula, Russian Arctic. Energies, 2021, 14, 5345.	1.6	7
152	Recent Slowdown of Anthropogenic Methane Emissions in China Driven by Stabilized Coal Production. Environmental Science and Technology Letters, 2021, 8, 739-746.	3.9	25
153	Eutrophication decreased CO2 but increased CH4 emissions from lake: A case study of a shallow Lake Ulansuhai. Water Research, 2021, 201, 117363.	5.3	61
154	Reducing Global Greenhouse Gas Emissions to Meet Climate Targets—A Comprehensive Quantification and Reasonable Options. Energies, 2021, 14, 5260.	1.6	10
155	Variations and Drivers of Methane Fluxes from Double-Cropping Paddy Fields in Southern China at Diurnal, Seasonal and Inter-Seasonal Timescales. Water (Switzerland), 2021, 13, 2171.	1.2	8
157	Density, Enthalpy of Vaporization and Local Structure of Neat N-Alkane Liquids. Liquids, 2021, 1, 47-59.	0.8	3
158	Spatiotemporal Methane Emission From Global Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006305.	1.3	23
159	Evaluation of comprehensive monthly-gridded methane emissions from natural and anthropogenic sources in China. Science of the Total Environment, 2021, 784, 147116.	3.9	28

#	Article	IF	Citations
160	Adaptive Thinking, Feeling and Acting., 2021,, 308-323.		0
161	Designing and Evaluating Adaptation Investments. , 2021, , 279-307.		0
162	Liveable and Sustainable Cities. , 2021, , 163-182.		0
163	Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2021, 2, 724-732.	6.2	298
164	Methylomonas albis sp. nov. and Methylomonas fluvii sp. nov.: Two cold-adapted methanotrophs from the river Elbe and emended description of the species Methylovulum psychrotolerans. Systematic and Applied Microbiology, 2021, 44, 126248.	1.2	18
165	Large Methane Emissions From the Pantanal During Rising Waterâ€Levels Revealed by Regularly Measured Lower Troposphere CH ₄ Profiles. Global Biogeochemical Cycles, 2021, 35, e2021GB006964.	1.9	8
166	Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest. Land, 2021, 10, 975.	1.2	3
167	Soil greenhouse gas fluxes from tropical coastal wetlands and alternative agricultural land uses. Biogeosciences, 2021, 18, 5085-5096.	1.3	9
168	Satellite Constraints on the Latitudinal Distribution and Temperature Sensitivity of Wetland Methane Emissions. AGU Advances, 2021, 2, e2021AV000408.	2.3	31
169	Coal seam gas industry methane emissions in the Surat Basin, Australia: comparing airborne measurements with inventories. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200458.	1.6	7
170	The impact of spatially varying wetland source signatures on the atmospheric variability of $\langle i \rangle \hat{l} \langle j \rangle D$ -CH $\langle sub \rangle A \langle j \rangle S$ -thilosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200442.	1.6	1
171	Substantial Stem Methane Emissions From Rainforest and Cacao Agroforest Partly Negate Soil Uptake in the Congo Basin. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006312.	1.3	5
172	Adaptation and the Paris Agreement. , 2021, , 3-24.		0
173	Changing Ideas of Adaptation. , 2021, , 185-206.		0
174	Detailed Patterns of Methane Distribution in the German Bight. Frontiers in Marine Science, 2021, 8, .	1.2	1
175	Divergent Gas Transfer Velocities of CO ₂ , CH ₄ , and N ₂ O Over Spatial and Temporal Gradients in a Subtropical Estuary. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006270.	1.3	5
176	Identification of Potential Methane Source Regions in Europe Using \hat{l}' 13 C CH4 Measurements and Trajectory Modeling. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033963.	1.2	5
178	The added value of satellite observations of methane forunderstanding the contemporary methane budget. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20210106.	1.6	21

#	Article	IF	CITATIONS
179	Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmospheric Chemistry and Physics, 2021, 21, 14159-14175.	1.9	54
180	A New Divergence Method to Quantify Methane Emissions Using Observations of Sentinelâ€5P TROPOMI. Geophysical Research Letters, 2021, 48, e2021GL094151.	1.5	22
181	Temperature differently affected methanogenic pathways and microbial communities in sub-Antarctic freshwater ecosystems. Environment International, 2021, 154, 106575.	4.8	21
182	Spatial and temporal heterogeneity of methane ebullition in lowland headwater streams and the impact on sampling design. Limnology and Oceanography, 2021, 66, 4063-4076.	1.6	6
183	Chaos and Climate Emergency. , 2021, , 25-58.		0
188	Systems, Climate and Ecology. , 2021, , 61-89.		0
190	How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200452.	1.6	49
191	Methods for quantifying methane emissions using unmanned aerial vehicles: a review. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200450.	1.6	21
192	Methane removal and the proportional reductions in surface temperature and ozone. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20210104.	1.6	33
193	What do we know about the global methane budget? Results from four decades of atmospheric CH ₄ observations and the way forward. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200440.	1.6	23
194	Methane (CH ₄) sources in Krakow, Poland: insights from isotope analysis. Atmospheric Chemistry and Physics, 2021, 21, 13167-13185.	1.9	13
195	Adaptation in Specific Geographies. , 2021, , 246-276.		0
196	Coastal Zone and Community Planning in Zanzibar., 2021,, 147-162.		0
198	Community Forest User Groups in Nepal. , 2021, , 111-127.		0
200	Mobile atmospheric measurements and local-scale inverse estimation of the location and rates of brief CH ₄ and CO ₂ releases from point sources. Atmospheric Measurement Techniques, 2021, 14, 5987-6003.	1,2	6
201	Controlling Factors of Seasonal Variation of Stem Methane Emissions From <i>Alnus japonica</i> in a Riparian Wetland of a Temperate Forest. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006326.	1.3	7
202	An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations. Atmospheric Measurement Techniques, 2021, 14, 6119-6135.	1.2	1
203	Nitrate-dependent anaerobic methane oxidation and chemolithotrophic denitrification in a temperate eutrophic lake. FEMS Microbiology Ecology, 2021, 97, .	1.3	9

#	Article	IF	CITATIONS
204	Making Systems Stronger., 2021,, 90-108.		O
206	Community Land Titling in Bolivia. , 2021, , 128-146.		0
208	Assessment of the inverse dispersion method for the determination of methane emissions from a dairy housing. Agricultural and Forest Meteorology, 2021, 307, 108501.	1.9	9
209	Illuminating the Intrinsic Effect of Water Co-feeding on Methane Dehydroaromatization: A Comprehensive Study. ACS Catalysis, 2021, 11, 11671-11684.	5.5	18
210	Atmospheric methane removal: a research agenda. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200454.	1.6	44
211	Methane flux measurements along a floodplain soil moisture gradient in the Okavango Delta, Botswana. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200448.	1.6	3
212	Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environmental Research Letters, 2021, 16, 104018.	2.2	19
213	Methane emissions in Kuwait: Plume identification, isotopic characterisation and inventory verification. Atmospheric Environment, 2022, 268, 118763.	1.9	13
214	Environmental sustainability assessment of rice management practices using decision support tools. Journal of Cleaner Production, 2021, 315, 128135.	4.6	8
215	Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. Science of the Total Environment, 2021, 786, 147515.	3.9	7
216	Dirty to clean energy: Exploring â€~oil and gas majors transitioning'. The Extractive Industries and Society, 2021, 8, 100936.	0.7	9
217	Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200457.	1.6	16
219	Learning from the Adaptation Communications. , 2021, , 207-245.		0
220	Variability of Natural Methane Bubble Release at Southern Hydrate Ridge. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009894.	1.0	4
221	Regional trends and drivers of the global methane budget. Global Change Biology, 2022, 28, 182-200.	4.2	56
222	The quantification of methane emissions and assessment of emissions data for the largest natural gas supply chains. Journal of Cleaner Production, 2021, 320, 128856.	4.6	23
223	Defining national biogenic methane targets: Implications for national food production & Defining national biogenic methane targets: Implications for national food production & Defining national methane targets: Implications for national food production & Defining national food prod	3.8	12
224	Drought-resistance rice variety with water-saving management reduces greenhouse gas emissions from paddies while maintaining rice yields. Agriculture, Ecosystems and Environment, 2021, 320, 107592.	2.5	34

#	Article	IF	CITATIONS
225	Large methane emission from freshwater aquaculture ponds revealed by long-term eddy covariance observation. Agricultural and Forest Meteorology, 2021, 308-309, 108600.	1.9	11
226	Hydrogen and carbon isotope fractionation factors of aerobic methane oxidation in deep-sea water. Biogeosciences, 2021, 18, 5351-5362.	1.3	5
227	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	1.9	33
228	A GC-SSIM-CRDS system: Coupling a gas chromatograph with a Cavity Ring-Down Spectrometer for onboard Twofold analysis of molecular and isotopic compositions of natural gases during ocean-going research expeditions. Analytica Chimica Acta, 2021, 1184, 339040.	2.6	1
229	Constraining models for methane oxidation based on long-term continuous chamber measurements in a temperate forest soil. Agricultural and Forest Meteorology, 2021, 310, 108654.	1.9	2
230	The impacts of nitrogen addition on upland soil methane uptake: A global meta-analysis. Science of the Total Environment, 2021, 795, 148863.	3.9	9
231	Seismic chimney characterisation in the North Sea $\hat{a}\in$ Implications for pockmark formation and shallow gas migration. Marine and Petroleum Geology, 2021, 133, 105301.	1.5	17
232	Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sensing of Environment, 2021, 265, 112671.	4.6	59
233	Spatial and temporal change patterns of near-surface CO2 and CH4 concentrations in different permafrost regions on the Mongolian Plateau from 2010 to 2017. Science of the Total Environment, 2021, 800, 149433.	3.9	12
234	A survey of greenhouse gases production in central European lignites. Science of the Total Environment, 2021, 800, 149551.	3.9	1
235	Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary. Science of the Total Environment, 2022, 805, 150193.	3.9	13
236	Ground-based remote sensing of CH4 and N2O fluxes from a wastewater treatment plant and nearby biogas production with discoveries of unexpected sources. Environmental Research, 2022, 204, 111978.	3.7	14
237	Measurement report: Changing characteristics of atmospheric CH ₄ in the Tibetan Plateau: records from 1994 to 2019 at the Mount Waliguan station. Atmospheric Chemistry and Physics, 2021, 21, 393-413.	1.9	18
238	Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.	1.9	39
239	Methane emissions from livestock in East Asia during $1961\hat{a}^22019$. Ecosystem Health and Sustainability, $2021, 7, .$	1.5	12
240	Valorization of methane from environmental engineering applications: A critical review. Water Research, 2020, 187, 116400.	5. 3	21
241	Investigation of the Spatial Distribution of Methane Sources in the Greater Toronto Area Using Mobile Gas Monitoring Systems. Environmental Science & Environmental Science & 2020, 54, 15671-15679.	4.6	17
242	Global methane levels soar to record high. Nature, 2020, , .	13.7	14

#	Article	IF	CITATIONS
243	Vertical stratification patterns of methanotrophs and their genetic controllers in water columns of oxygen-stratified boreal lakes. FEMS Microbiology Ecology, 2021, 97, .	1.3	29
244	Future projection of greenhouse gas emissions due to permafrost degradation using a simple numerical scheme with a global land surface model. Progress in Earth and Planetary Science, 2020, 7, 56.	1.1	17
246	Carbon, Nitrogen, and Sulfur Elemental Fluxes in the Soil and Exchanges with the Atmosphere in Australian Tropical, Temperate, and Arid Wetlands. Atmosphere, 2021, 12, 42.	1.0	4
247	Estimating CH ₄ , CO ₂ and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach. Atmospheric Chemistry and Physics, 2020, 20, 12675-12695.	1.9	36
248	On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmospheric Chemistry and Physics, 2020, 20, 13011-13022.	1.9	18
249	Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.	1.9	34
250	Quantifying methane emissions from Queensland's coal seam gas producing Surat Basin using inventory data and a regional Bayesian inversion. Atmospheric Chemistry and Physics, 2020, 20, 15487-15511.	1.9	8
251	Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. Atmospheric Chemistry and Physics, 2020, 20, 9525-9546.	1.9	19
252	The stable carbon isotope signature of methane produced by saprotrophic fungi. Biogeosciences, 2020, 17, 3891-3901.	1.3	11
253	Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations. Biogeosciences, 2020, 17, 5669-5691.	1.3	16
254	Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences, 2020, 17, 5809-5828.	1.3	16
255	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	3.7	1,477
256	A decade of GOSAT Proxy satellite CH ₄ observations. Earth System Science Data, 2020, 12, 3383-3412.	3.7	53
257	A Fast-Response Automated Gas EquilibratorÂ(FaRAGE) for continuous in situ measurement of CH ₄ and CO ₂ dissolved in water. Hydrology and Earth System Sciences, 2020, 24, 3871-3880.	1.9	20
258	Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes. Hydrology and Earth System Sciences, 2020, 24, 6047-6058.	1.9	2
260	Spatial-Temporal Changes of Methane Content in the Atmosphere for Selected Countries and Regions with High Methane Emission from Rice Cultivation. Atmosphere, 2021, 12, 1382.	1.0	4
262	Nitrous oxide and methane in a changing Arctic Ocean. Ambio, 2022, 51, 398-410.	2.8	6
263	Methanogenesis and Salt Tolerance Genes of a Novel Halophilic Methanosarcinaceae Metagenome-Assembled Genome from a Former Solar Saltern. Genes, 2021, 12, 1609.	1.0	10

#	Article	IF	CITATIONS
264	Why are methane emissions from China's oil & amp; natural gas systems still unclear? A review of current bottom-up inventories. Science of the Total Environment, 2022, 807, 151076.	3.9	13
265	Spatial and temporal variability of dissolved methane concentrations and diffusive emissions in the Three Gorges Reservoir. Water Research, 2021, 207, 117788.	5.3	18
266	Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats. Biogeosciences, 2021, 18, 5491-5511.	1.3	3
267	Methane Growth Rate Estimation and Its Causes in Western Canada Using Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033948.	1.2	1
268	Methane in Lakes: Variability in Stable Carbon Isotopic Composition and the Potential Importance of Groundwater Input. Frontiers in Earth Science, 2021, 9, .	0.8	10
269	WETMETH 1.0: a new wetland methane model for implementation in Earth system models. Geoscientific Model Development, 2021, 14, 6215-6240.	1.3	8
270	Quantifying methane emissions from coal mining ventilation shafts using an unmanned aerial vehicle (UAV)-based active AirCore system. Atmospheric Environment: X, 2021, 12, 100135.	0.8	11
271	Why is biogas production and not food donation the Swedish political priority for food waste management?. Environmental Science and Policy, 2021, 126, 60-64.	2.4	13
272	Isoprene emission characteristics of tall and dwarf bamboos. Atmospheric Environment: X, 2021, 12, 100136.	0.8	1
273	Field-scale CH ₄ emission at a subarctic mire with heterogeneous permafrost thaw status. Biogeosciences, 2021, 18, 5811-5830.	1.3	5
274	Analysis of atmospheric greenhouse gases in north Xinjiang. Atmospheric Environment, 2022, 268, 118823.	1.9	5
275	Microbial methane emissions from the non-methanogenesis processes: A critical review. Science of the Total Environment, 2022, 806, 151362.	3.9	14
276	Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp. Frontiers in Earth Science, 2020, 8, .	0.8	9
277	Carbon cycle in tropical peatlands and coastal seas. , 2022, , 83-142.		2
278	Severe cyanobacteria accumulation potentially induces methylotrophic methane producing pathway in eutrophic lakes. Environmental Pollution, 2022, 292, 118443.	3.7	12
279	Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations. Remote Sensing of Environment, 2022, 268, 112756.	4.6	23
280	Globale Erwämung: lst ein Kurswechsel möglich?., 2020,, 14-31.		0
281	BAWLD-CH ₄ : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 2021, 13, 5151-5189.	3.7	44

#	Article	IF	CITATIONS
282	Atmospheric observations consistent with reported decline in the UK's methane emissions (2013â€"2020). Atmospheric Chemistry and Physics, 2021, 21, 16257-16276.	1.9	8
283	The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth System Science Data, 2021, 13, 5127-5149.	3.7	46
284	The rumen microbiome inhibits methane formation through dietary choline supplementation. Scientific Reports, 2021, 11, 21761.	1.6	3
285	Sustainability challenges for the upstream sectors of the natural gas industry. , 2022, , 349-378.		0
286	On the climate impacts of blue hydrogen production. Sustainable Energy and Fuels, 2021, 6, 66-75.	2.5	126
287	Methane detection and quantification in the upstream oil and gas sector: the role of satellites in emissions detection, reconciling and reporting. Environmental Science Atmospheres, 2022, 2, 9-23.	0.9	15
288	Two TonB-Dependent Transporters in Methylosinus trichosporium OB3b Are Responsible for Uptake of Different Forms of Methanobactin and Are Involved in the Canonical "Copper Switch― Applied and Environmental Microbiology, 2022, 88, AEM0179321.	1.4	7
289	A surprise from the deep. Science, 2021, 374, 821-822.	6.0	1
291	Wide range temperature stability of palladium on ceria-praseodymia catalysts for complete methane oxidation. Catalysis Today, 2022, 390-391, 185-197.	2.2	7
292	A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth System Science Data, 2021, 13, 5213-5252.	3.7	68
293	Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations. Environmental Science & Environmental Sc	4.6	39
294	Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Communications Earth & Environment, $2021, 2, \ldots$	2.6	24
295	Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane. Science, 2021, 374, 894-897.	6.0	31
296	A Bayesian framework for deriving sector-based methane emissions from top-down fluxes. Communications Earth & Environment, 2021, 2, .	2.6	12
297	Improving Representation of Tropical Wetland Methane Emissions With CYGNSS Inundation Maps. Global Biogeochemical Cycles, 2021, 35, e2020GB006890.	1.9	17
298	Is the climate change mitigation effect of enhanced silicate weathering governed by biological processes?. Global Change Biology, 2022, 28, 711-726.	4.2	32
299	Declining methane emissions and steady, high leakage rates observed over multiple years in a western US oil/gas production basin. Scientific Reports, 2021, 11, 22291.	1.6	13
300	Enteric methane emission estimates for Kenyan cattle in a nighttime enclosure using a backward Lagrangian Stochastic dispersion technique. Theoretical and Applied Climatology, 2022, 147, 1091-1103.	1.3	4

#	Article	IF	CITATIONS
301	Decreasing methane emissions from China's coal mining with rebounded coal production. Environmental Research Letters, 2021, 16, 124037.	2.2	16
302	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
303	Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017. National Science Review, 2022, 9, nwab200.	4.6	20
304	Sulfate―and ironâ€dependent anaerobic methane oxidation occurring sideâ€byâ€side in freshwater lake sediment. Limnology and Oceanography, 2022, 67, 231-246.	1.6	11
305	Quantification of CH& lt; sub& gt; 4& lt; /sub& gt; coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the Methane Airborne MAPper (MAMAP) instrument during the CO& lt; sub& gt; 2& lt; /sub& gt; and Methane (CoMet) campaign. Atmospheric Chemistry and Physics, 2021, 21, 17345-17371.	1.9	16
306	Vegetation and hydrology stratification as proxies to estimate methane emission from tidal marshes. Biogeochemistry, 2022, 157, 227-243.	1.7	8
307	Methane gas emissions from savanna fires: what analysis of local burning regimes in a working West African landscape tell us. Biogeosciences, 2021, 18, 6229-6244.	1.3	6
308	Iterative Forecasting Improves Near-Term Predictions of Methane Ebullition Rates. Frontiers in Environmental Science, 2021, 9, .	1.5	3
309	Long-term atmospheric emissions for the Coal Oil Point natural marine hydrocarbon seep field, offshore California. Atmospheric Chemistry and Physics, 2021, 21, 17607-17629.	1.9	4
310	Antibiotics as a silent driver of climate change? A case study investigating methane production in freshwater sediments. Ecotoxicology and Environmental Safety, 2021, 228, 113025.	2.9	4
311	Conflicting estimates of natural geologic methane emissions. Elementa, 2021, 9, .	1.1	3
312	Methane Occurrence and Quantification in a Very Shallow Water Environment: A Multidisciplinary Approach. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	2
313	Riparian Cottonwood Trees and Adjacent River Sediments Have Different Microbial Communities and Produce Methane With Contrasting Carbon Isotope Compositions. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
314	MethaNet $\hat{a}\in$ An Al-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery. Remote Sensing of Environment, 2022, 269, 112809.	4.6	13
315	DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments. Science of the Total Environment, 2022, 814, 152742.	3.9	10
316	Elevated CO2 does not necessarily enhance greenhouse gas emissions from rice paddies. Science of the Total Environment, 2022, 810, 152363.	3.9	17
317	Archaea rather than bacteria govern green roofs greenhouse gas production. Ecological Engineering, 2022, 176, 106530.	1.6	0
318	A novel concept for ultra-low concentration methane treatment based on chemical looping catalytic oxidation. Fuel Processing Technology, 2022, 228, 107159.	3.7	7

#	Article	IF	Citations
319	CS2 increasing CH4-derived carbon emissions and active microbial diversity in lake sediments. Environmental Research, 2022, 208, 112678.	3.7	8
321	Private costs of carbon emissions abatement by limiting beef consumption and vehicle use in the United States. PLoS ONE, 2022, 17, e0261372.	1.1	3
322	Quantification of Ecosystem-Scale Methane Sinks Observed in a Tropical Rainforest in Hainan, China. Land, 2022, 11, 154.	1.2	0
323	Synthesis–Structure–Activity Relationship in Cu-MOR for Partial Methane Oxidation: Al Siting via Inorganic Structure-Directing Agents. ACS Catalysis, 2022, 12, 2166-2177.	5.5	11
324	Distinct Co-occurrence Relationships and Assembly Processes of Active Methane-Oxidizing Bacterial Communities Between Paddy and Natural Wetlands of Northeast China. Frontiers in Microbiology, 2022, 13, 809074.	1.5	1
325	Methane and NO <i></i> Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes. Environmental Science & Environmental Science	4.6	60
326	Understanding Temporal Variations of Atmospheric Radon-222 around Japan Using Model Simulations. Journal of the Meteorological Society of Japan, 2022, 100, 343-359.	0.7	2
327	Chemosynthesis., 2022, , 118-135.		1
328	Effect of Water and Formic Acid on ·OH + CH4 Reaction: An Ab Initio/DFT Study. Catalysts, 2022, 12, 133.	1.6	3
329	Disproportionate Contribution of Vegetated Habitats to the CH4 and CO2 Budgets of a Boreal Lake. Ecosystems, 2022, 25, 1522-1541.	1.6	14
330	Methanotrophic bacterial biorefineries: resource recovery and GHG mitigation through the production of bacterial biopolymers., 2022,, 155-178.		1
331	Greenhouse gas dynamics in an urbanized river system: influence of water quality and land use. Environmental Science and Pollution Research, 2022, 29, 37277-37290.	2.7	11
332	Phenology is the dominant control of methane emissions in a tropical non-forested wetland. Nature Communications, 2022, 13, 133.	5.8	14
333	Spatial and temporal patterns of methane uptake in the urban environment. Urban Climate, 2022, 41, 101073.	2.4	4
334	Engineering of Pt-based nanostructures for efficient dry (CO2) reforming: Strategy and mechanism for rich-hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 5901-5928.	3.8	28
335	Methane Emissions From Nordic Seagrass Meadow Sediments. Frontiers in Marine Science, 2022, 8, .	1.2	12
336	Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment, 2022, 3, 55-67.	12.2	124
337	Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus) Tj ETQq1 1 0.784 Atmospheric Chemistry and Physics. 2022. 22. 395-418.	314 rgBT / 1.9	Overlock 10

#	Article	IF	CITATIONS
338	Dependance of isoprene emission flux on leaf mass per area of <l>Phyllostachys pubescens</l> (moso bamboo). J Agricultural Meteorology, 2022, 78, 1-7.	0.8	0
339	Methane emissions only negligibly reduce the ecosystem service value of wetlands and rice paddies in the mature Ganges Delta. Environmental Science and Pollution Research, 2022, 29, 27894-27908.	2.7	4
340	Massive methane emission from tree stems and pneumatophores in a subtropical mangrove wetland. Plant and Soil, 2022, 473, 489-505.	1.8	16
341	Quantification of CH ₄ emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI. Atmospheric Chemistry and Physics, 2022, 22, 295-317.	1.9	21
342	Methane. , 2022, , 136-154.		2
343	Characterizing the post-monsoon CO2, CH4, N2O, and H2O vapor fluxes from a tropical wetland in the Himalayan foothill. Environmental Monitoring and Assessment, 2022, 194, 50.	1.3	4
344	Assimilation of GOSAT Methane in the Hemispheric CMAQ; Part II: Results Using Optimal Error Statistics. Remote Sensing, 2022, 14, 375.	1.8	2
345	Assimilation of GOSAT Methane in the Hemispheric CMAQ; Part I: Design of the Assimilation System. Remote Sensing, 2022, 14, 371.	1.8	4
346	An integrated analysis of contemporary methane emissions and concentration trends over China using in situ and satellite observations and model simulations. Atmospheric Chemistry and Physics, 2022, 22, 1229-1249.	1.9	3
347	Dominance of Diffusive Methane Emissions From Lowland Headwater Streams Promotes Oxidation and Isotopic Enrichment. Frontiers in Environmental Science, 2022, 9, .	1.5	5
348	Comparison of Methane Emission Patterns from Dairy Housings with Solid and Slatted Floors at Two Locations. Agronomy, 2022, 12, 381.	1.3	3
349	Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO2 emissions this century. , 2022, 1, e0000010.		62
350	Satellites Detect Abatable Super-Emissions in One of the World's Largest Methane Hotspot Regions. Environmental Science & Camp; Technology, 2022, 56, 2143-2152.	4.6	40
351	Identifying Sources and Oxidation of Methane in Standing Dead Trees in Freshwater Forested Wetlands. Frontiers in Environmental Science, 2022, 9, .	1.5	3
352	Perspectives on removal of atmospheric methane. Advances in Applied Energy, 2022, 5, 100085.	6.6	27
353	Process efficiency and greenhouse gas emissions in black soldier fly larvae composting of fruit and vegetable waste with and without pre-treatment. Journal of Cleaner Production, 2022, 338, 130552.	4.6	20
354	Distribution of permafrost and gas hydrates in relation to intensive gas emission in the central part of the Laptev Sea (Russian Arctic). Marine and Petroleum Geology, 2022, 138, 105527.	1.5	14
355	Toward UAV-based methane emission mapping of Arctic terrestrial ecosystems. Science of the Total Environment, 2022, 819, 153161.	3.9	9

#	Article	IF	CITATIONS
356	Seasonal and annual variations of CO2 and CH4 at Shadnagar, a semi-urban site. Science of the Total Environment, 2022, 819, 153114.	3.9	15
357	Chasing after methane's ultra-emitters. Science, 2022, 375, 490-491.	6.0	4
358	Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 2022, 65, 861-895.	2.3	163
359	Global assessment of oil and gas methane ultra-emitters. Science, 2022, 375, 557-561.	6.0	114
360	Partitioning methane flux by the eddy covariance method in a cool temperate bog based on a Bayesian framework. Agricultural and Forest Meteorology, 2022, 316, 108852.	1.9	4
361	How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35). Geoscientific Model Development, 2021, 14, 7775-7793.	1.3	11
362	Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210112.	1.6	6
364	Relationship between methane emissions and economic growth in Central Africa countries: Evidence from panel data. Global Transitions, 2021, 3, 126-134.	1.6	10
365	Microbial Mechanisms for Methane Source-to-Sink Transition after Wetland Conversion to Cropland. SSRN Electronic Journal, 0, , .	0.4	0
366	Autonomous methane seep site monitoring offshore western Svalbard: hourly to seasonal variability and associated oceanographic parameters. Ocean Science, 2022, 18, 233-254.	1.3	3
367	Global benefits of nonâ€continuous flooding to reduce greenhouse gases and irrigation water use without rice yield penalty. Global Change Biology, 2022, 28, 3636-3650.	4.2	23
368	Effect of water management on microbial diversity and composition in an Italian rice field system. FEMS Microbiology Ecology, 2022, 98, .	1.3	11
369	Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region. Atmospheric Chemistry and Physics, 2022, 22, 2121-2133.	1.9	1
370	A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands. Geoscientific Model Development, 2022, 15, 1633-1657.	1.3	6
371	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 2022, 15, 1289-1316.	1.3	34
372	Research Review of Methane Emissions from Korean Rice Paddies. Journal of Climate Change Research, 2022, 13, 117-134.	0.1	5
373	The role of future anthropogenic methane emissions in air quality and climate. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	18
374	The Synergism between Methanogens and Methanotrophs and the Nature of their Contributions to the Seasonal Variation of Methane Fluxes in a Wetland: The Case of Dajiuhu Subalpine Peatland. Advances in Atmospheric Sciences, 2022, 39, 1375-1385.	1.9	4

#	ARTICLE	IF	CITATIONS
375	Ship-Borne Observations of Atmospheric CH4 and \hat{l} 13C Isotope Signature in Methane over Arctic Seas in Summer and Autumn 2021. Atmosphere, 2022, 13, 458.	1.0	4
376	Methane formation driven by reactive oxygen species across all living organisms. Nature, 2022, 603, 482-487.	13.7	69
377	Aerobic and anaerobic methane oxidation in a seasonally anoxic basin. Limnology and Oceanography, 2022, 67, 1257-1273.	1.6	8
378	Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nature Communications, 2022, 13, 1378.	5.8	31
379	Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmospheric Measurement Techniques, 2022, 15, 1657-1674.	1.2	28
380	A nation that rebuilds its soils rebuild itself- an engineer's perspective. Soil Security, 2022, , 100060.	1.2	1
381	Tree Foliage is a Methane Sink in Upland Temperate Forests. Ecosystems, 0, , 1.	1.6	4
382	Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations. Atmospheric Chemistry and Physics, 2022, 22, 3235-3249.	1.9	22
383	Reducing methane emission by promoting its oxidation in rhizosphere through nitrogen-induced root growth in paddy fields. Plant and Soil, 2022, 474, 541-560.	1.8	17
384	Solar radiation drives methane emissions from the shoots of Scots pine. New Phytologist, 2022, 235, 66-77.	3.5	8
385	GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting. Geoscientific Model Development, 2022, 15, 2239-2264.	1.3	8
386	Quantifying fossil fuel methane emissions using observations of atmospheric ethane and an uncertain emission ratio. Atmospheric Chemistry and Physics, 2022, 22, 3911-3929.	1.9	4
388	Identification of active gaseous-alkane degraders at natural gas seeps. ISME Journal, 2022, 16, 1705-1716.	4.4	7
389	A Qualitative Assessment of the Trends, Distribution and Sources of Methane in South Africa. Sustainability, 2022, 14, 3528.	1.6	2
390	Methane emissions from trees planted on a closed landfill site. Waste Management and Research, 2022, 40, 1618-1628.	2.2	2
391	Occurrence and Discrepancy of Surface and Column Mole Fractions of CO2 and CH4 at a Desert Site in Dunhuang, Western China. Atmosphere, 2022, 13, 571.	1.0	2
392	Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone $\hat{a} \in \text{``Challenges toward a denitrified society. Atmospheric Environment, 2022, 277, 119033.}$	1.9	25
393	Numerical Simulation Study on Boiler Combustion Characteristics With Different Volume Fraction of Ventilation Air Methane. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	1.4	1

#	Article	IF	Citations
394	Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes. ISME Journal, 2022, 16, 1788-1797.	4.4	12
395	Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020. Geoscientific Model Development, 2022, 15, 2813-2838.	1.3	8
396	Unexpected Parabolic Temperature Dependency of CH ₄ Emissions from Rice Paddies. Environmental Science & Environment	4.6	21
397	Simulating Electronic Absorption Spectra of Atmospherically Relevant Molecules: A Systematic Assignment for Enhancing Undergraduate STEM Education. Education Sciences, 2022, 12, 252.	1.4	0
398	Sulfate concentrations affect sulfate reduction pathways and methane consumption in coastal wetlands. Water Research, 2022, 217, 118441.	5.3	22
399	Nearâ€field atmospheric inversions for the localization and quantification of controlled methane releases using stationary and mobile measurements. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1886-1912.	1.0	10
400	An empirical analysis of surface-level methane emission from anthropogenic sources in India. Journal of Cleaner Production, 2022, 346, 131101.	4.6	2
401	Interannual Variability in Methane and Nitrous Oxide Concentrations and Seaâ€Air Fluxes Across the North American Arctic Ocean (2015–2019). Global Biogeochemical Cycles, 2022, 36, .	1.9	8
402	Measurements of Atmospheric Methane Emissions from Stray Gas Migration: A Case Study from the Marcellus Shale. ACS Earth and Space Chemistry, 2022, 6, 909-919.	1.2	0
403	Methane-Derived Carbon as a Driver for Cyanobacterial Growth. Frontiers in Microbiology, 2022, 13, 837198.	1.5	2
404	Global evaluation of carbon neutrality and peak carbon dioxide emissions: current challenges and future outlook. Environmental Science and Pollution Research, 2023, 30, 81725-81744.	2.7	41
405	Quantification and assessment of methane emissions from offshore oil and gas facilities on the Norwegian continental shelf. Atmospheric Chemistry and Physics, 2022, 22, 4303-4322.	1.9	23
406	Prediction of Methane Leakage Through Primary Cement Barrier in the High Island OPD, Gulf of Mexico. Journal of Natural Gas Science and Engineering, 2022, 101, 104511.	2.1	2
407	Stable isotopic signatures of methane from waste sources through atmospheric measurements. Atmospheric Environment, 2022, 276, 119021.	1.9	7
408	The tidal freshwater river zone: Physical properties and biogeochemical contribution to estuarine hypoxia and acidification - The "hydrologic switch― Estuarine, Coastal and Shelf Science, 2022, 268, 107786.	0.9	3
409	Nitrite-dependent anaerobic oxidation decreases methane emissions from peatlands. Soil Biology and Biochemistry, 2022, 169, 108658.	4.2	4
410	Spatial and seasonal dynamics of the methane cycle in a tropical coastal lagoon and its tributary river. Science of the Total Environment, 2022, 825, 154074.	3.9	1
411	Nitrogen input promotes denitrifying methanotrophs' abundance and contribution to methane emission reduction in coastal wetland and paddy soil. Environmental Pollution, 2022, 302, 119090.	3.7	20

#	Article	IF	CITATIONS
412	Natural gas as a barrier to sustainability transitions? A systematic mapping of the risks and challenges. Energy Research and Social Science, 2022, 89, 102538.	3.0	20
413	Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis. Science China Earth Sciences, 2022, 65, 96-106.	2.3	7
414	Non-flooded riparian Amazon trees are a regionally significant methane source. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200446.	1.6	10
415	$\langle i \rangle \hat{l}' \langle i \rangle \langle sup \rangle 13 \langle sup \rangle$ C methane source signatures from tropical wetland and rice field emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200449.	1.6	8
416	Analysis on the Influencing Factors of Methane Emission from Wetlands. IOP Conference Series: Earth and Environmental Science, 2021, 943, 012006.	0.2	0
417	Is the destruction or removal of atmospheric methane a worthwhile option?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210108.	1.6	10
418	Methanogenesis and Methane Oxidation in Paddy Fields under Organic Fertilization. Korean Journal of Environmental Agriculture, 2021, 40, 295-312.	0.0	6
419	Assessment of GHG Interactions in the Vicinity of the Municipal Waste Landfill Siteâ€"Case Study. Energies, 2021, 14, 8259.	1.6	6
420	From sink to source: high inter-annual variability in the carbon budget of a Southern African wetland. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210148.	1.6	5
421	The urgent need to cut methane emissions. National Science Review, 2022, 9, nwab221.	4.6	2
422	Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in Summer 2019. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210192.	1.6	2
423	Methane in the Yellow Sea and East China Sea: dynamics, distribution, and production. Journal of Oceanology and Limnology, 2022, 40, 530-550.	0.6	3
424	Atmospheric Methane Consumption and Methanotroph Communities in West Siberian Boreal Upland Forest Ecosystems. Forests, 2021, 12, 1738.	0.9	7
425	Amsterdam urban canals contain novel niches for methaneâ€eycling microorganisms. Environmental Microbiology, 2022, 24, 82-97.	1.8	8
426	Methane and the Paris Agreement temperature goals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200456.	1.6	14
427	Effects of extreme meteorological conditions in 2018 on European methane emissions estimated using atmospheric inversions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200443.	1.6	4
428	Methane Emission Estimation of Oil and Gas Sector: A Review of Measurement Technologies, Data Analysis Methods and Uncertainty Estimation. Sustainability, 2021, 13, 13895.	1.6	2
429	Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Current Climate Change Reports, 2021, 7, 99-120.	2.8	51

#	Article	IF	CITATIONS
430	Lovastatin as a supplement to mitigate rumen methanogenesis: an overview. Journal of Animal Science and Biotechnology, 2021, 12, 123.	2.1	6
431	The Impact of the 2020 Oil Production Fluctuations on Methane Emissions over the Gulf Cooperation Council (GCC) Countries: A Satellite Approach. Atmosphere, 2022, 13, 11.	1.0	2
432	Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes. Remote Sensing, 2021, 13, 5059.	1.8	5
433	Model-based evaluation of methane emissions from paddy fields in East Asia. J Agricultural Meteorology, 2022, 78, 56-65.	0.8	8
435	Metallosilicates as an iron support to catalyze Fischer-Tropsch synthesis. Catalysis Today, 2022, , .	2.2	3
436	Microbial oxidation of atmospheric trace gases. Nature Reviews Microbiology, 2022, 20, 513-528.	13.6	36
438	Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil. Biogeosciences, 2022, 19, 2025-2041.	1.3	1
439	Nutrients Alter Methane Production and Oxidation in a Thawing Permafrost Mire. Ecosystems, 0, , 1.	1.6	3
440	Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth System Science Data, 2022, 14, 1639-1675.	3.7	58
441	Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth System Science Data, 2022, 14, 1795-1809.	3.7	53
442	Acoustic Mapping of Gas Stored in Sediments of Shallow Aquatic Systems Linked to Methane Production and Ebullition Patterns. Frontiers in Environmental Science, 2022, 10, .	1.5	7
443	On the consistency of methane retrievals using the Total Carbon Column Observing Network (TCCON) and multiple spectroscopic databases. Atmospheric Measurement Techniques, 2022, 15, 2377-2406.	1.2	3
444	Post-harvest recovery of soil methane oxidation on skid trails and landings in a managed northern hardwood forest. Forest Ecology and Management, 2022, 515, 120202.	1.4	2
446	Exploring the microbial mechanism of reducing methanogenesis during dairy manure membrane-covered aerobic composting at industrial scale. Bioresource Technology, 2022, 354, 127214.	4.8	11
447	The community characteristics and functions of methanotrophs in karst Lake Caohai, Guizhou Plateau. Hupo Kexue/Journal of Lake Sciences, 2022, 34, 906-918.	0.3	1
448	Methane Regulation in the EU: Stakeholder Perspectives on Mrv and Emissions Reductions. SSRN Electronic Journal, 0, , .	0.4	0
449	Modification of a Wavelet-Based Method for Detecting Ebullitive Methane Fluxes in Eddy-Covariance Observations: Application at Two Rice Fields. Boundary-Layer Meteorology, 2022, 184, 71-111.	1.2	3
450	Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion. Biogeosciences, 2022, 19, 2245-2262.	1.3	5

#	Article	IF	CITATIONS
451	Clumped methane isotopologue-based temperature estimates for sources of methane in marine gas hydrates and associated vent gases. Geochimica Et Cosmochimica Acta, 2022, 327, 276-297.	1.6	14
452	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	3.7	663
453	Assessing the Benthic Response to Climate-Driven Methane Hydrate Destabilisation: State of the Art and Future Modelling Perspectives. Energies, 2022, 15, 3307.	1.6	6
454	Modeling methane dynamics in three wetlands in Northeastern China by using the CLM-Microbe model. Ecosystem Health and Sustainability, 2022, 8, .	1.5	1
455	Spatio-Temporal Monitoring of Atmospheric Pollutants Using Earth Observation Sentinel 5P TROPOMI Data: Impact of Stubble Burning a Case Study. ISPRS International Journal of Geo-Information, 2022, 11, 301.	1.4	10
456	Overview: On the transport and transformation of pollutants in the outflow of major population centres $\hat{a} \in \hat{b}$ observational data from the EMeRGe European intensive operational period in summer 2017. Atmospheric Chemistry and Physics, 2022, 22, 5877-5924.	1.9	16
457	Extreme Hydrological Events and Reservoir Methane Emissions. Frontiers in Environmental Science, 2022, 10, .	1.5	0
458	Rapid Sampling Protocol of Isoprene Emission Rate of Palm (Arecaceae) Species Using Excised Leaves. Atmosphere, 2022, 13, 778.	1.0	2
459	Modeling Panâ€Arctic Peatland Carbon Dynamics Under Alternative Warming Scenarios. Geophysical Research Letters, 2022, 49, .	1.5	7
460	Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments. Biogeosciences, 2022, 19, 2313-2331.	1.3	6
461	Observational constraints on methane emissions from Polish coal mines using a ground-based remote sensing network. Atmospheric Chemistry and Physics, 2022, 22, 5859-5876.	1.9	10
462	Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnology and Oceanography, 2022, 67, .	1.6	20
463	New temperate seaweed targets for mitigation of ruminant methane emissions: an in vitro assessment. Applied Phycology, 2022, 3, 274-284.	0.6	4
464	Biophysical Controls of Ecosystemâ€Scale Methane Fluxes From a Subtropical Estuarine Mangrove: Multiscale, Nonlinearity, Asynchrony and Causality. Global Biogeochemical Cycles, 2022, 36, .	1.9	5
465	Prairie wetlands as sources or sinks of nitrous oxide: Effects of land use and hydrology. Agricultural and Forest Meteorology, 2022, 320, 108968.	1.9	6
466	Methane emissions from subtropical wetlands: An evaluation of the role of data filtering on annual methane budgets. Agricultural and Forest Meteorology, 2022, 321, 108972.	1.9	3
467	The biotechnological potential of microbial communities from Antarctic soils and sediments: Application to low temperature biogenic methane production. Journal of Biotechnology, 2022, 351, 38-49.	1.9	6
468	Terrigenous organic carbon drives methane dynamics in cascade reservoirs in the upper Yangtze China. Water Research, 2022, 219, 118546.	5.3	10

#	Article	IF	CITATIONS
469	Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science and Policy, 2022, 134, 127-136.	2.4	40
470	Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States. Biogeosciences, 2022, 19, 2507-2522.	1.3	3
471	Understanding (photo)electrocatalysis for the conversion of methane to valuable chemicals through partial oxidation processes. Journal of Materials Chemistry A, 2022, 10, 19107-19128.	5. 2	9
472	Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biology and Biochemistry, 2022, 170, 108697.	4.2	57
473	Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain. Atmospheric Chemistry and Physics, 2022, 22, 6347-6364.	1.9	6
474	Methane emissions from forested closed landfill sites: Variations between tree species and landfill management practices. Science of the Total Environment, 2022, , 156019.	3.9	2
475	Determination of methanogenesis by nutrient availability via regulating the relative fitness of methanogens in anaerobic digestion. Science of the Total Environment, 2022, 838, 156002.	3.9	8
476	Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century. Nature Communications, 2022, 13, 2768.	5.8	20
477	Ocean systems. , 2022, , 427-452.		1
478	Current knowledge and uncertainties associated with the Arctic greenhouse gas budget. , 2022, , 159-201.		1
479	Bottom-up approaches for estimating terrestrial GHG budgets: Bookkeeping, process-based modeling, and data-driven methods., 2022,, 59-85.		0
480	Balancing greenhouse gas sources and sinks: Inventories, budgets, and climate policy., 2022,, 3-28.		0
481	Tropical ecosystem greenhouse gas accounting., 2022,, 271-309.		0
482	Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, 2022, 10 , .	1.5	4
483	The 2019 methane budget and uncertainties at $1\hat{A}^{\circ}$ resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates. Atmospheric Chemistry and Physics, 2022, 22, 6811-6841.	1.9	24
484	Monitoring methane emissions from oil and gas operations < sup>‡ < /sup>. Optics Express, 2022, 30, 24326.	1.7	5
485	Elevated atmospheric CO2 reduces CH4 and N2O emissions under two contrasting rice cultivars from a subtropical paddy field in China. Pedosphere, 2022, 32, 707-717.	2.1	8
486	High methane emissions from an anoxic fjord driven by mixing and oxygenation. Limnology and Oceanography Letters, 0, , .	1.6	3

#	Article	IF	CITATIONS
488	The first simultaneous and continuous underway measurements of atmospheric gaseous elemental mercury, carbon dioxide and methane in the marine boundary layer: Results of cruise study in the Sea of Japan in May 2018. Atmospheric Pollution Research, 2022, 13, 101458.	1.8	0
489	Reduction of Non-CO2 Greenhouse Gas Emissions by Catalytic Processes. , 2022, , 1759-1802.		0
490	The Role of Emission Sources and Atmospheric Sink in the Seasonal Cycle of CH4 and \hat{l} 13-CH4: Analysis Based on the Atmospheric Chemistry Transport Model TM5. Atmosphere, 2022, 13, 888.	1.0	1
491	Towards reconstructing the Arctic atmospheric methane history over the 20th century: measurement and modelling results for the North Greenland Ice Core Project firn. Atmospheric Chemistry and Physics, 2022, 22, 6899-6917.	1.9	2
492	Methane, carbon dioxide, hydrogen sulfide, and isotopic ratios of methane observations from the Permian Basin tower network. Earth System Science Data, 2022, 14, 2401-2417.	3.7	6
493	Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
494	Food Waste Diversion from Landfills: A Cost–Benefit Analysis of Existing Technological Solutions Based on Greenhouse Gas Emissions. Sustainability, 2022, 14, 6753.	1.6	2
495	XCO2 and XCH4 Reconstruction Using GOSAT Satellite Data Based on EOF-Algorithm. Remote Sensing, 2022, 14, 2622.	1.8	1
496	Biogeochemical dynamics of a glaciated highâ€latitude wetland. Journal of Geophysical Research G: Biogeosciences, O, , .	1.3	3
497	The characteristics and influencing factors of dissolved methane concentrations in Chongqing's central urban area in the Three Gorges Reservoir, China. Environmental Science and Pollution Research, 2022, 29, 72045-72057.	2.7	4
498	Hydrocarbon Gases in Seafloor Sediments of the Edge Shelf Zone of the East Siberian Sea and Adjacent Part of the Arctic Ocean. Frontiers in Earth Science, 2022, 10, .	0.8	3
499	Satellites Detect a Methane Ultra-emission Event from an Offshore Platform in the Gulf of Mexico. Environmental Science and Technology Letters, 2022, 9, 520-525.	3.9	25
500	Modeling subgrid lake energy balance in ORCHIDEE terrestrial scheme using the FLake lake model. Geoscientific Model Development, 2022, 15, 4275-4295.	1.3	2
501	Mapping Onshore CH4 Seeps in Western Siberian Floodplains Using Convolutional Neural Network. Remote Sensing, 2022, 14, 2661.	1.8	1
502	A 130â€year global inventory of methane emissions from livestock: Trends, patterns, and drivers. Global Change Biology, 2022, 28, 5142-5158.	4.2	17
503	How much inundation occurs in the Amazon River basin?. Remote Sensing of Environment, 2022, 278, 113099.	4.6	18
504	A high-resolution gridded inventory of coal mine methane emissions for India and Australia. Elementa, 2022, 10, .	1.1	5
505	Microbial trait-based approaches for agroecosystems. Advances in Agronomy, 2022, , 259-299.	2.4	1

#	Article	IF	Citations
506	Gas Flaring and Methane Emissions Facts and Trends. , 2022, , 1-26.		0
507	Spectral Indices of Vegetation Condition and Soil Water Content Reflect Controls on CH ₄ and CO ₂ Exchange in ⟨i>Sphagnum⟨/i>â€Dominated Northern Peatlands. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	7
508	Methane Concentration Downtown and in the Suburbs of an Urbanized City and Controlling Parameters to Determine Its Horizontal Distribution. Water, Air, and Soil Pollution, 2022, 233, .	1.1	0
509	Monitoring Methane Emissions from Oil and Gas Operations. , 2022, 1, .		19
510	The Importance of Lake Emergent Aquatic Vegetation for Estimating Arcticâ€Boreal Methane Emissions. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	11
511	Photochemical Soil Methane Emission. ACS Earth and Space Chemistry, 2022, 6, 1742-1749.	1.2	О
512	Hydrocarbon Tracers Suggest Methane Emissions from Fossil Sources Occur Predominately Before Gas Processing and That Petroleum Plays Are a Significant Source. Environmental Science & Emp; Technology, 0, , .	4.6	3
513	Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR. Geoscientific Model Development, 2022, 15, 4555-4567.	1.3	1
514	An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations. Atmospheric Measurement Techniques, 2022, 15, 3721-3745.	1.2	0
515	Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations. Hydrology and Earth System Sciences, 2022, 26, 3151-3175.	1.9	3
516	Potential soil methane oxidation in naturally regenerated oak-dominated temperate deciduous forest stands responds to soil water status regardless of their ageâ€"an intact core incubation study. Annals of Forest Science, 2022, 79, .	0.8	1
517	The Impact of Environmental Taxes on the Level of Greenhouse Gas Emissions in Poland and Sweden. Energies, 2022, 15, 4465.	1.6	18
518	Homoacetogenesis competes with hydrogenotrophic methanogenesis for substrates in a peatland experiencing ecosystem warming. Soil Biology and Biochemistry, 2022, 172, 108759.	4.2	3
519	Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL. Scientific Data, 2022, 9, .	2.4	7
520	Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity. Nature Communications, 2022, 13 , .	5.8	11
521	Changes in Soil Microbial Community and Carbon Flux Regime across a Subtropical Montane Peatland-to-Forest Successional Series in Taiwan. Forests, 2022, 13, 958.	0.9	1
522	The Earth's atmosphere – A stable isotope perspective and review. Applied Geochemistry, 2022, 143, 105355.	1.4	6
523	Effects of combined applications of straw with industrial and agricultural wastes on greenhouse gases emissions, temperature sensitivity, and rice yield in a subtropical paddy field. Science of the Total Environment, 2022, 840, 156674.	3.9	4

#	Article	IF	CITATIONS
524	Long-term preservation of biomolecules in lake sediments: potential importance of physical shielding by recalcitrant cell walls. , $2022,1,$		4
525	Mitigation of GHG Emissions from Soils Fertilized with Livestock Chain Residues. Agronomy, 2022, 12, 1593.	1.3	1
526	Variational inverse modeling within the Community Inversion Framework v1.1 to assimilate & amp;lt;i>l`> _{13C(CH_{and CH₄: a case study with model LMDz-SACS. Geoscientific Model Development, 2022, 15, 4831-4851.}}	1&qmplt;/	sub>)
527	Methane Oxidation Potentials of Rice-associated Plant Growth Promoting Methylobacterium Species. Korean Journal of Environmental Agriculture, 2022, 41, 115-124.	0.0	2
528	An Analysis of Interhemispheric Transport Pathways Based on Threeâ€Dimensional Methane Data by GOSAT Observations and Model Simulations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
529	Improved global wetland carbon isotopic signatures support post-2006 microbial methane emission increase. Communications Earth & Environment, 2022, 3, .	2.6	11
530	Integrated airborne investigation of the air composition over the Russian sector of the Arctic. Atmospheric Measurement Techniques, 2022, 15, 3941-3967.	1.2	15
531	Insights into the mechanism of diurnal variations in methane emission from the stem surfaces of <i>Alnus japonica</i> . New Phytologist, 2022, 235, 1757-1766.	3.5	3
532	Description and Evaluation of an Emissionâ€Driven and Fully Coupled Methane Cycle in UKESM1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	9
533	Climate Change Action Alights on Satellite Detection of Methane. Engineering, 2022, 16, 9-12.	3.2	3
534	Locating and Quantifying Methane Emissions by Inverse Analysis of Path-Integrated Concentration Data Using a Markov-Chain Monte Carlo Approach. ACS Earth and Space Chemistry, 2022, 6, 2190-2198.	1.2	3
535	Decadal Methane Emission Trend Inferred from Proxy GOSAT XCH4 Retrievals: Impacts of Transport Model Spatial Resolution. Advances in Atmospheric Sciences, 2022, 39, 1343-1359.	1.9	2
536	Separating natural from human enhanced methane emissions in headwater streams. Nature Communications, 2022, 13 , .	5.8	6
537	Greenhouse Gas Mitigation and Energy Production Potentials from Municipal Solid Waste Management in Thailand Through 2050. Earth Systems and Environment, 2023, 7, 83-97.	3.0	3
538	Variation in CO ₂ and CH ₄ fluxes among land cover types in heterogeneous Arctic tundra in northeastern Siberia. Biogeosciences, 2022, 19, 3151-3167.	1.3	6
539	Organics composition and microbial analysis reveal the different roles of biochar and hydrochar in affecting methane oxidation from paddy soil. Science of the Total Environment, 2022, 843, 157036.	3.9	9
540	Phosphorus control and dredging decrease methane emissions from shallow lakes. Science of the Total Environment, 2022, 847, 157584.	3.9	5
541	Greenhouse gas fluxes (CO2, N2O and CH4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide. Science of the Total Environment, 2022, 849, 157541.	3.9	11

#	Article	IF	CITATIONS
542	Impacts of cyanobacterial biomass and nitrate nitrogen on methanogens in eutrophic lakes. Science of the Total Environment, 2022, 848, 157570.	3.9	8
543	Methane Emission From Global Lakes: New Spatiotemporal Data and Observationâ€Driven Modeling of Methane Dynamics Indicates Lower Emissions. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	33
544	Physiological processes affecting methane transport by wetland vegetation $\hat{a} \in A$ review. Aquatic Botany, 2022, 182, 103547.	0.8	22
545	Drivers of Global Methane Emissions Embodied in International Beef Trade. Environmental Science & Emp; Technology, 2022, 56, 11256-11265.	4.6	9
546	Methane oxidation dynamics in a stratified lake: Insights revealed from a mass balance and carbon stable isotopes. Limnology and Oceanography, 2022, 67, 2157-2173.	1.6	1
547	Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 2022, 22, 9617-9646.	1.9	62
548	Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations. Geoscientific Model Development, 2022, 15, 5787-5805.	1.3	10
549	Spatiotemporal patterns and drivers of stem methane flux from two poplar forests with different soil textures. Tree Physiology, 0, , .	1.4	0
550	Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nature Geoscience, 2022, 15, 627-632.	5 . 4	42
551	The Effects of Engineered Aeration on Atmospheric Methane Flux From a Chesapeake Bay Tidal Tributary. Frontiers in Environmental Science, 0, 10, .	1.5	0
552	Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations. Atmospheric Chemistry and Physics, 2022, 22, 10809-10826.	1.9	27
553	Methane remote sensing and emission quantification of offshore shallow water oil and gas platforms in the Gulf of Mexico. Environmental Research Letters, 2022, 17, 084039.	2.2	20
554	Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environmental Research Letters, 2022, 17, 094003.	2.2	14
556	Spatiotemporal Variations of XCH4 across China during 2003–2021 Based on Observations from Multiple Satellites. Atmosphere, 2022, 13, 1362.	1.0	4
557	Overlooked sources of methane emissions from trees: branches and wounds. Canadian Journal of Forest Research, 2022, 52, 1165-1175.	0.8	3
558	Very large fluxes of methane measured above Bolivian seasonal wetlands. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	4
559	Dissolved Methane in the World's Largest Semiâ€Enclosed Estuarine System: The Estuary and Gulf of St. Lawrence (Canada). Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	3
560	Niche differentiation of atmospheric methaneâ€oxidizing bacteria and their community assembly in subsurface karst caves. Environmental Microbiology Reports, 2022, 14, 886-896.	1.0	3

#	ARTICLE	IF	CITATIONS
561	Quantifying CH ₄ emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method. Atmospheric Chemistry and Physics, 2022, 22, 9747-9765.	1.9	5
562	Using satellites to uncover large methane emissions from landfills. Science Advances, 2022, 8, .	4.7	45
563	Increases in the Methane Uptake of Upland Forest Soil in China Could Significantly Contribute to Climate Change Mitigation. Forests, 2022, 13, 1270.	0.9	0
564	Regional estimation of methane emissions over the peninsular India using atmospheric inverse modelling. Environmental Monitoring and Assessment, 2022, 194, .	1.3	3
565	Nâ€damo, an opportunity to reduce methane emissions?. Environmental Microbiology Reports, 0, , .	1.0	3
566	Managing Methane Emissions in Abandoned Coal Mines: Comparison of Different Recovery Technologies by Integrating Techno-Economic Analysis and Life-Cycle Assessment. Environmental Science & Economic Science & Economic Analysis and Life-Cycle Assessment. Environmental Science & Economic Analysis and Life-Cycle Assessment.	4.6	4
567	Methane emissions from macrophyte beach wrack on Baltic seashores. Ambio, 2023, 52, 171-181.	2.8	5
568	Sustained and intensified lacustrine methane cycling during Early Permian climate warming. Nature Communications, 2022, 13, .	5.8	22
569	Patterns and Regulation of Hypolimnetic CO ₂ and CH ₄ in a Tropical Reservoir Using a Processâ€Based Modeling Approach. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2
570	Anthroponumbers.org: A quantitative database of human impacts on Planet Earth. Patterns, 2022, 3, 100552.	3.1	1
571	Incorporating permafrost into climate mitigation and adaptation policy. Environmental Research Letters, 2022, 17, 091001.	2,2	3
572	Causality guided machine learning model on wetland CH4 emissions across global wetlands. Agricultural and Forest Meteorology, 2022, 324, 109115.	1.9	13
573	Effects of early herbage cutting and vine leaves on methane emission, urine nitrogen losses, and the milk fatty acid profile of dairy cows. Journal of Dairy Science, 2022, 105, 7416-7431.	1.4	0
574	Towards sustainable methane supply from local bioresources: Anaerobic digestion, gasification, and gas upgrading. Applied Energy, 2022, 323, 119568.	5.1	10
575	Conventional tillage combined with residue removal reduces growing-season methane emissions in flooded paddy (Oryza sativa L. subsp. japonica Kato) fields. European Journal of Agronomy, 2022, 140, 126612.	1.9	2
576	A critical review of Gross ecosystem product accounting in China: Status quo, problems and future directions. Journal of Environmental Management, 2022, 322, 115995.	3.8	25
577	Methane and carbon dioxide cycles in lakes of the King George Island, maritime Antarctica. Science of the Total Environment, 2022, 848, 157485.	3.9	6
578	Substantial methane emissions from abandoned coal mines in China. Environmental Research, 2022, 214, 113944.	3.7	17

#	Article	IF	CITATIONS
579	Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resources, Conservation and Recycling, 2022, 186, 106576.	5.3	16
580	Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 2022, 377, .	6.0	562
581	Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	6
582	Satellite-Based Quantification of Methane Emissions from Wetlands and Rice Paddies Ecosystems in North and Northeast India. Hydrobiology, 2022, 1, 317-330.	0.9	5
583	Incorporating dynamic crop growth processes and management practices into a terrestrial biosphere model for simulating crop production in the United States: Toward a unified modeling framework. Agricultural and Forest Meteorology, 2022, 325, 109144.	1.9	9
584	Methane and nitrous oxide concentrations and fluxes from heavily polluted urban streams: Comprehensive influence of pollution and restoration. Environmental Pollution, 2022, 313, 120098.	3.7	14
585	Methane regulation in the EU: Stakeholder perspectives on MRV and emissions reductions. Environmental Science and Policy, 2022, 137, 314-322.	2.4	5
586	Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay. Environmental Pollution, 2022, 312, 120061.	3.7	6
587	Atmospheric Gases. , 2024, , 429-441.		0
588	Significance of anaerobic oxidation of methane (AOM) in mitigating methane emission from major natural and anthropogenic sources: a review of AOM rates in recent publications. Environmental Science Advances, 2022, 1, 401-425.	1.0	8
589	Batch Experiments Demonstrating a Two-Stage Bacterial Process Coupling Methanotrophic and Heterotrophic Bacteria for 1-Alkene Production From Methane. Frontiers in Microbiology, $0, 13, \ldots$	1.5	5
590	Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries. Science of the Total Environment, 2023, 856, 159128.	3.9	5
591	CO ₂ and CH ₄ exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard. Biogeosciences, 2022, 19, 3921-3934.	1.3	1
592	Biocide treatment for mosquito control increases CH4 emissions in floodplain pond mesocosms. Frontiers in Water, 0, 4, .	1.0	2
593	Using Multiscale Ethane/Methane Observations to Attribute Coal Mine Vent Emissions in the San Juan Basin From 2013 to 2021. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
594	Spatiotemporal variations and driving forces of per capita carbon emissions from energy consumption in China. Geomatics, Natural Hazards and Risk, 2022, 13, 2489-2507.	2.0	3
595	Emissions Lock-in, Capacity, and Public Opinion: How Insights From Political Science Can Inform Climate Modeling Efforts. Politics and Governance, 2022, 10, 186-199.	0.8	5
596	Estimation of greenhouse gas emissions from Iran's gas flaring by using satellite data and combustion equations. Integrated Environmental Assessment and Management, 2023, 19, 735-748.	1.6	4

#	Article	IF	CITATIONS
597	Quantification of Urban Methane Emissions: A Combination of Stationary with Mobile Measurements. Atmosphere, 2022, 13, 1596.	1.0	0
598	New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane. Earth System Science Data, 2022, 14, 4365-4386.	3.7	8
601	Inefficient and unlit natural gas flares both emit large quantities of methane. Science, 2022, 377, 1566-1571.	6.0	36
602	High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling. Biogeosciences, 2022, 19, 4551-4569.	1.3	5
603	Effect of infiltration rate on methane emission properties in potâ€eultured rice under alternate wetting and drying irrigation. Irrigation and Drainage, 0, , .	0.8	0
604	A novel green technology: Reducing carbon dioxide and eliminating methane from the atmosphere. International Journal of Energy Research, 2022, 46, 20107-20120.	2.2	6
605	Characterization and genome analysis of a psychrophilic methanotroph representing a ubiquitous <i>Methylobacter</i> spp. cluster in boreal lake ecosystems. ISME Communications, 2022, 2, .	1.7	6
606	Use of metal oxide semiconductor sensors to measure methane in aquatic ecosystems in the presence of crossâ€interfering compounds. Limnology and Oceanography: Methods, 2022, 20, 710-720.	1.0	2
607	Methane Production by Facultative Anaerobic Wood-Rot Fungi via a New Halomethane-Dependent Pathway. Microbiology Spectrum, 2022, 10, .	1.2	4
608	Randomized national land management strategies for net-zero emissions. Nature Sustainability, 2022, 5, 973-980.	11.5	11
609	Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: A critical analysis. Ecohydrology, 2023, 16 , .	1.1	26
610	Biophysical Factors Influence Methane Fluxes in Subtropical Freshwater Wetlands Using Eddy Covariance Methods. Ecosystems, 2023, 26, 706-723.	1.6	1
611	Apportionment of the Preâ€Industrial to Presentâ€Day Climate Forcing by Methane using UKESM1: The role of the cloud radiative effect. Journal of Advances in Modeling Earth Systems, 0, , .	1.3	4
612	A study on wildfire impacts on greenhouse gas emissions and regional air quality in South of Orléans, France. Journal of Environmental Sciences, 2024, 135, 521-533.	3.2	0
613	Observed changes in China's methane emissions linked to policy drivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
614	Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications, 2022, 13, .	5.8	53
615	Space-based Earth observation in support of the UNFCCC Paris Agreement. Frontiers in Environmental Science, $0,10,1$	1.5	6
616	Target methane. Communications Earth & Environment, 2022, 3, .	2.6	0

#	Article	IF	CITATIONS
617	On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2. Carbon Balance and Management, 2022, 17, .	1.4	9
618	Analysis of CYGNSS coherent reflectivity over land for the characterization of pan-tropical inundation dynamics. Remote Sensing of Environment, 2022, 282, 113278.	4.6	5
619	Seasonal study of the small-scale variability in dissolved methane in the western Kiel Bight (Baltic Sea) during the European heatwave in 2018. Biogeosciences, 2022, 19, 4993-5006.	1.3	3
620	Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-ppm Resolution. Atmosphere, 2022, 13, 1789.	1.0	6
621	Reconciling Multiple Methane Detection and Quantification Systems at Oil and Gas Tank Battery Sites. Environmental Science & E	4.6	4
622	Greenhouse gas emissions in irrigated paddy rice as influenced by crop management practices and nitrogen fertilization rates in eastern Tanzania. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	8
623	Machine learning applications in river research: Trends, opportunities and challenges. Methods in Ecology and Evolution, 2022, 13, 2603-2621.	2.2	16
624	Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic. Annual Review of Environment and Resources, 2022, 47, 343-371.	5.6	56
625	Carbon fluxes and soil carbon dynamics along a gradient of biogeomorphic succession in alpine wetlands of Tibetan Plateau. Fundamental Research, 2023, 3, 151-159.	1.6	5
626	Seasonal increase of methane emissions linked to warming in Siberian tundra. Nature Climate Change, 2022, 12, 1031-1036.	8.1	22
627	An integrated analysis of air pollution from US coal-fired power plants. Geoscience Frontiers, 2023, 14, 101498.	4.3	13
629	Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands. Atmospheric Measurement Techniques, 2022, 15, 5841-5859.	1.2	4
631	Carbon Sequestration and Greenhouse Gas Emissions Reductions in Agriculture: Strategies and Their Economic Feasibility., 2023, , 149-173.		1
632	Strategies to Mitigate Enteric Methane Emissions in Ruminants: A Review. Sustainability, 2022, 14, 13229.	1.6	21
633	Opportunities and Hurdles to the Adoption and Enhanced Efficacy of Feed Additives towards Pronounced Mitigation of Enteric Methane Emissions from Ruminant Livestock. Methane, 2022, 1, 262-285.	0.8	1
634	Production Potential of Greenhouse Gases Affected by Microplastics at Freshwater and Saltwater Ecosystems. Atmosphere, 2022, 13, 1796.	1.0	2
635	Regionalised greenhouse gas emissions from food production in South-Eastern Australia. Sustainable Production and Consumption, 2023, 35, 116-128.	5.7	3
636	High-resolution inverse modelling of European CH ₄ emissions using the novel FLEXPART-COSMO TM5 4DVAR inverse modelling system. Atmospheric Chemistry and Physics, 2022, 22, 13243-13268.	1.9	7

#	ARTICLE	IF	CITATIONS
637	Variability in Stem Methane Emissions and Wood Methane Production of Different Tree Species in a Cold Temperate Mountain Forest. Ecosystems, 2023, 26, 784-799.	1.6	3
638	Pore network modeling as a new tool for determining gas diffusivity in peat. Biogeosciences, 2022, 19, 5041-5058.	1.3	2
639	Organic Agriculture and Greenhouse Gas Emissions. , 2023, , 129-175.		0
642	Occurrence of nitrite-dependent anaerobic methane oxidation bacteria in the continental shelf sediments. Chemical Engineering Research and Design, 2022, 168, 626-632.	2.7	3
643	Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production. Renewable and Sustainable Energy Reviews, 2022, 170, 112995.	8.2	26
644	Assessment of methane emissions from a California landfill using concurrent experimental, inventory, and modeling approaches. Waste Management, 2022, 154, 146-159.	3.7	9
645	Long-term changes in CH4 emissions: Comparing ΔCH4/Ĩ"CO2 ratios between observation and proved model in East Asia (2010–2020). Atmospheric Environment, 2023, 293, 119437.	1.9	3
646	Sources and migration pathways of methane and light hydrocarbons in the subsurface of the Southern Po River Basin (Northern Italy). Marine and Petroleum Geology, 2023, 147, 105981.	1.5	2
647	Combining reduced tillage and green manures minimized N2O emissions from organic cropping systems in a cool humid climate. Agriculture, Ecosystems and Environment, 2023, 341, 108205.	2.5	4
648	The Atmosphere. , 2023, , 317-478.		0
649	Aquaculture drastically increases methane production by favoring acetoclastic rather than hydrogenotrophic methanogenesis in shrimp pond sediments. Aquaculture, 2023, 563, 738999.	1.7	2
650	Areal extent of vegetative cover: A challenge to regional upscaling of methane emissions. Aquatic Botany, 2023, 184, 103592.	0.8	5
651	Microbial mechanisms for methane source-to-sink transition after wetland conversion to cropland. Geoderma, 2023, 429, 116229.	2.3	4
652	Quantification of methane emission rate from oil and gas wells in Romania using ground-based measurement techniques. Elementa, 2022, 10, .	1.1	2
653	Paddy rice methane emissions across Monsoon Asia. Remote Sensing of Environment, 2023, 284, 113335.	4.6	8
654	Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink. Geoderma, 2023, 429, 116239.	2.3	3
655	Opposing seasonal temperature dependencies of <scp>CO₂</scp> and <scp>CH₄</scp> emissions from wetlands. Global Change Biology, 2023, 29, 1133-1143.	4.2	6
656	Highest methane concentrations in an Arctic river linked to local terrestrial inputs. Biogeosciences, 2022, 19, 5059-5077.	1.3	2

#	Article	IF	CITATIONS
657	Interspecies Formate Exchange Drives Syntrophic Growth of <i>Syntrophotalea carbinolica</i> and Methanococcus maripaludis. Applied and Environmental Microbiology, 2022, 88, .	1.4	4
659	High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions. Nature Communications, 2022, 13 , .	5.8	4
660	Atmospheric observations suggest methane emissions in north-eastern China growing with natural gas use. Scientific Reports, 2022, 12 , .	1.6	5
661	The importance of plants for methane emission at the ecosystem scale. Aquatic Botany, 2023, 184, 103596.	0.8	20
662	Microbial-Mediated Emissions of Greenhouse Gas from Farmland Soils: A Review. Processes, 2022, 10, 2361.	1.3	2
663	Atmospheric removal of methane by enhancing the natural hydroxyl radical sink., 2022, 12, 784-795.		4
664	A combined microbial and biogeochemical dataset from high-latitude ecosystems with respect to methane cycle. Scientific Data, 2022, 9 , .	2.4	6
665	Global Carbon Budget 2022. Earth System Science Data, 2022, 14, 4811-4900.	3.7	492
666	Temperate northern hemisphere dominates the global soil CH4 sink. Journal of Mountain Science, 2022, 19, 3051-3062.	0.8	1
667	Assessment and uncertainty quantification of onshore geological CO2 storage capacity in China. International Journal of Greenhouse Gas Control, 2022, 121, 103804.	2.3	3
668	A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data. Science of the Total Environment, 2023, 859, 159917.	3.9	1
669	Genetic and metabolic engineering of Methanococcus spp. Current Research in Biotechnology, 2023, 5, 100115.	1.9	2
670	Design of hybrid La1-Ce CoO3- catalysts for lean methane combustion via creating active Co and Ce species. Chemical Engineering Journal, 2023, 456, 141054.	6.6	7
671	Positive response of nitrite-dependent anaerobic methane oxidation to both gradual and abrupt increases of atmospheric CO2 concentration in paddy soils. Agriculture, Ecosystems and Environment, 2023, 343, 108291.	2.5	4
672	Effects of periodic drying-wetting on microbial dynamics and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in intertidal wetland sediments. Water Research, 2023, 229, 119436.	5.3	8
673	Feature-based algorithm for large-scale rice phenology detection based on satellite images. Agricultural and Forest Meteorology, 2023, 329, 109283.	1.9	8
674	A twenty year record of greenhouse gases in the Eastern Mediterranean atmosphere. Science of the Total Environment, 2023, 864, 161003.	3.9	4
675	Activity and abundance of methane-oxidizing bacteria on plants in experimental lakes subjected to different nutrient and warming treatments. Aquatic Botany, 2023, 185, 103610.	0.8	2

#	Article	IF	CITATIONS
676	Tradeoffs and synergies in wetland multifunctionality: A scaling issue. Science of the Total Environment, 2023, 862, 160746.	3.9	15
677	Managed Forests and Methane: Recent Research and Prospects for Best Management Practices. Handbook of Environmental Chemistry, 2022, , .	0.2	0
678	Mitigation of Paddy Field Soil Methane Emissions by Betaproteobacterium <i>Azoarcus</i> Inoculation of Rice Seeds. Microbes and Environments, 2022, 37, n/a.	0.7	1
679	Likely substantial underestimation of reported methane emissions from United Kingdom upstream oil and gas activities. Energy and Environmental Science, 2023, 16, 295-304.	15.6	5
681	Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters. Nature Communications, 2022, 13 , .	5.8	34
682	High Spatial and Temporal Resolution Methane Emissions Inventory from Terrestrial Ecosystems in China, 2010–2020. Atmosphere, 2022, 13, 1966.	1.0	2
683	Quality Control of CyGNSS Reflectivity for Robust Spatiotemporal Detection of Tropical Wetlands. Remote Sensing, 2022, 14, 5903.	1.8	2
684	Recent Advances Toward Transparent Methane Emissions Monitoring: A Review. Environmental Science & Env	4.6	7
685	Prolonged Effect of Forest Soil Compaction on Methanogen and Methanotroph Seasonal Dynamics. Microbial Ecology, 0, , .	1.4	0
686	Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 2023, 4, 4-18.	12.2	151
687	Biotic and Abiotic Control Over Diurnal CH4 Fluxes in a Temperate Transitional Poor Fen Ecosystem. Ecosystems, 0, , .	1.6	3
688	The strong activity of noctilucent clouds at middle latitudes in 2020. Polar Science, 2023, 35, 100920.	0.5	2
689	Quantifying Methane Emissions from Aquaculture Ponds in China. Environmental Science & Emp; Technology, 2023, 57, 1576-1583.	4.6	10
690	Assessment of livestock greenhouse gases in Colombia between 1995 and 2015. Heliyon, 2022, 8, e12262.	1.4	4
691	Atmospheric Mixing Ratio of Greenhouse Gases and Radiative Forcing., 2023, , 1-29.		1
692	Cause of the 2020 surge in atmospheric methane clarified. Nature, 2022, 612, 413-414.	13.7	2
693	Evaluation of wetland CH ₄ in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations. Biogeosciences, 2022, 19, 5779-5805.	1.3	0
694	Estimating emissions of methane consistent with atmospheric measurements of methane and $\langle i \rangle \hat{l}' \langle i \rangle \langle sup \rangle 13 \langle sup \rangle C$ of methane. Atmospheric Chemistry and Physics, 2022, 22, 15351-15377.	1.9	23

#	Article	IF	CITATIONS
695	Combination of Water-Saving Irrigation and Nitrogen Fertilization Regulates Greenhouse Gas Emissions and Increases Rice Yields in High-Cold Regions, Northeast China. International Journal of Environmental Research and Public Health, 2022, 19, 16506.	1.2	1
696	Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesia coal mines: a case study from the CoMet mission. Atmospheric Chemistry and Physics, 2022, 22, 16031-16052.	1.9	3
697	Adaptive emission reduction approach to reach any global warming target. Nature Climate Change, 2022, 12, 1136-1142.	8.1	16
698	Historical trend of China's CH4 concentrations and emissions during 2003–2020 based on satellite observations, and their implications. Atmospheric Pollution Research, 2022, 13, 101615.	1.8	0
699	Management of Enteric Methane Emissions in Ruminants Using Feed Additives: A Review. Animals, 2022, 12, 3452.	1.0	14
700	Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature, 2022, 612, 477-482.	13.7	71
701	Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions. Atmospheric Chemistry and Physics, 2022, 22, 15527-15558.	1.9	0
702	How do Cl concentrations matter for the simulation of CH ₄ and <i>i/i/^{13 budget through atmospheric inversions?. Atmospheric Chemistry and Physics, 2022, 22, 15489-15508.}</i>	1.9	4
703	Revealing Non-CO ₂ GHG Emissions in China's Transportation Networks. Environmental Science and Technology Letters, 2023, 10, 124-130.	3.9	2
704	Detecting and quantifying methane emissions from oil and gas production: algorithm development with ground-truth calibration based on Sentinel-2 satellite imagery. Atmospheric Measurement Techniques, 2022, 15, 7155-7169.	1.2	2
705	100 Important Questions about Bitcoin's Energy Use and ESG Impacts. Challenges, 2023, 14, 1.	0.9	5
706	Comparison of Methods to Segment Variable-Contrast XCT Images of Methane-Bearing Sand Using U-Nets Trained on Single Dataset Sub-Volumes. Methane, 2023, 2, 1-23.	0.8	2
707	Technological avenues and market mechanisms to accelerate methane and nitrous oxide emissions reductions. IScience, 2022, 25, 105661.	1.9	4
708	Risk of the hydrogen economy for atmospheric methane. Nature Communications, 2022, 13, .	5.8	20
709	Methane Concentration and $\hat{l}'13\text{C}$ Isotopic Signature in Methane over Arctic Seas in Summer and Autumn 2020. Oceanology, 0, , .	0.3	0
710	Migration and Release Mechanism of Methane Microseepage Based on Dawanqi Field Work and Physical Simulations. Geofluids, 2023, 2023, 1-10.	0.3	О
711	How methanotrophs respond to pH: A review of ecophysiology. Frontiers in Microbiology, 0, 13, .	1.5	7
712	Sustainable Husbandry?—A Comparative LCA of Three Lamb Breeding Systems in Turkey. Circular Economy and Sustainability, 2023, 3, 1769-1791.	3.3	1

#	Article	IF	CITATIONS
714	Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations. Atmospheric Chemistry and Physics, 2023, 23, 789-807.	1.9	5
715	Global Climate Change Increases Terrestrial Soil CH ₄ Emissions. Global Biogeochemical Cycles, 2023, 37, .	1.9	7
716	The effect of methane and methanol on the terrestrial ammoniaâ€oxidizing archaeon â€~ <i>Candidatus</i> Nitrosocosmicus franklandus <scp>C13</scp> '. Environmental Microbiology, 2023, 25, 948-961.	1.8	5
717	The role of anaerobic methane oxidation on the carbonate authigenesis in sediments of the subtropical Beibu Gulf, South China Sea: A reactive–transport modelling approach. Chemical Geology, 2023, 619, 121319.	1.4	2
718	Understanding the potential of Sentinel-2 for monitoring methane point emissions. Atmospheric Measurement Techniques, 2023, 16, 89-107.	1.2	14
719	Soil CH4 and N2O response diminishes during decadal soil warming in a temperate mountain forest. Agricultural and Forest Meteorology, 2023, 329, 109287.	1.9	3
720	Future air quality and premature mortality in Korea. Science of the Total Environment, 2023, 865, 161134.	3.9	0
721	Aerobic and denitrifying methanotrophs: Dual wheels driving soil methane emission reduction. Science of the Total Environment, 2023, 867, 161437.	3.9	7
722	Model Estimates for Contribution of Natural and Anthropogenic CO2Âand CH4ÂEmissions into the Atmosphere from the Territory of Russia, China, Canada, and the USA to Global Climate Change in the 21st Century. Russian Meteorology and Hydrology, 2022, 47, 735-747.	0.2	4
723	Decadal Changes in Atmospheric Methane Emissions in the Eastern Himalayan Region: Source Apportionment and Impact Assessment. International Journal of Environmental Research, 2023, 17, .	1.1	2
724	Hemispheric Air Pollution., 2023,, 1-29.		0
725	Methyl-Based Methanogenesis: an Ecological and Genomic Review. Microbiology and Molecular Biology Reviews, 2023, 87, .	2.9	14
727	Oil and gas pathway to net-zero: Review and outlook. Energy Strategy Reviews, 2023, 45, 101048.	3.3	59
729	Fossil-Fuel and Food Systems Equally Dominate Anthropogenic Methane Emissions in China. Environmental Science & Technology, 2023, 57, 2495-2505.	4.6	12
730	Application of cavity ring-down spectroscopy and a novel near surface Gaussian plume estimation approach to inverse model landfill methane emissions. MethodsX, 2023, 10, 102048.	0.7	1
731	Flaring efficiencies and NO _{<i>x</i>} emission ratios measured for offshore oil and gas facilities in the North Sea. Atmospheric Chemistry and Physics, 2023, 23, 1491-1509.	1.9	4
732	Tidal control and mangrove dieback impact on methane emissions from a subtropical mangrove estuary. Limnology and Oceanography, 0, , .	1.6	0
733	Umweltchemie: Methan in der AtmosphÃ r e. Nachrichten Aus Der Chemie, 2023, 71, 70-73.	0.0	0

#	ARTICLE	IF	CITATIONS
734	Recalculating the global warming impact of italian livestock methane emissions with new metrics. Italian Journal of Animal Science, 2023, 22, 125-135.	0.8	3
735	Variation in methane uptake by grassland soils in the context of climate change – A review of effects and mechanisms. Science of the Total Environment, 2023, 871, 162127.	3.9	6
736	Accelerated methane emission from permafrost regions since the 20th century. Deep-Sea Research Part I: Oceanographic Research Papers, 2023, 195, 103981.	0.6	4
738	Association of the chemical composition and nutritional value of forage resources in Colombia with methane emissions by enteric fermentation. Tropical Animal Health and Production, 2023, 55, .	0.5	1
739	Andean headwater and piedmont streams are hot spots of carbon dioxide and methane emissions in the Amazon basin. Communications Earth & Environment, 2023, 4, .	2.6	4
740	Spatiotemporal analysis of atmospheric XCH4 as related to fires in the Amazon biome during 2015–2020. Remote Sensing Applications: Society and Environment, 2023, 30, 100967.	0.8	0
741	Vegetation impacts ditch methane emissions from boreal forestry-drained peatlands $\hat{a} \in \hat{a}$ Moss-free ditches have an order-of-magnitude higher emissions than moss-covered ditches. Frontiers in Environmental Science, 0, 11, .	1.5	0
742	Towards a roadmap for space-based observations of the land sector for the UNFCCC global stocktake. IScience, 2023, 26, 106489.	1.9	3
743	Evaluation of temporal changes in methane content in the atmosphere for areas with a very high rice concentration based on Sentinel-5P data. Remote Sensing Applications: Society and Environment, 2023, 30, 100972.	0.8	1
744	Soil nitrogen content and key functional microorganisms influence the response of wetland anaerobic oxidation of methane to trivalent iron input. Chemosphere, 2023, 322, 138183.	4.2	3
745	Greenhouse gas concentrations and emissions from a plastic-lined shrimp pond on Hainan, China. Estuarine, Coastal and Shelf Science, 2023, 284, 108278.	0.9	1
746	Exploring the effects of extreme weather events on methane emissions from croplands: A study combining site and global modeling. Agricultural and Forest Meteorology, 2023, 335, 109454.	1.9	1
747	Magnitude and seasonal variation of N2O and CH4 emissions over a mixed agriculture-urban region. Agricultural and Forest Meteorology, 2023, 334, 109433.	1.9	0
748	Development of a novel methanotrophic platform to produce ectoine from methane and lignocellulose-derived sugars. Chemical Engineering Journal, 2023, 463, 142361.	6.6	3
749	Targeting 1.5 degrees with the global carbon footprint of the Australian Capital Territory. Environmental Science and Policy, 2023, 144, 137-150.	2.4	1
750	Effect of warming on rice yield and methane emissions in a Chinese tropical double-rice cropping system. Agriculture, Ecosystems and Environment, 2023, 348, 108409.	2.5	4
751	Potential methane production in oligohaline wetlands undergoing erosion and accretion in the Mississippi River Delta Plain, Louisiana, USA. Science of the Total Environment, 2023, 875, 162685.	3.9	1
752	Global greenhouse gas emissions from aquaculture: a bibliometric analysis. Agriculture, Ecosystems and Environment, 2023, 348, 108405.	2 . 5	8

#	Article	IF	CITATIONS
753	Which rice farming system is more environmentally friendly in Khuzestan province, Iran? A study based on emergy analysis. Ecological Modelling, 2023, 481, 110373.	1.2	1
754	Beyond wells: Towards demand-side perspective to manage global methane emissions from oil and gas production. Resources, Conservation and Recycling, 2023, 193, 106971.	5.3	6
755	Reduce methane emission from rice paddies by man-made aerenchymatous tissues. , 2023, 2, .		1
756	Observation-derived 2010-2019 trends in methane emissions and intensities from US oil and gas fields tied to activity metrics. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	7
757	Comparing the variations and influencing factors of CH4 emissions from paddies and wetlands under CO2 enrichment: A data synthesis in the last three decades. Environmental Research, 2023, 228, 115842.	3.7	5
758	Biogenic methane in coastal unconsolidated sediment systems: A review. Environmental Research, 2023, 227, 115803.	3.7	2
759	Process intensification for decentralized production. Chemical Engineering and Processing: Process Intensification, 2023, 184, 109291.	1.8	6
760	Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season. Diversity, 2023, 15, 154.	0.7	1
761	Comparing process-based models with the inventory approach to predict CH ₄ emission of livestock enteric fermentation. Environmental Research Letters, 2023, 18, 035002.	2.2	0
762	Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochemical and Photobiological Sciences, 2023, 22, 1049-1091.	1.6	19
763	The Pyrogeography of Methane Emissions from Seasonal Mosaic Burning Regimes in a West African Landscape. Fire, 2023, 6, 52.	1.2	2
764	Aquatic carbon fluxes in a hemiboreal catchment are predictable from landscape morphology, temperature, and runoff. Limnology and Oceanography Letters, 2023, 8, 313-322.	1.6	3
765	Sources of Carbon Dioxide in the Atmosphere: Hydrocarbon Emission from Gas Hydrates in Focus. Atmosphere, 2023, 14, 321.	1.0	0
766	An assessment of methane emission from the CNG cylinder testing stations in Delhi and its implication for global warming. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1
767	Plant phenology and speciesâ€specific traits control plant <scp>CH₄</scp> emissions in a northern boreal fen. New Phytologist, 2023, 238, 1019-1032.	3.5	7
768	Geoenvironmental assessment of climate impacts from landfill gas emissions. Soils and Foundations, 2023, 63, 101279.	1.3	3
769	Modelling methane emissions and grain yields for a double-rice system in Southern China with DAYCENT and DNDC models. Geoderma, 2023, 431, 116364.	2.3	2
770	Challenges and opportunities in the use of ponds and pondscapes as Nature-based Solutions. Hydrobiologia, 2023, 850, 3257-3271.	1.0	10

#	Article	IF	CITATIONS
771	Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements. Atmospheric Chemistry and Physics, 2023, 23, 2293-2314.	1.9	0
772	Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 2023, 61, .	9.0	10
773	Forage type affects the temporal methane emission profiles in dairy cows fed fresh forages. Animal Feed Science and Technology, 2023, 298, 115604.	1.1	1
774	Laboratory and field evaluation of a low-cost methane sensor and key environmental factors for sensor calibration. Environmental Science Atmospheres, 2023, 3, 683-694.	0.9	2
775	Decadal cyclical geological atmospheric emissions for a major marine seep field, offshore Coal Oil Point, Southern California. Scientific Reports, 2023, 13, .	1.6	0
776	Vertical Hydrologic Exchange Flows Control Methane Emissions from Riverbed Sediments. Environmental Science & Environmental Sc	4.6	6
777	Responses of anaerobic ammonia-oxidizing bacteria and methane-oxidizing archaea communities from different tillage modes in paddy fields. Journal of Soils and Sediments, 2023, 23, 2148-2161.	1.5	0
778	Capric and lauric acid mixture decreased rumen methane production, while combination with nitrate had no further benefit in methane reduction. Annals of Animal Science, 2023, 23, 799-808.	0.6	0
779	An immediate, very low-cost method for reducing methane emissions from the US oil and gas supply chain. , 2023, 2, e0000151.		1
780	Recent advances in the regulation of the coordination structures and environment of single-atom catalysts for carbon dioxide reduction reaction. Journal of Materials Chemistry A, 2023, 11, 7949-7986.	5.2	6
781	Estimating Net Carbon and Greenhouse Gas Balances of Potato and Pea Crops on a Conventional Farm in Western Canada. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	1
782	Near-real-time estimation of fossil fuel CO2 emissions from China based on atmospheric observations on Hateruma and Yonaguni Islands, Japan. Progress in Earth and Planetary Science, 2023, 10, .	1.1	0
783	Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture (Switzerland), 2023, 13, 602.	1.4	19
784	Data assimilation method for quantifying controlled methane releases using a drone and ground-sensors. Atmospheric Environment: X, 2023, 17, 100210.	0.8	1
785	Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater. Environmental Research Letters, 2023, 18, 044004.	2,2	7
786	Intercomparison of Atmospheric Carbonyl Sulfide (TransComâ€COS; Part One): Evaluating the Impact of Transport and Emissions on Tropospheric Variability Using Groundâ€Based and Aircraft Data. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	5
787	Watershed land use change indirectly dominated the spatial variations of CH4 and N2O emissions from two small suburban rivers. Journal of Hydrology, 2023, 619, 129357.	2.3	7
789	Spectrometric imaging of sub-hourly methane emission dynamics from coal mine ventilation. Environmental Research Letters, 2023, 18, 044030.	2.2	1

#	Article	IF	CITATIONS
790	Huge CH4, NO2 and CO Emissions from Coal Mines in the Kuznetsk Basin (Russia) Detected by Sentinel-5P. Remote Sensing, 2023, 15, 1590.	1.8	4
791	Convergence of carbon sink magnitude and water table depth in global wetlands. Ecology Letters, 2023, 26, 797-804.	3.0	11
794	CH4 Fluxes Derived from Assimilation of TROPOMI XCH4 in CarbonTracker Europe-CH4: Evaluation of Seasonality and Spatial Distribution in the Northern High Latitudes. Remote Sensing, 2023, 15, 1620.	1.8	5
795	Intercomparison of commercial analyzers for atmospheric ethane and methane observations. Atmospheric Measurement Techniques, 2023, 16, 1431-1441.	1.2	3
796	Current and Future Global Lake Methane Emissions: A Processâ€Based Modeling Analysis. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	5
797	A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources. Atmospheric Chemistry and Physics, 2023, 23, 3325-3346.	1.9	4
798	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2019. Earth System Science Data, 2023, 15, 1197-1268.	3.7	6
799	Understanding W/H-ZSM-5 catalysts for the dehydroaromatization of methane. Catalysis Science and Technology, $0, , .$	2.1	0
800	Ratio of In Situ CO ₂ to CH ₄ Production and Its Environmental Controls in Polygonal Tundra Soils of Samoylov Island, Northeastern Siberia. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	3
801	Diversity and function of methyl-coenzyme M reductase-encoding archaea in Yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME Communications, 2023, 3, .	1.7	10
803	Quantification of Central and Eastern China's atmospheric CH4 enhancement changes and its contributions based on machine learning approach. Journal of Environmental Sciences, 2024, 138, 236-248.	3.2	2
804	Weakening greenhouse gas sink of pristine wetlands under warming. Nature Climate Change, 2023, 13, 462-469.	8.1	17
805	Community structure and network interaction of aerobic methane-oxidizing bacteria in Chongqing's central urban area in the Three Gorges Reservoir, China. Environmental Science and Pollution Research, 2023, 30, 56368-56381.	2.7	1
806	Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models. Biogeosciences, 2023, 20, 1181-1193.	1.3	1
807	Data driven analysis of atmospheric methane concentrations as function of geographic, land cover type and season. Frontiers in Earth Science, $0,11,.$	0.8	1
808	Prospective of pretreatment and anaerobic digestion of dairy cow manure in Fiji. Journal of Chemical Technology and Biotechnology, 2023, 98, 1584-1597.	1.6	2
809	The Role of Biomethane in Reaching Net Carbon Zero. , 2023, , 575-594.		0
810	National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 2023, 10, .	2.4	46

#	Article	IF	CITATIONS
811	Widespread natural methane and oil leakage from sub-marine Arctic reservoirs. Nature Communications, 2023, 14 , .	5.8	7
812	Estimation of CH ₄ emission based on an advanced 4D-LETKF assimilation system. Geoscientific Model Development, 2023, 16, 1823-1838.	1.3	2
813	Predicting methane emissions and developing reduction strategies for a Central Appalachian Basin, USA, longwall mine through analysis and modeling of geology and degasification system performance. International Journal of Coal Geology, 2023, 270, 104234.	1.9	4
814	Linking Methanogenesis in Low-Temperature Hydrothermal Vent Systems to Planetary Spectra: Methane Biosignatures on an Archean-Earth-like Exoplanet. Astrobiology, 2023, 23, 415-430.	1.5	0
815	Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews, 2023, 123, 5139-5219.	23.0	37
816	Isotopic characterisation and mobile detection of methane emissions in a heterogeneous UK landscape. Atmospheric Environment, 2023, , 119774.	1.9	1
817	Estimation of Anthropogenic CH ₄ and CO ₂ Emissions in Taiyuanâ€inzhong Region: One of the World's Largest Emission Hotspots. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
818	Ground solar absorption observations of total column CO, CO ₂ , CH ₄ , and aerosol optical depth from California's Sequoia Lightning Complex Fire: emission factors and modified combustion efficiency at regional scales. Atmospheric Chemistry and Physics, 2023, 23, 4521-4543.	1.9	2
819	Global warming will largely increase waste treatment CH ₄ emissions in Chinese megacities: insight from the first city-scale CH ₄ concentration observation network in Hangzhou, China. Atmospheric Chemistry and Physics, 2023, 23, 4501-4520.	1.9	1
820	Evaluation and Implication of the Policies towards China's Carbon Neutrality. Sustainability, 2023, 15, 6762.	1.6	5
821	Quantifying the effects sizes of common controls on methane emissions from an ombrotrophic peat bog. Journal of Geophysical Research G: Biogeosciences, 0, , .	1.3	1
863	Emissions on Global Scale. , 2023, , 1-42.		0
892	Wastewater granules. , 2023, , 83-121.		0
898	Review and Perspectives of Energy-Efficient Methane Production from Natural Gas Hydrate Reservoirs Using Carbon Dioxide Exchange Technology. Energy & Samp; Fuels, 2023, 37, 9841-9872.	2.5	5
905	Natural Emissions on Global Scale. , 2023, , 1-42.		0
911	Biosensing systems for the detection and quantification of methane gas. Applied Microbiology and Biotechnology, 0, , .	1.7	0
912	Photocatalytic conversion of carbon dioxide, methane, and air for green fuels synthesis. Catalysis Science and Technology, 2023, 13, 4895-4918.	2.1	0
981	Hemispheric Air Pollution. , 2023, , 351-379.		0

#	Article	IF	CITATIONS
982	Atmospheric Mixing Ratio of Greenhouse Gases and Radiative Forcing., 2023, , 967-995.		0
983	Natural Emissions on Global Scale., 2023,, 53-93.		O
992	Quantitative Mapping of Methane Emissions in Oil & Facilities., 2023,,.		1
1000	The Carbon Cycle. , 2024, , 380-392.		0
1019	Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, .	0.7	2
1099	African rice cultivation linked to rising methane. Nature Climate Change, 2024, 14, 148-151.	8.1	1
1117	Tropical Intertidal Wetlands are Hotspots of Carbon Storage and Nutrient Transformations. , 2024, , 508-518.		0
1128	Microplastic pollution as an environmental risk exacerbating the greenhouse effect and climate change: a review. , 2024, 3, .		O
1165	Detection of Methane Point Sources with High-Resolution Satellites. , 0, , .		0
1188	The Impact of Food Overproduction on Soil: Perspectives and Future Trends. , 2024, , 263-292.		O
1195	Efficient Methane Monitoring with Low-Cost Chemical Sensors and Machine Learning. , 0, , .		0