STRUCTURES OF DUNES AT WHITE SANDS NATIONAL

Sedimentology 7, 3-69 DOI: 10.1111/j.1365-3091.1966.tb01579.x

Citation Report

#	Article	IF	CITATIONS
1	A desert glossary. Earth-Science Reviews, 1967, 3, 211-268.	9.1	48
2	SPACE PHOTOGRAPHY: A NEW ANALYTICAL TOOL FOR THE SEDIMENTOLOGIST. Sedimentology, 1967, 9, 265-317.	3.1	9
3	DELTAIC SEDIMENTATION UNITS IN THE UPPER CARBONIFEROUS OF NORTHERN ENGLAND. Sedimentology, 1968, 10, 233-254.	3.1	34
4	A Classification of Paleocurrent Models. Journal of Geology, 1968, 76, 99-110.	1.4	57
5	Environmental studies using earth orbital photography. Photogrammetria, 1969, 24, 107-165.	0.2	4
6	Coastal dune structures from Paraná (Brazil). Marine Geology, 1969, 7, 5-55.	2.1	74
8	Sedimentation in the meandering River Endrick. Scottish Journal of Geology, 1971, 7, 93-138.	0.1	206
9	The sediment on the floor of the southern Irish Sea. Marine Geology, 1971, 11, 27-69.	2.1	46
10	Petrology of the Weissliegendes sandstones in the Harz and Werra-Fulda areas, Germany. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1971, 60, 524-552.	1.3	16
11	Aeolian cross-stratification in the Devonian of the Dingle Peninsula, County Kerry, Ireland. Geological Magazine, 1971, 108, 151-158.	1.5	11
12	Location, Morphology and Orientation of Inland Dunes in Northern Sweden. Geografiska Annaler, Series A: Physical Geography, 1972, 54, 85-104.	1.5	23
13	AEOLIAN BEDFORMS-THEIR DEVELOPMENT AND ORIGINS. Sedimentology, 1972, 19, 173-210.	3.1	309
14	AN INTERPRETATION AND ANALYSIS OF RECUMBENT-FOLDED DEFORMED CROSS-BEDDING. Sedimentology, 1972, 19, 257-283.	3.1	179
15	Ergs. Sedimentary Geology, 1973, 10, 77-106.	2.1	216
16	Features of cross-stratified units due to random and other changes in bed forms. Sedimentology, 1973, 20, 189-202.	3.1	68
18	Dinosaur- and mammal-bearing aeolian and associated deposits of the Upper Cretaceous in the Gobi Desert (Mongolia). Sedimentary Geology, 1974, 12, 249-278.	2.1	55
19	Reaction, relaxation and lag in natural sedimentary systems: General principles, examples and lessons. Earth-Science Reviews, 1974, 10, 263-342.	9.1	154
20	Eolian deposits of the ice-free Victoria Valley, Southern Victoria Land, Antarctica. New Zealand Journal of Geology, and Geophysics, 1974, 17, 543-562.	1.8	69

ATION RED

	CHATONIC	LPORT	
#	Article	IF	CITATIONS
21	Structures developed by dissipation of dune and beach ridge deposits. Catena, 1975, 2, 107-152.	5.0	28
23	Discussion: The Hawkesbury Sandstone: A critical review of proposed environmental models. Journal of the Geological Society of Australia, 1977, 24, 117-119.	0.6	7
24	Sedimentology of cross-stratified sandstones in Arikaree group, Miocene, southeastern Wyoming. Sedimentary Geology, 1977, 19, 165-184.	2.1	12
25	The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology, 1977, 24, 303-332.	3.1	325
26	Basic types of stratification in small eolian dunes. Sedimentology, 1977, 24, 361-387.	3.1	675
27	Terrestrial analogs of the hellespontus dunes, Mars. Icarus, 1977, 30, 326-340.	2.5	39
28	Sand transport model of barchan dune equilibrium. Sedimentology, 1978, 25, 307-338.	3.1	151
29	Revision of the stratigraphy of Permian and supposed Permian rocks of Southern Scotland. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1978, 67, 110-149.	1.3	33
30	Erosion of fixed dunes in the Sahel, Central Niger. Earth Surfaces Processes, 1978, 3, 107-113.	0.7	59
31	Alternating aeolian, sabkha and shallow-lake deposits from the Middle Triassic Gipsdalen Formation, Scoresby Land, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 1978, 24, 111-135.	2.3	34
32	Distinctive sedimentary features of cold-climate eolian deposits, North Park, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology, 1978, 25, 327-351.	2.3	60
33	Anatomy of a Lower Permian aeolian sandstone complex, Southern Scotland. Scottish Journal of Geology, 1979, 15, 81-96.	0.1	23
34	Die tertiä und quartä Entwicklung im Bereich der Kufrah-Oasen (Zentrale Sahara) unter besonderer Berücksichtigung aktualistischer Vorgäge. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1979, 68, 584-621.	1.3	2
35	Triassic lacustrine red-beds and palaeoclimate: The "Buntsandstein" of Helgoland and the malmros Klint member of East Greenland. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1979, 68, 748-774.	1.3	46
36	Reflected irradiance indicatrices of natural surfaces and their effect on albedo. Applied Optics, 1979, 18, 994.	2.1	75
37	Morphology and distribution of common †̃sand' dunes on Mars: Comparison with the Earth. Journal of Geophysical Research, 1979, 84, 8183-8204.	3.3	141
38	Sedimentary structures in Quaternary ironsands at Waikato North Head, New Zealand. New Zealand Journal of Geology, and Geophysics, 1979, 22, 213-226.	1.8	3
41	Permian intermontane basin sedimentation in southern Scotland. Sedimentary Geology, 1980, 27, 167-194.	2.1	26

	Сітатіс	on Report	
#	Article	IF	CITATIONS
42	Sedimentary facies in the Archean Timiskaming Group and their tectonic implications, abitibi greenstone belt, Northeastern Ontario, Canada. Precambrian Research, 1980, 12, 161-195.	2.7	96
43	ERG reconstruction: The entrada sandstone (Jurassic) of northern Utah and Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 36, 125-153.	2.3	90
44	The Middle Proterozoic eastern Bangemall basin, Western Australia. Precambrian Research, 1981, 16, 11-29.	2.7	20
45	Central Australian sandridges. Journal of Arid Environments, 1981, 4, 91-101.	2.4	8
46	Significance of interdune deposits and bounding surfaces in aeolian dune sands. Sedimentology, 1981, 28, 753-780.	3.1	305
47	Genesis of the buntsandstein (lower triassic) in the Western Eifel (Germany). Sedimentary Geology, 1981, 29, 1-30.	2.1	15
48	Arid geomorphology. Progress in Physical Geography, 1981, 5, 420-428.	3.2	52
51	The plant ecology of inland dunes in western North America. Journal of Arid Environments, 1982, 5, 199-220.	2.4	60
52	Recent and Pleistocene beach/dune sequences, western Australia. Sedimentary Geology, 1982, 32, 301-328.	2.1	31
53	Aeolian sands in continental red beds of the Middle Buntsandstein (Lower Triassic) at the western margin of the German Basin. Sedimentary Geology, 1982, 31, 191-230.	2.1	40
54	Proterozoic aeolian quartz arenites from the Hornby Bay Group, Northwest Territories, Canada: Implications for Precambrian aeolian processes. Precambrian Research, 1983, 20, 149-160.	2.7	26
55	Reconstructing Bedform Assemblages from Compound Crossbedding. Developments in Sedimentology, 1983, , 407-427.	0.5	44
56	Proterozoic Aeolian Quartz Arenites from the Hornby Bay Group, Northwest Territories, Canada: Implications for Precambrian Aeolian Processes. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 1983, 7, 41-52.	0.2	0
57	Eolian Dune, Interdune, Sand Sheet, and Siliciclastic Sabkha Sediments of an Offshore Prograding Sand Sea, Dhahran Area, Saudi Arabia. AAPG Bulletin, 1983, 67, .	1.5	32
58	Interdune areas of the back-island dune field, North Padre Island, Texas. Sedimentary Geology, 1984, 39, 1-26.	2.1	50
59	Wind sedimentation in the Jafurah sand sea, Saudi Arabia. Sedimentology, 1984, 31, 413-431.	3.1	120
60	The size characteristics of the drifting sand grains in al-Hasa oasis, Saudi Arabia. Geo Journal, 1985, 11, 131-135.	3.1	4
61	Age and Paleoclimatic Significance of Holocene Sand Dunes in Northeastern Colorado. Annals of the American Association of Geographers, 1985, 75, 566-582.	3.0	93

~	~	
(ΊΤΔΤΙ	REDUBT	
CITAL	KEI OKI	

#	Article	IF	CITATIONS
62	Migration, modification and merging in aeolian systems and the significance of the depositional mechanisms in Permian and Triassic dune sands of Europe and North America. Sedimentary Geology, 1985, 43, 85-218.	2.1	44
63	Triassic aeolian sedimentation in the Auranga Gondwana Basin, Bihar, India. Sedimentary Geology, 1985, 43, 277-300.	2.1	3
64	Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone. , 1985, , 90-126.		3
65	Chapter 4 Information on Sedimentary Structure. Developments in Petroleum Science, 1986, 15, 137-180.	0.2	1
66	Chapter 6 Information on Depositional Sedimentary Environments. Developments in Petroleum Science, 1986, , 215-339.	0.2	0
67	Depositional environments of the Triassic system in central Saudi Arabia. Geological Journal, 1986, 21, 403-420.	1.3	15
68	Tectonic and climatic controls on continental depositional facies in the Karoo Basin of northern Natal, South Africa. Sedimentary Geology, 1986, 46, 231-257.	2.1	32
69	The statistical analysis of the sand grain size distribution of Al- Ubay-lah barchan dunes, Northwestern Ar-Rub-Alkhali desert, Saudi Arabia. Geo Journal, 1986, 13, 103-109.	3.1	11
70	Continental sabkha pans and associated nebkhas in southern Kuwait, Arabian Gulf. Geological Society Special Publication, 1987, 35, 187-203.	1.3	28
71	Complex star dunes and associated aeolian bedforms, Hopeman Sandstone (Permo-Triassic), Moray Firth Basin, Scotland. Geological Society Special Publication, 1987, 35, 213-231.	1.3	20
72	Fluvial architecture of the Upper Permian Raniganj coal measure in the Damodar basin, Eastern India. Sedimentary Geology, 1987, 51, 181-213.	2.1	29
73	Sedimentology of an ancient erg margin: the Lower Jurassic Aztec Sandstone, southern Nevada and southern California. Sedimentology, 1987, 34, 661-680.	3.1	33
74	Formation and age of desert dunes in the Lake Eyre depocentres in central Australia. International Journal of Earth Sciences, 1988, 77, 815-834.	1.8	57
75	Stokes surfaces and the effects of near-surface groundwater-table on Aeolian deposition. Sedimentology, 1988, 35, 21-41.	3.1	122
76	A preliminary study of the dynamics of a modern draa, Algodones, southeastern California, USA. Sedimentology, 1988, 35, 649-669.	3.1	61
77	Algodones dune field of southeastern California: case history of a migrating modern dune field. Sedimentology, 1988, 35, 939-952.	3.1	72
78	Eolian dune types preserved in the Tensleep Sandstone (Pennsylvanian-Permian), north-central Wyoming. Sedimentary Geology, 1988, 56, 383-402.	2.1	27
79	Morphology, dynamics and internal stratification of some established foredunes in southeast Australia. Sedimentary Geology, 1988, 55, 17-41.	2.1	114

#	Article	IF	CITATIONS
80	Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico. Sedimentary Geology, 1988, 55, 109-120.	2.1	46
81	Petrology of the Sedimentary Rocks. , 1988, , .		46
82	Convergent mud drapes on some planar cross-beds in the fluvial Turonian sandstones of the Makurdi formation, Benue Trough, Nigeria. Journal of African Earth Sciences (and the Middle East), 1988, 7, 113-120.	0.2	5
83	Principles and Elements of Monitoring in Mountain Catchment Areas: Soils and Erosion. South African Forestry Journal, 1988, 144, 47-51.	0.1	Ο
84	Ellipsoidal parabolic dune patches in the southern Kalahari Desert. Journal of Arid Environments, 1989, 16, 111-124.	2.4	33
85	Star dunes. Progress in Physical Geography, 1989, 13, 67-91.	3.2	58
86	An empirical model of aeolian dune lee-face airflow. Sedimentology, 1990, 37, 1023-1038.	3.1	98
87	Late-Pleistocene Eolian Sand Sheets in Alaska. Quaternary Research, 1990, 34, 269-281.	1.7	71
88	The morphology of Permian palaeodunes—a reinterpretation of the Bridgnorth Sandstone around Bridgnorth, England, in the light of modern dune studies. Sedimentary Geology, 1990, 69, 59-75.	2.1	18
89	Holocene paleoclimatic fluctuations revealed from dune and interdune strata in Wyoming. Journal of Arid Environments, 1990, 18, 123-138.	2.4	39
90	LES DUNES DU QUEBEC MERIDIONAL: CONTRIBUTION A L'ETUDE DES VENTS DOMINANTS DURANT L'HOLOCÃ^NE. Canadian Geographer / Geographie Canadien, 1990, 34, 49-62.	1.5	6
91	Sedimentology and development of parabolic dunes, Grande Prairie dune field, Alberta. Canadian Journal of Earth Sciences, 1990, 27, 1762-1772.	1.3	20
92	Eolian landscape evolution and soil formation in the Chaco dune field, southern Colorado Plateau, New Mexico. Geomorphology, 1990, 3, 517-546.	2.6	50
93	Chapter 3 Depositional Environments of Non-Marine Evaporites. Developments in Sedimentology, 1991, 50, 189-347.	0.5	144
94	Unusual sedimentary structures in the Oregon coastal dunes. Journal of Arid Environments, 1991, 21, 131-150.	2.4	8
95	Subglacially Formed Dunes with Bimodal and Graded Gravel in the Trenton Drumlin Field, Ontario. Géographie Physique Et Quaternaire, 1991, 45, 21-34.	0.2	41
96	Tectonic controls on the development of a semi-arid alluvial basin as reflected in the stratigraphy of the Purilactis Group (upper cretaceous-eocene), northern Chile. Journal of South American Earth Sciences, 1992, 5, 275-296.	1.4	38
97	Delta plain coal deposits from the Than Formation of the Early Cretaceous Saurashtra basin, Gujarat, western India. Sedimentary Geology, 1992, 81, 181-193.	2.1	12

	CITATION R	EPORT	
#	Article	IF	Citations
98	Thin eolianites interbedded within a fluvial and marine succession: early proterozoic whitworth formation, mount isa inlier, australia. Sedimentary Geology, 1993, 87, 39-62.	2.1	36
99	Studies on the role of salt-tolerant plants in the formation and stabilization of coastal dunes of the deltaic Sunderbans, North-East coast of India. Tasks for Vegetation Science, 1993, , 363-370.	0.6	0
100	A review of aeolian bounding surfaces, with examples from the Permian Minnelusa Formation, USA. Geological Society Special Publication, 1993, 73, 167-197.	1.3	35
101	Genesis and sedimentary structures of late Holocene aeolian drift sands in northwest Europe. Geological Society Special Publication, 1993, 72, 247-267.	1.3	21
102	Aeolian Sediment Transport. , 1994, , 447-473.		5
103	Dune Morphology and Dynamics. , 1994, , 474-505.		24
104	Soils of an Eolian Analog of the Leasburg Surface, Southern New Mexico. Quaternary Research, 1994, 41, 191-199.	1.7	6
105	Sedimentary Structures. , 1994, , 89-113.		0
106	Soil moisture and dry bulk density patterns in bare dune sands. Journal of Hydrology, 1994, 154, 107-131.	5.4	80
107	Aeolian-climatic thresholds and sand dunes at the Hanford site, south-central Washington, U.S.A Journal of Arid Environments, 1994, 28, 95-116.	2.4	41
108	Geomorphology, Sedimentary Structures, and Genesis of Dome Dunes in Western Canada. Géographie Physique Et Quaternaire, 1994, 48, 97-105.	0.2	11
109	Evolution of a dune from crescentic to parabolic form in response to short-term climatic changes: RÃ¥bjerg Mile, Skagen Odde, Denmark. Geomorphology, 1996, 17, 63-77.	2.6	77
110	Airflow up the stoss slope of sand dunes: limitations of current understanding. Geomorphology, 1996, 17, 47-54.	2.6	105
111	Impact of increased aridity on sand dune activity in the Canadian Prairies. Journal of Arid Environments, 1997, 36, 421-432.	2.4	66
112	Radar facies of unconsolidated sediments in The Netherlands: A radar stratigraphy interpretation method for hydrogeology. Journal of Applied Geophysics, 1998, 40, 1-18.	2.1	160
113	Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology, 1999, 46, 505-515.	3.1	400
114	The effect of wind speed and bed slope on sand transport. Sedimentology, 1999, 46, 723-731.	3.1	161
115	Bright dunes on Mars. Nature, 1999, 397, 592-594.	27.8	73

#	Article	IF	CITATIONS
116	The airflow field and dynamic processes of pyramid dunes. Journal of Arid Environments, 2000, 45, 357-368.	2.4	19
117	Transportation and Sedimentation. , 2000, , 89-129.		Ο
118	BARCHAN DUNES ON THE KUISEB RIVER DELTA, NAMIBIA. Southern African Geographical Journal, 2001, 83, 283-292.	1.8	16
119	Internal structure of a trough blowout, determined from migrated ground-penetrating radar profiles. Sedimentology, 2001, 48, 791-810.	3.1	45
120	Internal structure and development of an aeolian river dune in The Netherlands, using 3-D interpretation of ground-penetrating radar data. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2002, 81, 27-37.	0.9	13
122	Geomorphic response to Late Holocene climate variation and anthropogenic pressure, northeastern Prince Edward Island, Canada. Quaternary International, 2002, 87, 101-117.	1.5	19
123	Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: an example from the Triassic Helsby Sandstone Formation, Cheshire Basin, UK. Sedimentology, 2002, 49, 805-833.	3.1	163
124	Parabolic halite dunes on the Salar de Uyuni, Bolivia. Sedimentary Geology, 2003, 155, 147-156.	2.1	7
125	The Holocene history of the White Sands dune field and influences on eolian deflation and playa lakes. Quaternary International, 2003, 104, 31-39.	1.5	96
126	Quaternary evolution of the coastal dunes between Lake Hlabane and Cape St Lucia, KwaZulu-Natal. South African Journal of Geology, 2004, 107, 355-376.	1.2	17
127	Use of a three-dimensional laser scanner to digitally capture the topography of sand dunes in high spatial resolution. Earth Surface Processes and Landforms, 2004, 29, 391-398.	2.5	65
128	Mineralogical maturity in dunefields of North America, Africa and Australia. Geomorphology, 2004, 59, 247-269.	2.6	118
129	Characterization of the aeolian terrain facies in Wadi Araba Desert, southwestern Jordan. Geomorphology, 2004, 62, 63-87.	2.6	41
130	The dynamic characteristics and migration of a pyramid dune. Sedimentology, 2005, 52, 429-440.	3.1	16
131	Coarse aeolianites: sand sheets and zibar–interzibar facies from the Mesoproterozoic Cuddapah Basin, India. Sedimentary Geology, 2005, 174, 149-160.	2.1	37
132	15. Conclusions. Developments in Sedimentology, 2005, , 449-502.	0.5	0
133	Stratigraphy, sedimentology, and environmental significance of late mid-Holocene dunes, Lauder Sand Hills, glacial Lake Hind Basin, southwestern Manitoba. Canadian Journal of Earth Sciences, 2005, 42, 847-863.	1.3	10
134	Aeolian dune field self-organization – implications for the formation of simple versus complex dune-field patterns. Geomorphology, 2005, 72, 94-105.	2.6	197

#	Article	IF	CITATIONS
135	Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 2005, 240, 11-72.	4.4	496
136	Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: Application to Meridiani Planum, Mars. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	137
137	Cracks and fins in sulfate sand: Evidence for recent mineral-atmospheric water cycling in Meridiani Planum outcrops?. Geology, 2006, 34, 229.	4.4	31
138	Seafloor character and sedimentary processes in eastern Long Island Sound and western Block Island Sound. Geo-Marine Letters, 2006, 26, 59-68.	1.1	9
139	Pattern analysis of dune-field parameters. Earth Surface Processes and Landforms, 2006, 31, 1176-1191.	2.5	153
140	Ground penetrating radar (GPR) imaging of the internal structure of an active parabolic sand dune. , 2007, , 35-45.		10
141	Eolian dunes and deposits in the western United States as analogs to wind-related features on Mars. , 2007, , 232-264.		5
142	On the origin of gypsum in the Mars north polar region. Journal of Geophysical Research, 2007, 112, .	3.3	103
143	Air permeameter investigation of surficial dune structures in the Nebraska Sand Hills. AAPG Bulletin, 2007, 91, 645-652.	1.5	5
144	Introduction: Geochemical Sediments in Landscapes. , 0, , 1-9.		1
146	Exploration of hydrothermal targets on Mars. Icarus, 2007, 189, 308-324.	2.5	140
147	White Sands Dune Field, New Mexico: Age, dune dynamics and recent accumulations. Sedimentary Geology, 2007, 197, 313-331.	2.1	145
148	Formation of aeolian dunes on Anholt, Denmark since AD 1560: A record of deforestation and increased storminess. Sedimentary Geology, 2007, 199, 171-187.	2.1	57
149	Hydrogen content of sand dunes within Olympia Undae. Icarus, 2008, 196, 422-432.	2.5	49
150	Aeolian sand sea development along the mid retaceous western Tethyan margin (Spain): erg sedimentology and palaeoclimate implications. Sedimentology, 2008, 55, 1253-1292.	3.1	83
151	Last Interglacial fossil elephant trackways dated by OSL/AAR in coastal aeolianites, Still Bay, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257, 261-279.	2.3	91
152	Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257, 58-66.	2.3	42
153	Geomorphology and palaeoecology of the Mark valley (southern Netherlands): geomorphological valley development during the Weichselian and Holocene. Boreas, 1987, 16, 55-67.	2.4	41

# 154	ARTICLE Recent aeolian dune change on Mars. Geomorphology, 2008, 94, 247-255.	IF 2.6	Citations 145
155	On the origin and age of the Great Sand Dunes, Colorado. Geomorphology, 2008, 99, 99-119.	2.6	39
156	Inland aeolian deposits of the Iberian Peninsula: Sand dunes and clay dunes of the Duero Basin and the Manchega Plain. Palaeoclimatic considerations. Geomorphology, 2008, 102, 207-220.	2.6	28
157	Effects of sand supply on the morphodynamics and stratigraphy of active parabolic dunes, Bigstick Sand Hills, southwestern SaskatchewanGeological Survey of Canada Contribution 20060654 Canadian Journal of Earth Sciences, 2008, 45, 321-335.	1.3	34
158	Quaternary Geology and Sedimentary Processes in the Vicinity of Six Mile Reef, Eastern Long Island Sound. Journal of Coastal Research, 2008, 241, 255-266.	0.3	4
159	Ground Penetrating Radar in Aeolian Dune Sands. , 2009, , 271-297.		25
160	Chronology of Aeolian Events Recorded in the Karczmiska Dune (Lublin Upland) in the Light of Lithofacial Analysis, ¹⁴ C and TL Dating. Geochronometria, 2009, 33, 9-17.	0.8	8
161	Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sensing of Environment, 2009, 113, 2224-2233.	11.0	76
162	Evolution of a rift basin dominated by subaerial deposits: The Guaritas Rift, Early Cambrian, Southern Brazil. Sedimentary Geology, 2009, 217, 30-51.	2.1	44
163	Sedimentology of an intra-montane rift-controlled fluvial dominated succession: The Upper Triassic Oukaimeden Sandstone Formation, Central High Atlas, Morocco. Sedimentary Geology, 2009, 218, 103-140.	2.1	44
164	Historical Dune Pattern Dynamics: White Sands Dune Field, New Mexico. Physical Geography, 2009, 30, 64-78.	1.4	16
165	Groundwater salinity as a control on development of eolian landscape: An example from the White Sands of New Mexico. Geomorphology, 2009, 105, 39-49.	2.6	27
166	Dune Morphology and Dynamics. , 2009, , 557-595.		31
167	Barchan dune asymmetry: Observations from Mars and Earth. Icarus, 2010, 205, 183-197.	2.5	83
168	Aeolian dune interactions and dune-field pattern formation: White Sands Dune Field, New Mexico. Sedimentology, 2010, 57, 1199.	3.1	103
169	Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data. Journal of Geophysical Research, 2010, 115, .	3.3	62
170	Barchanâ€parabolic dune pattern transition from vegetation stability threshold. Geophysical Research Letters, 2010, 37, .	4.0	73
171	Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery. Geomorphology, 2010, 114, 530-541.	2.6	51

	Сітатіо	n Report	
#	Article	IF	CITATIONS
172	Constructing hydrocarbon reservoir analogues with rapid acquisition long-range GPR. , 2010, , .		1
173	Reconstruction of eolian bed forms and paleocurrents from cross-bedded strata at Victoria Crater, Meridiani Planum, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	38
174	Sorting out abrasion in a gypsum dune field. Journal of Geophysical Research, 2011, 116, .	3.3	58
175	Origin and evolution of polygonal cracks in hydrous sulphate sands, White Sands National Monument, New Mexico. Sedimentology, 2011, 58, 407-423.	3.1	15
176	Sediment II: Modification and Provenance. Geography Compass, 2011, 5, 494-516.	2.7	2
177	Stratigraphic position of fluvial and aeolian deposits in the Żabinko site (W Poland) based on TL dating. Geochronometria, 2011, 38, 64-71.	0.8	16
178	High albedo dune features suggest past dune migration and possible geochemical cementation of aeolian sediments on Mars. Icarus, 2011, 212, 590-596.	2.5	6
179	Geomorphological evolution revealed by aeolian sedimentary structure in Badain Jaran Desert on Alxa Plateau, Northwest China. Chinese Geographical Science, 2011, 21, 267-278.	3.0	13
180	Pleistocene calcareous aeolian–alluvial deposition in a steep relief karstic coastal belt (island of) Tj ETQq0	0 0 rgBT /Over 2.1	lock 10 Tf 50
181	Microbial Nitrogen and Sulfur Cycles at the Gypsum Dunes of White Sands National Monument, New Mexico. Geomicrobiology Journal, 2012, 29, 733-751.	2.0	11
182	Constructing hydrocarbon reservoir analogues of aeolian systems using ground penetrating radar. Journal of Applied Geophysics, 2012, 81, 21-28.	2.1	12
183	Internal boundary layer model for the evolution of desert dune fields. Nature Geoscience, 2012, 5, 206-209.	12.9	76
184	Methodology for reconstructing wind direction, wind speed and duration of wind events from aeolian crossâ€strata. Journal of Geophysical Research, 2012, 117, .	3.3	61
185	Geology of Arid Lands. Environmental Science and Engineering, 2012, , 43-94.	0.2	0
186	Controls on marine–erg margin cycle variability: aeolian–marine interaction in the midâ€Cretaceous Iberian Desert System, Spain. Sedimentology, 2012, 59, 466-501.	3.1	46
187	11.13 Aeolian Stratigraphy. , 2013, , 246-268.		10
188	14.16 Ground Penetrating Radar. , 2013, , 183-194.		7

#	Article	IF	CITATIONS
190	Validation of Thermal Infrared (TIR) Emissivity Spectra Using Pseudo-invariant Sand Dune Sites. Remote Sensing and Digital Image Processing, 2013, , 515-527.	0.7	3
191	Deviations from self-similarity in barchan form and flux: The case of the Salton Sea dunes, California. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2406-2420.	2.8	14
192	Topography controlling the wind regime on the karstic coast: late Pleistocene coastal calcareous sands of eastern mid-Adriatic, Croatia. Facies, 2014, 60, 843-863.	1.4	11
193	Regional variability of ground penetrating radar response - A case study from the dune fields of the United Arab Emirates (UAE). , 2014, , .		2
194	Definition and origin of the dune-field pattern at White Sands, New Mexico. Aeolian Research, 2014, 15, 269-287.	2.7	41
195	Periglacial structures within fluvioâ€aeolian successions of the end of the <scp>L</scp> ast <scp>G</scp> laciation – examples from <scp>SE P</scp> oland and <scp>NW U</scp> kraine. Boreas, 2014, 43, 712-721.	2.4	24
196	Archean to Recent aeolian sand systems and their sedimentary record: Current understanding and future prospects. Sedimentology, 2014, 61, 1487-1534.	3.1	100
197	Groundwater influence on the aeolian sequence stratigraphy of the Mechertate–Chrita–Sidi El Hani system, Tunisian Sahel: Analogies to the wet–dry aeolian sequence stratigraphy at Meridiani Planum, Terby crater, and Gale crater, Mars. Planetary and Space Science, 2014, 95, 56-78.	1.7	15
199	Automated measurement of sand dune migration using multi-temporal lidar data and GIS. International Journal of Remote Sensing, 2015, 36, 5426-5447.	2.9	23
200	Controls on the largeâ€scale spatial variations of dune field properties in the barchanoid portion of White Sands dune field, New Mexico. Journal of Geophysical Research F: Earth Surface, 2015, 120, 453-473.	2.8	15
201	Dune deformation in a multiâ€directional wind regime: White Sands Dune Field, New Mexico. Earth Surface Processes and Landforms, 2015, 40, 925-941.	2.5	26
202	Impact of continental motion and dynamic glaciations on low-latitude climate during the Carboniferous: The record of the Wyoming Shelf (Western United States). Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 436, 214-230.	2.3	8
203	Analyzing the anisotropy of thermal infrared emissivity over arid regions using a new MODIS land surface temperature and emissivity product (MOD21). Remote Sensing of Environment, 2015, 169, 212-221.	11.0	29
204	Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 2015, 350, aac7575.	12.6	471
205	Parabolic dunes and their transformations under environmental and climatic changes: Towards a conceptual framework for understanding and prediction. Global and Planetary Change, 2015, 124, 123-148.	3.5	48
206	The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International, 2015, 386, 30-41.	1.5	45
207	Sequence stratigraphic framework for mixed aeolian, peritidal and marine environments: Insights from the Pennsylvanian subtropical record of Western Pangaea. Sedimentology, 2016, 63, 1929-1970.	3.1	9
208	Climatic data and satellite imagery for assessing the aeolian sand deposit and barchan migration, as a major risk sources in the region of In-Salah (Central Algerian Sahara). Arabian Journal of Geosciences, 2016, 9, 1.	1.3	23

	CHATION	ILPOK I	
#	Article	IF	Citations
209	The climate-archive dune: Sedimentary record of annual wind intensity. Geology, 2016, 44, 711-714.	4.4	16
210	Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, White Sands, New Mexico, USA. Sedimentary Geology, 2016, 333, 184-197.	2.1	16
211	Environmental controls, morphodynamic processes, and ecogeomorphic interactions of barchan to parabolic dune transformations. Geomorphology, 2017, 278, 209-237.	2.6	28
212	Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468, 529-544.	2.3	33
213	Lateâ€Holocene windâ€field evolution at the southern Baltic coast as revealed by <scp>GPR</scp> data from the Mrzeżyno dunefield, <scp>NW</scp> Poland. Boreas, 2017, 46, 470-485.	2.4	2
214	Stratigraphic architecture resulting from dune interactions: White Sands Dune Field, New Mexico. Sedimentology, 2017, 64, 686-713.	3.1	27
215	Martian sand sheet characterization and implications for formation: A case study. Aeolian Research, 2017, 29, 1-11.	2.7	11
216	Sedimentary differentiation of aeolian grains at the White Sands National Monument, New Mexico, USA. Aeolian Research, 2017, 26, 117-136.	2.7	10
217	Late Cretaceous climbing erg systems in the western Xinjiang Basin: Palaeoatmosphere dynamics and East Asia margin tectonic forcing on desert expansion and preservation. Marine and Petroleum Geology, 2018, 93, 539-552.	3.3	21
218	Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods. Aeolian Research, 2018, 30, 54-96.	2.7	7
219	Modern sedimentary facies, depositional environments, and major controlling processes on an arid siliciclastic coast, Al qahmah, SE Red Sea, Saudi Arabia. Journal of African Earth Sciences, 2018, 140, 9-28.	2.0	9
220	The transitional depositional environment and sequence stratigraphy of Chasma Boreale. Icarus, 2018, 308, 27-41.	2.5	6
221	High-energy flood events recorded in the Mesoproterozoic Meall Dearg Formation, NW Scotland; their recognition and implications for the study of pre-vegetation alluvium. Journal of the Geological Society, 2018, 175, 13-32.	2.1	18
222	Morphodynamics of barchan and dome dunes under variable wind regimes. Geology, 2018, 46, 743-746.	4.4	21
223	Transformation of parabolic dunes into mobile barchans triggered by environmental change and anthropogenic disturbance. Earth Surface Processes and Landforms, 2018, 43, 1001-1018.	2.5	6
224	Aerodynamic grainâ€size distribution of blown sand. Sedimentology, 2019, 66, 590-603.	3.1	20
225	Hydrological Cycle and Lake Water Source Indicated by Microrelief-Evaporite-Vegetation-Runoff Assemblage of Badain Jaran Desert. Water (Switzerland), 2019, 11, 1350.	2.7	3
227	Timing and development of sand dunes in the Golestan Province, northern Iran—Implications for the Late-Pleistocene history of the Caspian Sea. Aeolian Research, 2019, 41, 100538.	2.7	14

#	Article	IF	CITATIONS
228	Establishment of digital 3D map based on discrete elevation point data measured in the field. Journal of Earth System Science, 2019, 128, 1.	1.3	0
229	Imaging the structure and reconstructing the development of a barchan dune using ground-penetrating radar. Geomorphology, 2019, 341, 192-202.	2.6	16
230	Bounding Surfaces in a Barchan Dune: Annual Cycles of Deposition? Seasonality or Erosion by Superimposed Bedforms?. Remote Sensing, 2019, 11, 965.	4.0	12
231	Rapid In Situ Characterization of Soil Erodibility With a Field Deployable Robot. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1261-1280.	2.8	9
232	Revisiting the age and palaeoenvironments of the Upper Jurassic–Lower Cretaceous? dinosaur-bearing sedimentary record of eastern Spain: implications for Iberian palaeogeography. Journal of Iberian Geology, 2019, 45, 471-510.	1.3	27
233	Carbonate-clastic sedimentation in the Parnaiba Basin, northern Brazil: Record of carboniferous epeiric sea in the Western Gondwana. Journal of South American Earth Sciences, 2019, 91, 188-202.	1.4	10
234	Low-angle eolian deposits formed by protodune migration, and insights into slipface development at White Sands Dune Field, New Mexico. Aeolian Research, 2019, 36, 9-26.	2.7	22
235	Genetic units and facies architecture of a Lower Cretaceous fluvial-aeolian succession, São Sebastião Formation, Jatobá Basin, Brazil. Journal of South American Earth Sciences, 2019, 89, 158-172.	1.4	17
236	Sedimentological analysis of a Late Quaternary coastal dune system: An example from Gopnath, southâ€east Saurashtra, Western India. Sedimentology, 2019, 66, 435-458.	3.1	3
237	Shallow-marine depositional sequences in a transgressive mixed siliciclastic-carbonate system: The Early Jurassic Marrat Formation from central Saudi Arabia. Journal of African Earth Sciences, 2020, 167, 103429.	2.0	11
238	Morphological and sedimentary characteristics of dome dunes in the northeastern Qaidam Basin, China. Geomorphology, 2020, 350, 106923.	2.6	8
239	Macroscopic Flow Disequilibrium Over Aeolian Dune Fields. Geophysical Research Letters, 2020, 47, e2020GL088773.	4.0	7
240	Spatial and Temporal Development of Incipient Dunes. Geophysical Research Letters, 2020, 47, e2020GL088919.	4.0	18
241	Eustatic, Climatic and Tectonic Controls on the Evolution of a Middle to Late Holocene Coastal Dune System in Shimokita, Northeast Japan. Geosciences (Switzerland), 2020, 10, 410.	2.2	0
242	Late Cretaceous plateau deserts in the South China Block, and Quaternary analogues; sedimentology, dune reconstruction and wind-water interactions. Marine and Petroleum Geology, 2020, 120, 104504.	3.3	10
243	Microbial influence on the accumulation of Precambrian aeolian deposits (Neoproterozoic, Venkatpur) Tj ETQq1	1 0.78431 2.7	4 rgBT /Ove
244	Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in central China. Marine and Petroleum Geology, 2020, 117, 104390.	3.3	14
245	Characterization of hardâ€toâ€differentiate dune stratification types in the Permian Coconino Sandstone (Arizona, USA). Sedimentology, 2021, 68, 238-265.	3.1	2

#	Article	IF	CITATIONS
246	Upper Pleistocene parabolic ridges (i.e. â€~chevrons') from the Bahamas: Stormâ€wave sediments or aeolian deposits? A quantitative approach. Sedimentology, 2021, 68, 1255-1288.	3.1	4
247	Modern Sedimentary Systems of Qinghai Lake. Syntheses in Limnogeology, 2021, , 513-548.	0.4	0
248	Understanding Polydirectional Aeolian Cross-Strata Architecture in a Coastal Unidirectional Wind Regime. Journal of Coastal Research, 2021, 37, .	0.3	1
249	Eolian Landscapes Eolian Stratigraphy. , 2021, , .		0
250	The distribution and nature of star dunes: A global analysis. Aeolian Research, 2021, 50, 100685.	2.7	14
251	Aeolian dunes morphodynamics and wind regime reconstruction in mid-latitudes of the Gondwana during Early Permian, Aracaré Formation, Sergipe-Alagoas Basin, Brazil. Aeolian Research, 2021, 50, 100672.	2.7	5
252	Loessâ€Like Dust Appearance at 40ÂMa in Central China. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA003993.	2.9	13
253	Dome dunes: Distribution and morphology. Aeolian Research, 2021, 51, 100713.	2.7	6
254	Migration of Reversing Dunes Against the Sand Flow Path as a Singular Expression of the Speedâ€Up Effect. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005913.	2.8	8
255	A database of Aeolian Sedimentary Architecture for the characterization of modern and ancient sedimentary systems. Marine and Petroleum Geology, 2021, 127, 104983.	3.3	9
256	A New Method for Automated Measurement of Sand Dune Migration Based on Multi-Temporal LiDAR-Derived Digital Elevation Models. Remote Sensing, 2021, 13, 3084.	4.0	4
257	Sedimentary facies of the Mesoproterozoic Srisailam Formation, Cuddapah basin, India: Implications for depositional environment and basin evolution. Marine and Petroleum Geology, 2021, 133, 105242.	3.3	6
258	Dune-Field Patterns. , 2022, , 481-495.		1
259	Multiscale bed form interactions and their implications for the abruptness and stability of the downwind dune field margin at White Sands, New Mexico, USA. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2396-2411.	2.8	11
260	Aeolian Geomorphic Response to Climate Change: An Example from the Estancia Valley, Central New Mexico, USA. Advances in Global Change Research, 2000, , 171-192.	1.6	3
261	Barchan Dunes of the Salton Sea Region, California. , 1995, , 153-177.		12
262	A classification of dunes based on aeolian dynamics and the sand budget. , 1984, , 31-58.		20
264	White Sands National Monument, New Mexico. , 0, , 451-454.		1

#	Article	IF	CITATIONS
265	Cross-bedding in the Permian Yellow Sands of County Durham. Proceedings of the Yorkshire Geological Society, 1984, 45, 11-18.	0.3	7
266	Alluvial-eolian interaction in a Cambrian rift margin: the Pedra das Torrinhas and Pedra Pintada formations (Guaritas Group, RS). Anais Da Academia Brasileira De Ciencias, 2009, 81, 819-836.	0.8	9
267	From barchan to domic shape: evolution of a coastal sand dune in northeastern Brazil based on GPR survey. Revista Brasileira De Geofisica, 2008, 26, 5-20.	0.2	8
268	Sedimentology of An Erg To An Erg-Margin Depositional System, the Rush Springs Sandstone of Western Oklahoma, U.S.A.: Implications for Paleowinds Across Northwestern Pangea During the Guadalupian (Middle Permian). Journal of Sedimentary Research, 2012, 82, 345-363.	1.6	7
269	Stratigraphic Architecture of Bedrock Reference Section, Victoria Crater, Meridiani Planum, Mars. , 2012, , 195-209.		16
270	Chronostratigraphy of Late Glacial aeolian activity in SW Poland – A case study from the Niemodlin Plateau. Geochronometria, 2020, 47, 124-137.	0.8	13
271	ĐŸĐ¾ÑлеĐƊ¾Đ²Đ°Ñ,ĐµĐ»ÑŒĐ½Đ¾ÑÑ,ÑŒ Đ¾Ñ,Đ»Đ¾Đ¶ĐµĐ½Đ,Đ¹ Đ² Đ'ĐµÑ€ĐµĐĐ½Đ¾ (Đ'Đ¾Đ	»ÑotÐ1⁄2Ñ€	<u></u> ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽

274	Supervised Classification Of An Arid Groundwater Flow System. , 2001, , .		0
276	Parabolic Dune. , 2014, , 1-5.		0
277	Cross-Bedding and Ripple Marks (1963–1976). , 1977, , 136-155.		0
280	Wind-blown sediments. , 1985, , 82-101.		0
281	Wind-blown sediments. , 1985, , 82-101.		0
282	Wind-blown sediments. , 1985, , 82-101.		0
283	Norphlet Formation (Upper Jurassic) of Southwestern and Offshore Alabama: Environments of Deposition and Petroleum Geology. AAPG Bulletin, 1985, 69, .	1.5	22
284	Sedimentary structures. , 1989, , 14-38.		0
285	Environments of Sedimentation. , 1994, , 9-56.		0
286	Parabolic Dune. , 2015, , 1515-1518.		1
287	Sand sheets interaction with aeolian dune, alluvial and marginal playa beds in Late Permian Upper Rotliegend setting (western part of the PoznaÅ,, Basin, Poland). Geological Quarterly, 2017, , .	0.2	2

ARTICLE IF CITATIONS Introduction to Inland Dunes of North America. Dunes of the World, 2020, , 1-10. 288 0.5 0 White Sands. Dunes of the World, 2020, , 207-237. 289 Trickle-Down and Trickle-Up Boundary Conditions in Eolian Dune-Field Pattern Formation., 2017,, 290 3 18-39. The lithified aeolian dune field adjacent to the Apollinaris Sulci, Mars: Geological history and paleo-wind record. Icarus, 2022, 373, 114788. Where humid and arid meet: Sedimentology of coastal siliciclastic successions deposited in apparently 292 3.1 3 contrasting climates. Sedimentology, 2022, 69, 975-1027. Lake dynamics in an Early Jurassic desert: Evidence from the Clarens Formation in southern Africa. Sedimentology, 2023, 70, 865-894. 3.1 Paleocurrent and paleowind direction reconstruction research progress and perspectives: a review. 294 1.0 2 Australian Journal of Earth Sciences, 2023, 70, 603-626. Spatial and temporal variation in the evolution of ancient aeolian dune-field. The Pennsylvanian PiauÃ-295 2.1 Formation (ParnaÃba Basin), Brazil. Sedimentary Geology, 2023, 451, 106398. Onset of dune construction based on archaeological evidence, White Sands, New Mexico. Quaternary 296 1.7 0 Research, 0, , 1-9. Precambrian aeolian systems: A unique record?. Precambrian Research, 2023, 392, 107075. 2.7 The edge of a Permian erg: Eolian facies and provenance of the Lyons Sandstone in northern 298 0 0.9 Colorado. Rocky Mountain Geology, 2023, 58, 57-82. Signatures of Pleistocene Marine Transgression Preserved in Lithified Coastal Dune Morphology of 2.2 The Bahamas. Geosciences (Switzerland), 2023, 1<u>3, 367.</u> Gypsum lakes, sandflats and soils revealed from the Triassic Red Peak Formation of the Chugwater 301 1.7 0 Group, northâ€central Wyoming. Depositional Record, 2024, 10, 260-278. Trace fossil zonation in interdune Lakes: example from the neogene of Eastern Patagonia, Argentina. Ichnos, 2023, 30, 303-337. Structure and chronology of a star dune at Erg Chebbi, Morocco, reveals why star dunes are rarely 303 3.3 0 recognised in the rock record. Scientific Reports, 2024, 14, .