Patient-specific computer modelling of coronary bifurc programme

EuroIntervention 11, V35-V39 DOI: 10.4244/eijv11sva8

Citation Report

#	Article	IF	CITATIONS
1	Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting. JACC: Cardiovascular Interventions, 2015, 8, 1281-1296.	2.9	84
3	CFD analysis of multiphase blood flow within aorta and its thoracic branches of patient with coarctation of aorta using multiphase Euler - Euler approach. Journal of Physics: Conference Series, 2016, 745, 032112.	0.4	10
4	Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle. BioMedical Engineering OnLine, 2016, 15, 91.	2.7	22
5	Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses. Journal of Biomechanics, 2016, 49, 2102-2111.	2.1	60
6	Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. European Heart Journal, 2017, 38, 400-412.	2.2	152
7	Behaviour of two typical stents towards a new stent evolution. Medical and Biological Engineering and Computing, 2017, 55, 1019-1037.	2.8	6
8	Multiphase simulation of blood flow within main thoracic arteries of 8-year-old child with coarctation of the aorta. Heat and Mass Transfer, 2018, 54, 2405-2413.	2.1	10
9	Predictive Physiological Modeling of Percutaneous Coronary Intervention – Is Virtual Treatment Planning the Future?. Frontiers in Physiology, 2018, 9, 1107.	2.8	6
10	Mechanical Behaviors of the Stent Deployment Inside A Patient-Specific Stenotic Coronary Artery. , 2019, , .		0
11	Structural and Hemodynamic Analyses of Different Stent Structures in Curved and Stenotic Coronary Artery. Frontiers in Bioengineering and Biotechnology, 2019, 7, 366.	4.1	27
12	Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. International Journal of Molecular Sciences, 2020, 21, 2992.	4.1	45
13	Hemodynamic perturbations due to the presence of stents. , 2021, , 251-271.		4
14	Patient-specific computational simulation of coronary artery bifurcation stenting. Scientific Reports, 2021, 11, 16486.	3.3	13
15	Optical Coherence Tomography-Based Modeling of Stent Deployment in Heavily Calcified Coronary Lesion. Journal of Biomechanical Engineering, 2020, 142, .	1.3	11
16	Impact of plaque type and side branch geometry on side branch compromise after provisional stent implantation: a simulation study. EuroIntervention, 2017, 13, e236-e245.	3.2	13
17	Virtual bench testing to study coronary bifurcation stenting. EuroIntervention, 2015, 11, V31-V34.	3.2	25
18	Co-registration of pre- and post-stent intravascular OCT images for validation of finite element model simulation of stent expansion. , 2020, 11317, .		3
19	Superficial femoral artery stenting: Impact of stent design and overlapping on the local hemodynamics. Computers in Biology and Medicine, 2022, 143, 105248.	7.0	10

CITATION REPORT

#	Article	IF	CITATIONS
21	Advances in Intravascular Ultrasound. Indian Journal of Cardiovascular Disease in Women WINCARS, 0, 8, 131-141.	0.1	1
22	A systematic review of cardiac in-silico clinical trials. Progress in Biomedical Engineering, 2023, 5, 032004.	4.9	2
23	A review on the use of finite element simulations for structural analyses of coronary stenting: What can we do nowadays and what do we need to move forward?. European Journal of Mechanics, A/Solids, 2023, 101, 105071.	3.7	1
24	Computational fluid dynamics as supporting technology for coronary artery disease diagnosis and treatment: an international survey. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	1
25	Computational fluid dynamics of coronary arteries with implanted stents: Effects of Newtonian and nonâ€Newtonian blood flows. Engineering Reports, 0, , .	1.7	1
26	In vivo chronic scaffolding force of a resorbable magnesium scaffold. Journal of Biomechanics, 2024, 164, 111988.	2.1	0