The role of p2x7 receptor in infectious inflammatory dis ectonucleotidases

Biomedical Journal 37, 169 DOI: 10.4103/2319-4170.127803

Citation Report

#	Article	IF	CITATIONS
1	Macrophage P2X7 Receptor Function Is Reduced during Schistosomiasis: Putative Role of TGF- <i>β</i> 1. Mediators of Inflammation, 2014, 2014, 1-12.	1.4	16
2	Dangerous Liaisons: Caspase-11 and Reactive Oxygen Species Crosstalk in Pathogen Elimination. International Journal of Molecular Sciences, 2015, 16, 23337-23354.	1.8	21
3	Purinergic Receptors: Key Mediators of HIV-1 Infection and Inflammation. Frontiers in Immunology, 2015, 6, 585.	2.2	27
4	Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages. PLoS ONE, 2015, 10, e0133502.	1.1	17
5	Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB Journal, 2015, 29, 3626-3637.	0.2	106
6	The role of P2X7 receptors in tissue fibrosis: a brief review. Purinergic Signalling, 2015, 11, 435-440.	1.1	33
7	Decrease of serum adenine nucleotide hydrolysis in an irritant contact dermatitis mice model: potential P2X7R involvement. Molecular and Cellular Biochemistry, 2015, 404, 221-228.	1.4	8
8	Purinergic signaling during Porphyromonas gingivalis infection. Biomedical Journal, 2016, 39, 251-260.	1.4	23
9	Role of epigenetics in modulation of immune response at the junction of host–pathogen interaction and danger molecule signaling. Pathogens and Disease, 2016, 74, ftw082.	0.8	33
10	Enhanced Expression of Contractile-Associated Proteins and Ion Channels in Preterm Delivery Model Mice With Chronic Odontogenic Porphyromonas Gingivalis Infection. Reproductive Sciences, 2016, 23, 838-846.	1.1	10
11	Immuno-Pharmacological Targeting of Virus-Containing Compartments in HIV-1-Infected Macrophages. Trends in Microbiology, 2016, 24, 558-567.	3.5	15
12	P2X ion channel receptors and inflammation. Purinergic Signalling, 2016, 12, 59-67.	1.1	170
13	P2X7 receptor knockout prevents streptozotocin-induced type 1 diabetes in mice. Molecular and Cellular Endocrinology, 2016, 419, 148-157.	1.6	28
14	An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology, 2016, 104, 4-17.	2.0	157
15	Inflammatory early events associated to the role of P2X7 receptor in acute murine toxoplasmosis. Immunobiology, 2017, 222, 676-683.	0.8	31
16	CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. Journal of Hepatology, 2017, 67, 716-726.	1.8	122
17	POM-1 inhibits P2 receptors and exhibits anti-inflammatory effects in macrophages. Purinergic Signalling, 2017, 13, 611-627.	1.1	9
18	Systemic blockade of P2X7 receptor protects against sepsis-induced intestinal barrier disruption. Scientific Reports, 2017, 7, 4364.	1.6	47

CITATION REPORT

#	Article	IF	CITATIONS
19	The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signalling, 2017, 13, 143-152.	1.1	29
20	P2X7 Receptor Signaling Contributes to Sepsis-Associated Brain Dysfunction. Molecular Neurobiology, 2017, 54, 6459-6470.	1.9	41
21	Purinergic Signalling: Therapeutic Developments. Frontiers in Pharmacology, 2017, 8, 661.	1.6	302
22	Post-inflammatory lleitis Induces Non-neuronal Purinergic Signaling Adjustments of Cholinergic Neurotransmission in the Myenteric Plexus. Frontiers in Pharmacology, 2017, 8, 811.	1.6	23
23	The P2X7 Receptor Mediates Toxoplasma gondii Control in Macrophages through Canonical NLRP3 Inflammasome Activation and Reactive Oxygen Species Production. Frontiers in Immunology, 2017, 8, 1257.	2.2	77
24	Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives. Frontiers in Immunology, 2017, 8, 1526.	2.2	74
25	Intralesional uridine-5′-triphosphate (UTP) treatment induced resistance to Leishmania amazonensis infection by boosting Th1 immune responses and reactive oxygen species production. Purinergic Signalling, 2018, 14, 201-211.	1.1	11
26	The P2X7 receptor: A main player in inflammation. Biochemical Pharmacology, 2018, 151, 234-244.	2.0	282
27	N-terminal tagging of human P2X7 receptor disturbs calcium influx and dye uptake. Purinergic Signalling, 2018, 14, 83-90.	1.1	1
28	Methionine and/or Methionine Sulfoxide Alter Ectoenzymes Activities in Lymphocytes and Inflammatory Parameters in Serum from Young Rats: Acute and Chronic Effects. Cell Biochemistry and Biophysics, 2018, 76, 243-253.	0.9	6
29	The therapeutic potential of purinergic signalling. Biochemical Pharmacology, 2018, 151, 157-165.	2.0	105
30	ATP induces PAD4 in renal proximal tubule cells via P2X7 receptor activation to exacerbate ischemic AKI. American Journal of Physiology - Renal Physiology, 2018, 314, F293-F305.	1.3	23
31	The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signalling, 2018, 14, 1-18.	1.1	184
32	The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?. Frontiers in Pharmacology, 2018, 9, 52.	1.6	307
33	Immunological Pathways Triggered by <i>Porphyromonas gingivalis</i> and <i>Fusobacterium nucleatum</i> : Therapeutic Possibilities?. Mediators of Inflammation, 2019, 2019, 1-20.	1.4	57
34	CD73 complexes with emmprin to regulate MMP-2 production from co-cultured sarcoma cells and fibroblasts. BMC Cancer, 2019, 19, 912.	1.1	10
35	Overexpressed CD39 mitigates sepsisâ€ʻinduced kidney epithelial cell injury via suppressing the activation of NLR family pyrin domain containing 3. International Journal of Molecular Medicine, 2019, 44, 1707-1718.	1.8	10
36	ATP signaling and NTPDase in Systemic Lupus Erythematosus (SLE). Immunobiology, 2019, 224, 419-426.	0.8	15

CITATION REPORT

#	Article	IF	CITATIONS
37	Disruption of Purinergic Receptor P2X7 Signaling Increases Susceptibility to Cerebral Toxoplasmosis. American Journal of Pathology, 2019, 189, 730-738.	1.9	13
38	ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes, 2019, 10, 16.	1.0	3
39	P2X7 receptor-mediated leukocyte recruitment and Porphyromonas gingivalis clearance requires IL-1β production and autocrine IL-1 receptor activation. Immunobiology, 2019, 224, 50-59.	0.8	16
40	CD73â€dependent adenosine dampens interleukinâ€1β–induced CXCL8 production in gingival fibroblasts: Association with heme oxygenaseâ€1 and adenosine monophosphate‒activated protein kinase. Journal of Periodontology, 2020, 91, 253-262.	1.7	10
41	The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Reviews and Reports, 2020, 16, 288-300.	1.7	30
42	P2 Purinergic Signaling in the Distal Lung in Health and Disease. International Journal of Molecular Sciences, 2020, 21, 4973.	1.8	26
43	Protective effects of P2X7R antagonist in sepsisâ€induced acute lung injury in mice via regulation of circ_0001679 and circ_0001212 and downstream Pln, Cdh2, and Nprl3 expression. Journal of Gene Medicine, 2020, 22, e3261.	1.4	32
44	The Expression of P2X7 Receptor on Th1, Th17, and Regulatory T Cells in Patients with Systemic Lupus Erythematosus or Rheumatoid Arthritis and Its Correlations with Active Disease. Journal of Immunology, 2020, 205, 1752-1762.	0.4	26
45	Inhibition of P2X7 Purinergic Receptor Ameliorates Cardiac Fibrosis by Suppressing NLRP3/IL-1 <i>β</i> Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	28
46	Purinergic Receptors: Elucidating the Role of these Immune Mediators in HIV-1 Fusion. Viruses, 2020, 12, 290.	1.5	13
47	Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Molecular Psychiatry, 2021, 26, 1044-1059.	4.1	104
48	TLR2 and the NLRP3 inflammasome mediate IL-1β production in <i>Prevotella nigrescens</i> -infected dendritic cells. International Journal of Medical Sciences, 2021, 18, 432-440.	1.1	16
49	Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Archives of Pharmacal Research, 2021, 44, 16-35.	2.7	60
50	Identification of novel P2X7R antagonists by using structureâ€based virtual screening and cellâ€based assays. Chemical Biology and Drug Design, 2021, 98, 192-205.	1.5	6
51	P2X7 Receptor as a Potential Target for Major Depressive Disorder. Current Drug Targets, 2021, 22, 1108-1120.	1.0	9
52	P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. European Journal of Pharmacology, 2021, 906, 174235.	1.7	23
53	Discovery of bilirubin as novel P2X7R antagonist with anti-tumor activity. Bioorganic and Medicinal Chemistry Letters, 2021, 51, 128361.	1.0	8
54	ROLE OF PURINERGIC RECEPTORS IN IMMUNE RESPONSE. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2016, , 107-119.	0.3	4

CITATION REPORT

#	Article	IF	CITATIONS
55	Associations Between the Purinergic Receptor P2X7 and Leprosy Disease. Frontiers in Genetics, 2021, 12, 730991.	1.1	4
56	The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity. International Immunopharmacology, 2021, 101, 108297.	1.7	13
57	Purinergic P2X7 receptor antagonist ameliorates intestinal inflammation in postoperative ileus. Journal of Veterinary Medical Science, 2022, 84, 610-617.	0.3	1
58	ATP-Activated P2X7R Promote the Attack of Acute Gouty Arthritis in Rats Through Activating NLRP3 Inflammasome and Inflammatory Cytokine Production. Journal of Inflammation Research, O, Volume 15, 1237-1248.	1.6	10
59	Extracellular adenosine triphosphate induces IDO and IFNÎ ³ expression of human periodontal ligament cells through P ₂ X ₇ receptor signaling. Journal of Periodontal Research, 2022, 57, 742-753.	1.4	3
60	Blocking P2X7 receptor with AZ 10606120 exacerbates vascular hyperpermeability and inflammation in murine polymicrobial sepsis. Physiological Reports, 2022, 10, .	0.7	2
61	Purinergic System in Immune Response. Biochemistry, 0, , .	0.8	0
63	The functional change of the P2X7R containing the Ala348 to Thr polymorphism is associated with the pathogenesis of gout. Scientific Reports, 2023, 13, .	1.6	2
64	SARS-CoV-2 Spike protein alters microglial purinergic signaling. Frontiers in Immunology, 0, 14, .	2.2	7
66	Editorial: Inflammasome, purinergic signaling, and immunometabolism in oral health and disease. Frontiers in Oral Health, 0, 4, .	1.2	Ο