Analysis of Arbuscular Mycorrhizal Fungal Inoculant Be

Microorganisms

9,81

DOI: 10.3390/microorganisms9010081

Citation Report

#	Article	IF	CITATIONS
1	Plant Growth-Promoting Microorganisms in Coffee Production: From Isolation to Field Application. Agronomy, 2021, 11, 1531.	3.0	8
2	Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Applied Soil Ecology, 2022, 169, 104225.	4.3	58
3	A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza, 2021, 31, 637-653.	2.8	10
4	Biodiversity of arbuscular mycorrhizal fungi in plant roots and rhizosphere soil from different arid land environment of Qatar. Plant Direct, 2022, 6, e369.	1.9	10
5	Approaches and determinants to sustainably improve crop production. Food and Energy Security, 2023, 12, .	4.3	12
6	Ectomycorrhizal Fungi Dominated the Root and Rhizosphere Microbial Communities of Two Willow Cultivars Grown for Six-Years in a Mixed-Contaminated Environment. Journal of Fungi (Basel,) Tj ETQq1 1 0.7843	143: .g BT /C	Overlock 10 Ti
7	Long-Term Persistence of Arbuscular Mycorrhizal Fungi in the Rhizosphere and Bulk Soils of Non-host Brassica napus and Their Networks of Co-occurring Microbes. Frontiers in Plant Science, 2022, 13, 828145.	3.6	10
8	Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Frontiers in Microbiology, 2022, 13, 843415.	3.5	5
9	Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms, 2022, 10, 609.	3.6	30
10	The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global metaâ€analysis. New Phytologist, 2022, 235, 320-332.	7.3	53
11	Tổng quan nghiên cứu vổnấm rễ nội cộng sinh ở Việt Nam. Tap Chi Khoa Hoc = Journal of	Schence, 2	20 2 2, 58, 221
13	Influence on Soybean Aphid by the Tripartite Interaction between Soybean, a Rhizobium Bacterium, and an Arbuscular Mycorrhizal Fungus. Microorganisms, 2022, 10, 1196.	3.6	7
14	Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. IScience, 2022, 25, 104636.	4.1	18
15	The Metabolic Profile of Anchusa officinalis L. Differs According to Its Associated Arbuscular Mycorrhizal Fungi. Metabolites, 2022, 12, 573.	2.9	8
16	Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. Sustainability, 2022, 14, 7840.	3.2	29
17	Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society's Demands for Meat Production with Sustainability. Agronomy, 2022, 12, 1748.	3.0	8
18	Experimental evaluation of biological regeneration of arable soil: The effects of grass-clover leys and arbuscular mycorrhizal inoculants on wheat growth, yield, and shoot pathology. Frontiers in Plant Science, 0, 13, .	3.6	1
19	Effects of Commercial Arbuscular Mycorrhizal Inoculants on Plant Productivity and Intra-Radical Colonization in Native Grassland: Unintentional De-Coupling of a Symbiosis?. Plants, 2022, 11, 2276.	3.5	5

#	ARTICLE	IF	CITATIONS
20	The Potential Applications of Commercial Arbuscular Mycorrhizal Fungal Inoculants and Their Ecological Consequences. Microorganisms, 2022, 10, 1897.	3.6	15
21	Arbuscular mycorrhizal species vary in their impact on nutrient uptake in sweet corn (Zea mays) and butternut squash (Cucurbita moschata). Frontiers in Agronomy, 0, 4, .	3.3	6
22	Agricultural and Forestry Importance of Microorganism-plant Symbioses: A Microbial Source for Biotechnological Innovations. Reviews in Agricultural Science, 2022, 10, 344-355.	2.7	2
23	Exploring the Potential of White-Rot Fungi Exudates on the Amelioration of Salinized Soils. Agriculture (Switzerland), 2023, 13, 382.	3.1	1
24	The trade-in-trade: multifunctionalities, current market and challenges for arbuscular mycorrhizal fungal inoculants. Symbiosis, 2023, 89, 259-272.	2.3	3
25	Microbial-Based Plant Biostimulants. Microorganisms, 2023, 11, 686.	3.6	2
26	Unraveling arbuscular mycorrhizal fungi interaction in rice for plant growth development and enhancing phosphorus use efficiency through recent development of regulatory genes. Journal of Plant Nutrition, 2023, 46, 3184-3220.	1.9	4
27	Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. Mycorrhiza, 2023, 33, 119-137.	2.8	8
28	Successful Formulation and Application of Low-Temperature Bacterial Agents for Corn Stover Degradation. Agronomy, 2023, 13, 1032.	3.0	0
29	Mycorrhizal Networks: A Secret Interplant Communication System. , 2023, , 447-467.		0
30	Engineering Approach for Production of Arbuscular Mycorrhizal Inoculum Adapted to Saline Soil Management. Stresses, 2023, 3, 404-423.	4.8	1
31	Impact of Fungi on the World Economy and Its Sustainability: Current Status and Potentials. , 2023, , 3-37.		0
32	Biochar and Arbuscular Mycorrhizae Fungi to Improve Soil Organic Matter and Fertility. Sustainable Agriculture Reviews, 2023, , 331-354.	1.1	2
33	Biological Efficacy of Plant Growth–Promoting Bacteria and Arbuscular Mycorrhizae Fungi: Assessments in Laboratory and Greenhouse Conditions. Current Protocols, 2023, 3, .	2.9	1
34	Arbuscular Mycorrhizal Fungi: Role as Biofertilizers, Technology Development, and Economics. , 2023, , 3-30.		0
35	Arbuscular mycorrhizal fungi as biofertilisers. Current Biology, 2023, 33, R462-R463.	3.9	1
36	Soil addition improves multifunctionality of degraded grasslands through increasing fungal richness and network complexity. Geoderma, 2023, 437, 116607.	5.1	2
37	Arbuscular mycorrhizal fungi acting as biostimulants of proanthocyanidins accumulation – What is there to know?. Rhizosphere, 2023, 27, 100762.	3.0	1

3

#	Article	IF	CITATIONS
38	Comparative RNA sequencing-based transcriptome profiling of ten grapevine rootstocks: shared and specific sets of genes respond to mycorrhizal symbiosis. Mycorrhiza, 0, , .	2.8	0
39	Barley Growth and Phosphorus Uptake in Response to Inoculation with Arbuscular Mycorrhizal Fungi and Phosphorus Solubilizing Bacteria. Communications in Soil Science and Plant Analysis, 2024, 55, 846-861.	1.4	0
40	Earthworms as conveyors of mycorrhizal fungi in soils. Soil Biology and Biochemistry, 2024, 189, 109283.	8.8	0
41	Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi Journal of Biological Sciences, 2024, 31, 103911.	3.8	1
42	Arbuscular Mycorrhizal Fungi as Biofertilizers to Increase the Plant Quality of Sour-Orange Seedlings. Agronomy, 2024, 14, 230.	3.0	0
43	Intraspecific competition hinders drought recovery in a resident but not in its range-expanding congener plant independent of mycorrhizal symbiosis. Plant and Soil, 0, , .	3.7	0
44	Arbuscular Mycorrhizal Technology in Sustainable Agriculture: Current Knowledge and Challenges in Agroforestry., 2024, , 173-195.		0
46	Arbuscular mycorrhizal fungi in sustainable agriculture. , 2024, , 71-100.		0