Empagliflozin and Dapagliflozin Reduce ROS Generatio Tumor Necrosis Factor α-Stimulated Human Coronary

Cellular Physiology and Biochemistry 53, 865-886 DOI: 10.33594/00000178

Citation Report

#	Article	IF	CITATIONS
1	Novel Anti-inflammatory Effects of Canagliflozin Involving Hexokinase II in Lipopolysaccharide-Stimulated Human Coronary Artery Endothelial Cells. Cardiovascular Drugs and Therapy, 2021, 35, 1083-1094.	1.3	44
2	The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation. Biochemical Pharmacology, 2020, 182, 114276.	2.0	19
3	Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Endothelial Function: A Systematic Review of Preclinical Studies. Diabetes Therapy, 2020, 11, 1947-1963.	1.2	55
4	Repurposing Antidiabetic Drugs for Cardiovascular Disease. Frontiers in Physiology, 2020, 11, 568632.	1.3	25
5	The Impact of Antidiabetic Therapies on Diastolic Dysfunction and Diabetic Cardiomyopathy. Frontiers in Physiology, 2020, 11, 603247.	1.3	11
6	Molecular Mechanisms in Early Diabetic Kidney Disease: Glomerular Endothelial Cell Dysfunction. International Journal of Molecular Sciences, 2020, 21, 9456.	1.8	61
7	<p>SGLT2 Inhibitors: A Novel Player in the Treatment and Prevention of Diabetic Cardiomyopathy</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4775-4788.	2.0	32
8	Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes and Endocrinology,the, 2020, 8, 582-593.	5.5	155
9	Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. JACC Basic To Translational Science, 2020, 5, 632-644.	1.9	419
10	SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165770.	1.8	62
11	CaMKII and GLUT1 in heart failure and the role of gliflozins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165729.	1.8	14
12	No Cytotoxic and Inflammatory Effects of Empagliflozin and Dapagliflozin on Primary Renal Proximal Tubular Epithelial Cells under Diabetic Conditions In Vitro. International Journal of Molecular Sciences, 2020, 21, 391.	1.8	10
13	The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion. Cellular Signalling, 2021, 77, 109825.	1.7	54
14	Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics, 2021, 11, 4502-4515.	4.6	61
15	The Role of SGLT2 Inhibitors in Vascular Aging. , 2021, 12, 1323.		22
16	Moxibustion Improves Chronic Heart Failure by Inhibiting Autophagy and Inflammation via Upregulation of mTOR Expression. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-12.	0.5	4
17	Role of Canagliflozin on function of CD34+ve endothelial progenitor cells (EPC) in patients with type 2 diabetes. Cardiovascular Diabetology, 2021, 20, 44.	2.7	26
18	Endothelial response to glucose: dysfunction, metabolism, and transport. Biochemical Society Transactions, 2021, 49, 313-325.	1.6	37

#	Article	IF	CITATIONS
19	Diabetes pathogenesis and management: the endothelium comes of age. Journal of Molecular Cell Biology, 2021, 13, 500-512.	1.5	21
20	Empagliflozin Disrupts a Tnfrsf12a-Mediated Feed Forward Loop That Promotes Left Ventricular Hypertrophy. Cardiovascular Drugs and Therapy, 2022, 36, 619-632.	1.3	12
21	Empagliflozin Effects on Pulmonary Artery Pressure in Patients With Heart Failure. Circulation, 2021, 143, 1673-1686.	1.6	129
22	Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. Journal of Clinical Medicine, 2021, 10, 2419.	1.0	40
23	Dapagliflozin, an SGLT2 inhibitor, ameliorates acetic acid-induced colitis in rats by targeting NFIºB/AMPK/NLRP3 axis. Inflammopharmacology, 2021, 29, 1169-1185.	1.9	32
24	Proposed mechanisms of systemic cardiovascular action of gliflosins. Reviews on Clinical Pharmacology and Drug Therapy, 2021, 19, 5-22.	0.2	0
25	Hypertension: Current trends and future perspectives. British Journal of Clinical Pharmacology, 2021, 87, 3721-3736.	1.1	18
26	Empagliflozin restores chronic kidney disease–induced impairment of endothelial regulation of cardiomyocyte relaxation and contraction. Kidney International, 2021, 99, 1088-1101.	2.6	37
27	SGLT2 inhibitors and the cardiac Na+/H+ exchanger-1: the plot thickens. Cardiovascular Research, 2021, 117, 2702-2704.	1.8	16
28	Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 2021, 73, 924-967.	7.1	359
29	Sodium Glucose Co-Transporter 2 Inhibitors Ameliorate Endothelium Barrier Dysfunction Induced by Cyclic Stretch through Inhibition of Reactive Oxygen Species. International Journal of Molecular Sciences, 2021, 22, 6044.	1.8	37
30	Role of Glucose-Lowering Medications in Erectile Dysfunction. Journal of Clinical Medicine, 2021, 10, 2501.	1.0	9
31	Could Sodium/Glucose Co-Transporter-2 Inhibitors Have Antiarrhythmic Potential in Atrial Fibrillation? Literature Review and Future Considerations. Drugs, 2021, 81, 1381-1395.	4.9	10
32	The Potential Roles of Osmotic and Nonosmotic Sodium Handling in Mediating the Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Heart Failure. Journal of Cardiac Failure, 2021, 27, 1447-1455.	0.7	14
33	Sodium-Glucose Cotransporter-2 Inhibitors in Vascular Biology: Cellular and Molecular Mechanisms. Cardiovascular Drugs and Therapy, 2021, 35, 1253-1267.	1.3	8
34	A Microfluidic Model Artery for Studying the Mechanobiology of Endothelial Cells. Advanced Healthcare Materials, 2021, 10, e2100508.	3.9	1
35	The glomerular filtration barrier: a structural target for novel kidney therapies. Nature Reviews Drug Discovery, 2021, 20, 770-788.	21.5	86
36	Vascular and metabolic effects of SGLT2i and GLP-1 in heart failure patients. Heart Failure Reviews, 2023, 28, 733-744.	1.7	19

#	Article	IF	CITATIONS
37	Cardiovascular effects of non-insulin glucose-lowering agents: a comprehensive review of trial evidence and potential cardioprotective mechanisms. Cardiovascular Research, 2022, 118, 2231-2252.	1.8	23
38	Endothelial function and dysfunction: Impact of sodium-glucose cotransporter 2 inhibitors. , 2021, 224, 107832.		26
39	Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. International Journal of Molecular Sciences, 2021, 22, 8786.	1.8	48
40	Potential Therapeutic Benefits of Sodium-Glucose Cotransporter 2 Inhibitors in the Context of Ischemic Heart Failure: A State-of-the-Art Review. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2022, 20, 90-102.	0.4	3
41	Cardiovascular Benefits from Gliflozins: Effects on Endothelial Function. Biomedicines, 2021, 9, 1356.	1.4	45
42	Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Scientific Reports, 2021, 11, 18384.	1.6	18
43	Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Scientific Reports, 2021, 11, 18772.	1.6	10
44	The Rationale and Evidence for SGLT2 Inhibitors as a Treatment for Nondiabetic Glomerular Disease. Complex Psychiatry, 2021, 1, 21-33.	1.3	11
45	Empagliflozin Relaxes Resistance Mesenteric Arteries by Stimulating Multiple Smooth Muscle Cell Voltage-Gated K+ (KV) Channels. International Journal of Molecular Sciences, 2021, 22, 10842.	1.8	13
46	Association between novel Glucose-Lowering drugs and risk of Asthma: A network Meta-Analysis of cardiorenal outcome trials. Diabetes Research and Clinical Practice, 2022, 183, 109080.	1.1	12
47	Differences in Endothelial Activation and Dysfunction Induced by Antiphospholipid Antibodies Among Groups of Patients With Thrombotic, Refractory, and Non-refractory Antiphospholipid Syndrome. Frontiers in Physiology, 2021, 12, 764702.	1.3	8
48	Current and future therapeutic perspective in chronic heart failure. Pharmacological Research, 2022, 175, 106035.	3.1	31
49	Empagliflozin reduces oxidative stress through inhibition of the novel inflammation/NHE/[Na+]c/ROS-pathway in human endothelial cells. Biomedicine and Pharmacotherapy, 2022, 146, 112515.	2.5	47
50	Dapagliflozin attenuates cholesterol overloading-induced injury in mice hepatocytes with type 2 diabetes mellitus (T2DM) via eliminating oxidative damages. Cell Cycle, 2022, 21, 641-654.	1.3	8
51	Extending the ambit of SGLT2 inhibitors beyond diabetes: a review of clinical and preclinical studies on non-diabetic kidney disease. Expert Review of Clinical Pharmacology, 2021, 14, 1513-1526.	1.3	3
52	Antioxidant Roles of SGLT2 Inhibitors in the Kidney. Biomolecules, 2022, 12, 143.	1.8	16
53	Cardiometabolic Syndrome and Vascular Calcification. Cardiometabolic Syndrome Journal, 2022, 2, 1.	1.0	1
54	Future perspective in diabetic patients with pre- and post-capillary pulmonary hypertension. Heart Failure Reviews, 2023, 28, 745-755.	1.7	3

#	Article	IF	CITATIONS
55	The Effect of Sodium-Dependent Glucose Cotransporter 2 Inhibitor Tofogliflozin on Neurovascular Coupling in the Retina in Type 2 Diabetic Mice. International Journal of Molecular Sciences, 2022, 23, 1362.	1.8	13
56	Effects of SGLT-2 Inhibitors on Vascular Endothelial Function and Arterial Stiffness in Subjects With Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Frontiers in Endocrinology, 2022, 13, 826604.	1.5	26
57	Empagliflozin does not reverse lipotoxicity-induced impairment in human myeloid angiogenic cell bioenergetics. Cardiovascular Diabetology, 2022, 21, 27.	2.7	1
58	Direct cardiac effects of SGLT2 inhibitors. Cardiovascular Diabetology, 2022, 21, 45.	2.7	62
59	Amelioration of endothelial dysfunction by sodium glucose coâ€ŧransporter 2 inhibitors: pieces of the puzzle explaining their cardiovascular protection. British Journal of Pharmacology, 2022, 179, 4047-4062.	2.7	16
60	Dapagliflozin attenuates high glucoseâ€induced endothelial cell apoptosis and inflammation through <scp>AMPK</scp> / <scp>SIRT1</scp> activation. Clinical and Experimental Pharmacology and Physiology, 2022, 49, 643-651.	0.9	18
61	Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. Journal of Molecular and Cellular Cardiology, 2022, 167, 17-31.	0.9	52
62	Effects of SGLT2 Inhibitors on Atherosclerosis: Lessons from Cardiovascular Clinical Outcomes in Type 2 Diabetic Patients and Basic Researches. Journal of Clinical Medicine, 2022, 11, 137.	1.0	15
63	The Effects of the New Therapeutic Treatments for Diabetes Mellitus on the Male Reproductive Axis. Frontiers in Endocrinology, 2022, 13, 821113.	1.5	9
64	Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants, 2022, 11, 799.	2.2	12
65	Dapagliflozin improves endothelial cell dysfunction by regulating mitochondrial production via the SIRT1/PGC-11± pathway in obese mice. Biochemical and Biophysical Research Communications, 2022, 615, 123-130.	1.0	9
66	Updated Pathways in Cardiorenal Continuum after Kidney Transplantation. Transplantology, 2022, 3, 156-168.	0.3	0
67	Glycaemia dynamics concepts before and after insulin. Biochemical Pharmacology, 2022, 201, 115092.	2.0	4
68	Empagliflozin-Metformin Combination Has Antioxidative and Anti-Inflammatory Properties that Correlate with Vascular Protection in Adults with Type 1 Diabetes. Journal of Diabetes Research, 2022, 2022, 1-9.	1.0	4
69	Impact of Sodium–Glucose Cotransporter 2 (SGLT2) Inhibitors on Arterial Stiffness and Vascular Aging—What Do We Know So Far? (A Narrative Review). Life, 2022, 12, 803.	1.1	11
70	Treatment of diabetes mellitus has borne much fruit in the prevention of cardiovascular disease. Journal of Diabetes Investigation, 2022, 13, 1472-1488.	1.1	2
71	SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Theranostics, 2022, 12, 5034-5050.	4.6	35
72	Differential In Vitro Effects of SGLT2 Inhibitors on Mitochondrial Oxidative Phosphorylation, Glucose Uptake and Cell Metabolism. International Journal of Molecular Sciences, 2022, 23, 7966.	1.8	8

#	Article	IF	Citations
73	Empagliflozin mitigates endothelial inflammation and attenuates endoplasmic reticulum stress signaling caused by sustained glycocalyx disruption. Scientific Reports, 2022, 12, .	1.6	10
74	Treatment of heart failure with preserved ejection fraction with SGLT2 inhibitors: new therapy standard?. Herz, 0, , .	0.4	1
75	Yaşlı hastalarda SGLT2 inhibitörü kullanımı: laboratuvar değerlendirilmesi. Journal of Medicine and Palliative Care:, 2022, 3, 142-146.	0.0	0
76	Renoprotective effects of dapagliflozin in an iron overload non-diabetic rat model. Advances in Medical Sciences, 2022, 67, 311-315.	0.9	1
77	Dapagliflozin induces apoptosis by downregulating cFILP _L and increasing cFILP _S instability in Caki‑1 cells. Oncology Letters, 2022, 24, .	0.8	4
78	Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines, 2022, 10, 2274.	1.4	22
79	Sodium-glucose cotransporter-2 inhibitors: A treatment option for recurrent vasovagal syndrome?. Metabolism: Clinical and Experimental, 2022, , 155309.	1.5	0
80	Sodium-Glucose Cotransporter-2 Inhibitors: Impact on Atherosclerosis and Atherosclerotic Cardiovascular Disease Events. Heart Failure Clinics, 2022, 18, 597-607.	1.0	2
81	Molecular Mechanisms Linking Empagliflozin to Renal Protection in the LLC-PK1 Model of Diabetic Nephropathy. Biomedicines, 2022, 10, 2983.	1.4	4
82	Dapagliflozinâ€Loaded Exosome Mimetics Facilitate Diabetic Wound Healing by HIFâ€1 <i>α</i> â€Mediated Enhancement of Angiogenesis. Advanced Healthcare Materials, 2023, 12, .	3.9	20
83	The effect of dapagliflozin on myocardial ischemia–reperfusion injury in diabetic rats. Canadian Journal of Physiology and Pharmacology, 0, , .	0.7	0
84	Gliflozins Have an Anti-Inflammatory Effect on Renal Proximal Tubular Epithelial Cells in a Diabetic and Inflammatory Microenvironment In Vitro. International Journal of Molecular Sciences, 2023, 24, 1811.	1.8	1
85	Canagliflozin inhibits inflammasome activation in diabetic endothelial cells– Revealing a novel calcium-dependent anti-inflammatory effect of canagliflozinÂon human diabetic endothelial cells. Biomedicine and Pharmacotherapy, 2023, 159, 114228.	2.5	1
86	Metformin and empagliflozin modulate monoamine oxidase-related oxidative stress and improve vascular function in human mammary arteries. Molecular and Cellular Biochemistry, 0, , .	1.4	2
87	SGLT2 Inhibitors May Restore Endothelial Barrier Interrupted by 25-Hydroxycholesterol. Molecules, 2023, 28, 1112.	1.7	2
88	SGLT2 inhibitor ameliorates endothelial dysfunction associated with the common <i>ALDH2</i> alcohol flushing variant. Science Translational Medicine, 2023, 15, .	5.8	12
89	Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Research Reviews, 2023, 86, 101884.	5.0	3
90	Clinical pharmacology of SGLT-2 inhibitors in heart failure. Expert Review of Clinical Pharmacology, 2023, 16, 149-160.	1.3	5

#	Article	IF	CITATIONS
91	The Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Empagliflozin Reverses Hyperglycemia-Induced Monocyte and Endothelial Dysfunction Primarily through Glucose Transport-Independent but Redox-Dependent Mechanisms. Journal of Clinical Medicine, 2023, 12, 1356.	1.0	7
92	Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Frontiers in Pharmacology, 0, 14, .	1.6	13
93	Analysis of the cardiac effects of sodium-glucose co-transporter 2 inhibitors in animals without diabetes and a clinical perspective. European Journal of Pharmacology, 2023, 945, 175626.	1.7	0
94	Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovascular Diabetology, 2023, 22, .	2.7	18
103	The anti-inflammatory and immunological properties of SGLT-2 inhibitors. Journal of Endocrinological Investigation, 2023, 46, 2445-2452.	1.8	5
105	SGLT2 Inhibitors in Aging-Related Cardiovascular Disease: A Review of Potential Mechanisms. American Journal of Cardiovascular Drugs, 0, , .	1.0	2