Crimean-Congo hemorrhagic fever in Europe: current s

Eurosurveillance

15,

DOI: 10.2807/ese.15.10.19504-en

Citation Report

#	Article	IF	CITATIONS
1	Ribavirin for Crimean-Congo hemorrhagic fever: systematic review and meta-analysis. BMC Infectious Diseases, 2010, 10, 207.	2.9	96
2	Travellers and viral haemorrhagic fevers: what are the risks?. International Journal of Antimicrobial Agents, 2010, 36, S26-S35.	2.5	29
3	Current treatment of Crimean–Congo hemorrhagic fever in children. Expert Review of Anti-Infective Therapy, 2010, 8, 911-918.	4.4	14
4	Current Status of Human Arboviral Diseases in Turkey. Vector-Borne and Zoonotic Diseases, 2011, 11, 731-741.	1.5	35
5	Laboratory diagnosis of Crimean–Congo hemorrhagic fever virus infections. Future Virology, 2011, 6, 831-841.	1.8	13
6	Europe's neglected infections of poverty. International Journal of Infectious Diseases, 2011, 15, e611-e619.	3.3	109
7	Inhibition of Hazara nairovirus replication by small interfering RNAs and their combination with ribavirin. Virology Journal, 2011, 8, 249.	3.4	25
8	Mice Orally Immunized with a Transgenic Plant Expressing the Glycoprotein of Crimean-Congo Hemorrhagic Fever Virus. Vaccine Journal, 2011, 18, 2031-2037.	3.1	63
9	Ribavirin for patients with Crimean–Congo haemorrhagic fever: a systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2011, 66, 1215-1222.	3.0	94
10	A randomised controlled trial of ribavirin in Crimean Congo haemorrhagic fever: ethical considerations. Journal of Medical Ethics, 2012, 38, 117-120.	1.8	16
11	First International External Quality Assessment of Molecular Detection of Crimean-Congo Hemorrhagic Fever Virus. PLoS Neglected Tropical Diseases, 2012, 6, e1706.	3.0	30
12	Impact of Climate Trends on Tick-Borne Pathogen Transmission. Frontiers in Physiology, 2012, 3, 64.	2.8	179
13	Ticks and tick-borne pathogens on the rise. Ticks and Tick-borne Diseases, 2012, 3, 115-116.	2.7	30
14	Review of Crimean Congo Hemorrhagic Fever Infection in Kosova in 2008 and 2009: Prolonged Viremias and Virus Detected in Urine by PCR. Vector-Borne and Zoonotic Diseases, 2012, 12, 800-804.	1.5	16
15	Parotitis associated with Crimean Congo hemorrhagic fever virus. Journal of Clinical Virology, 2012, 53, 159-161.	3.1	8
16	Leading infectious diseases problems in Turkey. Clinical Microbiology and Infection, 2012, 18, 1056-1067.	6.0	25
17	Diagnostic Assays for Crimean-Congo Hemorrhagic Fever. Emerging Infectious Diseases, 2012, 18, 1958-1965.	4.3	66
18	Prevalence of ixodid tick infestation of sheep in the Arasbaran region of Iran. Journal of Parasitic Diseases, 2012, 36, 230-233.	1.0	16

#	Article	IF	CITATIONS
19	Hazara virus infection is lethal for adult type I interferon receptor-knockout mice and may act as a surrogate for infection with the human-pathogenic Crimean–Congo hemorrhagic fever virus. Journal of General Virology, 2012, 93, 560-564.	2.9	52
20	Bacterial expression of Crimean-Congo hemorrhagic fever virus nucleoprotein and its evaluation as a diagnostic reagent in an indirect ELISA. Journal of Virological Methods, 2012, 179, 70-76.	2.1	34
21	Development of an indirect ELISA method for the parallel measurement of IgG and IgM antibodies against Crimean-Congo haemorrhagic fever (CCHF) virus using recombinant nucleoprotein as antigen. Journal of Virological Methods, 2012, 179, 335-341.	2.1	43
22	Species distribution and detection of Crimean Congo Hemorrhagic Fever Virus (CCHFV) in field-collected ticks in Ankara Province, Central Anatolia, Turkey. Experimental and Applied Acarology, 2012, 56, 75-84.	1.6	19
23	Crimean–Congo hemorrhagic fever in Iran. Antiviral Research, 2013, 100, 20-28.	4.1	51
24	The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Research, 2013, 98, 248-260.	4.1	108
25	Human defined antigenic region on the nucleoprotein of Crimean-Congo hemorrhagic fever virus identified using truncated proteins and a bioinformatics approach. Journal of Virological Methods, 2013, 193, 706-712.	2.1	16
26	Crimean–Congo hemorrhagic fever nosocomial infection in a immunosuppressed patient, Pakistan: Case report and virological investigation. Journal of Medical Virology, 2013, 85, 501-504.	5.0	17
27	Viral haemorrhagic fevers in healthcare settings. Journal of Hospital Infection, 2013, 83, 185-192.	2.9	66
28	Application of the pseudo-plaque assay for detection and titration of Crimean-Congo hemorrhagic fever virus. Journal of Virological Methods, 2013, 187, 26-31.	2.1	13
29	Pseudo-plaque reduction neutralization test (PPRNT) for the measurement of neutralizing antibodies to Crimean-Congo hemorrhagic fever virus. Virology Journal, 2013, 10, 6.	3.4	15
30	Ticks (Acari: Ixodida) infesting humans in the provinces of Kelkit Valley, a Crimean-congo hemorrhagic fever endemic region in Turkey. Experimental and Applied Acarology, 2013, 59, 507-515.	1.6	25
31	Crimean-Congo hemorrhagic fever: a comprehensive review. Veterinary World, 2013, 6, 812-817.	1.7	5
33	European Monitoring Plans for the management of Outbreak of Crimean Congo Haemorrhagic Fever (CCHF). Occupational Medicine & Health Affairs, 2013, 01, .	0.1	3
34	A Novel Vaccine against Crimean-Congo Haemorrhagic Fever Protects 100% of Animals against Lethal Challenge in a Mouse Model. PLoS ONE, 2014, 9, e91516.	2.5	107
35	Seroprevalance of Crimean–Congo haemorrhagic fever in Bulgarian livestock. Biotechnology and Biotechnological Equipment, 2014, 28, 540-542.	1.3	16
36	Diagnostic Testing for Hemorrhagic Fevers in Pakistan: 2007–2013. American Journal of Tropical Medicine and Hygiene, 2014, 91, 1243-1246.	1.4	13
37	An investigation of pulmonary findings of Crimean–Congo haemorrhagic fever patients. Turkish Journal of Medical Sciences, 2014, 44, 162-167.	0.9	6

#	Article	IF	CITATIONS
38	Arboviruses in southern Africa: are we missing something?. Future Virology, 2014, 9, 993-1008.	1.8	12
39	Detection of IgG antibody against Crimean-Congo haemorrhagic fever virus using ELISA with recombinant nucleoprotein antigens from genetically diverse strains. Epidemiology and Infection, 2014, 142, 2147-2154.	2.1	11
40	Antibody responses and viral load in patients with Crimean-Congo hemorrhagic fever: a comprehensive analysis during the early stages of the infection. Diagnostic Microbiology and Infectious Disease, 2014, 79, 31-36.	1.8	28
41	Sonographic Findings in Patients With Crimeanâ€Congo Hemorrhagic Fever. Journal of Ultrasound in Medicine, 2014, 33, 1999-2003.	1.7	9
42	Economic importance of ticks and their effective control strategies. Asian Pacific Journal of Tropical Disease, 2014, 4, S770-S779.	0.5	21
43	The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Research, 2014, 108, 104-128.	4.1	227
44	Global Warming Could Change the Spectrum of Viral Infections in Europe. Journal of Infectious Disease and Therapy, $2015, 03, .$	0.1	0
45	Identification of human linear B-cell epitope sites on the envelope glycoproteins of Crimean-Congo haemorrhagic fever virus. Epidemiology and Infection, 2015, 143, 1451-1456.	2.1	8
46	How a multidisciplinary â€~One Health' approach can combat the tick-borne pathogen threat in Europe. Future Microbiology, 2015, 10, 809-818.	2.0	38
47	Comparative analysis of the L, M, and S RNA segments of Crimean-Congo haemorrhagic fever virus isolates from southern Africa. Journal of Medical Virology, 2015, 87, 717-724.	5.0	7
49	Archaeology in the Era of Powassan and Expanding Tick-Borne Infection. Advances in Archaeological Practice, 2015, 3, 351-357.	1.2	0
50	Probable Crimean-Congo hemorrhagic fever virus transmission occurred after aerosol-generating medical procedures in Russia: nosocomial cluster. International Journal of Infectious Diseases, 2015, 33, 120-122.	3.3	56
51	Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 169-179.	2.3	68
52	Circulation of Crimean-Congo Hemorrhagic Fever Virus in the Former Yugoslav Republic of Macedonia Revealed by Screening of Cattle Sera Using a Novel Enzyme-linked Immunosorbent Assay. PLoS Neglected Tropical Diseases, 2015, 9, e0003519.	3.0	43
53	Diagnosis of Crimean-Congo hemorrhagic fever. Expert Review of Anti-Infective Therapy, 2015, 13, 555-566.	4.4	17
54	Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin. PLoS Pathogens, 2015, 11, e1004879.	4.7	61
55	Crimean-Congo Haemorrhagic Fever Virus, an Emerging and Re-Emerging Pathogen., 2015,, 977-996.		2
56	CCHF virus variants in Pakistan and Afghanistan: Emerging diversity and epidemiology. Journal of Clinical Virology, 2015, 67, 25-30.	3.1	28

#	Article	IF	CITATIONS
57	Crimean-Congo Hemorrhagic Fever. Laboratory Medicine, 2015, 46, 180-189.	1.2	94
58	The global distribution of Crimean-Congo hemorrhagic fever. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 503-513.	1.8	193
59	Epidemiological Survey of Crimean-Congo Hemorrhagic Fever (CCHF), a Fatal Infectious Disease in Khuzestan Province, Southwest Iran, During 1999 - 2015. Jundishapur Journal of Microbiology, 2016, 9, e30883.	0.5	17
60	Serological and Virological Evidence of Crimean-Congo Haemorrhagic Fever Virus Circulation in the Human Population of Borno State, Northeastern Nigeria. PLoS Neglected Tropical Diseases, 2016, 10, e0005126.	3.0	28
61	Sero-epidemiological survey of Crimean-Congo hemorrhagic fever virus in Tunisia. Parasite, 2016, 23, 10.	2.0	28
62	Diversity of viruses in Ixodes ricinus, and characterization of a neurotropic strain of Eyach virus. New Microbes and New Infections, 2016, 11, 71-81.	1.6	53
63	Sheep and goats as indicator animals for the circulation of CCHFV in the environment. Experimental and Applied Acarology, 2016, 68, 337-346.	1.6	42
64	Healthcare-associated Crimean-Congo haemorrhagic fever in Turkey, 2002–2014: a multicentre retrospective cross-sectional study. Clinical Microbiology and Infection, 2016, 22, 387.e1-387.e4.	6.0	50
66	Ectoparasitic Syndemics: Polymicrobial Tickâ€borne Disease Interactions in a Changing Anthropogenic Landscape. Medical Anthropology Quarterly, 2016, 30, 442-461.	1.4	8
67	Knowledge, attitude and practice of healthcare workers concerning Crimean-Congo hemorrhagic fever in Western Iran. Asian Pacific Journal of Tropical Biomedicine, 2016, 6, 546-550.	1.2	6
68	Viral haemorrhagic fever in children. Archives of Disease in Childhood, 2016, 101, 461-468.	1.9	7
69	The evaluation of abdominal findings in Crimean-Congo hemorrhagic fever. Abdominal Radiology, 2016, 41, 384-390.	2.1	6
70	A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Human Vaccines and Immunotherapeutics, 2016, 12, 519-527.	3.3	81
71	Microbiological Zoonotic Emerging Risks, Transmitted Between Livestock Animals and Humans (2007-2015). Transboundary and Emerging Diseases, 2017, 64, 1059-1070.	3.0	18
73	Global research trends of World Health Organization's top eight emerging pathogens. Globalization and Health, 2017, 13, 9.	4.9	144
74	The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Research, 2017, 144, 93-119.	4.1	159
75	What is a vector?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160085.	4.0	47
76	Potential impact of climate change on emerging vector-borne and other infections in the UK. Environmental Health, 2017, 16, 112.	4.0	65

#	Article	IF	CITATIONS
77	Bunyaviruses., 2018, , 1132-1135.e2.		0
78	Preparing clinicians for (re-)emerging arbovirus infectious diseases in Europe. Clinical Microbiology and Infection, 2018, 24, 229-239.	6.0	24
79	The fauna and perspective of rodentia ectoparasites in Iran relying on their roles within public health and veterinary characteristics. Journal of Parasitic Diseases, 2018, 42, 1-18.	1.0	5
80	Prevalence of tick-borne viruses in <i>lxodes ricinus </i> assessed by high-throughput real-time PCR. Pathogens and Disease, 2018, 76, .	2.0	28
81	Application of MALDI-TOF in Parasitology. , 2018, , 235-253.		2
82	Crimean–Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania. Frontiers in Veterinary Science, 2018, 5, 38.	2.2	11
83	Epitope-mapping of the glycoprotein from Crimean-Congo hemorrhagic fever virus using a microarray approach. PLoS Neglected Tropical Diseases, 2018, 12, e0006598.	3.0	22
84	Distribution of tick-borne diseases in Japan: Past patterns and implications for the future. Journal of Infection and Chemotherapy, 2018, 24, 499-504.	1.7	55
85	A case of Crimean-Congo haemorrhagic fever imported in Greece: Contact tracing and management of exposed healthcare workers. Journal of Infection Prevention, 2019, 20, 171-178.	0.9	4
86	T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. International Review of Cell and Molecular Biology, 2019, 342, 175-263.	3.2	6
87	Transportation capacity for patients with highly infectious diseases in Europe: a survey in 16 nations. Clinical Microbiology and Infection, 2019, 21, e1-e5.	6.0	11
88	â€~Characterisation of suspected Crimean-Congo Haemorrhagic Fever (CCHF) cases in a public sector hospital Islamabad'. Global Security: Health, Science and Policy, 2020, 5, 85-92.	1.6	1
89	The emerging tick-borne Crimean-Congo haemorrhagic fever virus: A narrative review. Travel Medicine and Infectious Disease, 2020, 37, 101871.	3.0	23
90	Comparative Ecology of Hyalomma lusitanicum and Hyalomma marginatum Koch, 1844 (Acarina:) Tj ETQq1 1 0	.784314 rg	gBT ₃ /Overlock
91	Enhancing Preparedness for Arbovirus Infections with a One Health Approach: The Development and Implementation of Multisectoral Risk Assessment Exercises. BioMed Research International, 2020, 2020, 1-10.	1.9	8
92	The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. Annual Review of Entomology, 2021, 66, 373-388.	11.8	67
93	Bacterial and viral zoonotic infections. Reviews in Medical Microbiology, 2021, Publish Ahead of Print,	0.9	3
94	Analysis of Epidemiological Situation on Crimean Hemorrhagic Fever in the Russian Federation in 2020 and Prognosis for 2021. Problemy Osobo Opasnykh Infektsii, 2021, , 17-22.	0.6	3

#	Article	IF	CITATIONS
95	Crimean-Congo Hemorrhagic Fever Virus in Asia, Africa and Europe. Microorganisms, 2021, 9, 1907.	3.6	54
96	Risk of Crimean Congo haemorrhagic fever virus (CCHFV) introduction and spread in CCHF-free countries in southern and Western Europe: A semi-quantitative risk assessment. One Health, 2021, 13, 100290.	3.4	15
97	Viral Hemorrhagic Fevers. , 2013, , 337-368.		1
98	Arthropod Vectors and Their Growing Importance in Europe. , 2011, , 259-282.		1
99	A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection. PLoS Neglected Tropical Diseases, 2017, 11, e0006013.	3.0	36
100	Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection. PLoS Neglected Tropical Diseases, 2017, 11, e0006149.	3.0	33
101	Host preferences support the prominent role of Hyalomma ticks in the ecology of Crimean-Congo hemorrhagic fever. PLoS Neglected Tropical Diseases, 2018, 12, e0006248.	3.0	44
102	Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses. PLoS ONE, 2016, 11, e0156637.	2.5	50
103	European survey on laboratory preparedness, response and diagnostic capacity for Crimean-Congo haemorrhagic fever, 2012. Eurosurveillance, 2014, 19, .	7.0	15
104	A perspective on emerging mosquito and phlebotomine-borne diseases in Europe. Eurosurveillance, 2010, 15, .	7.0	4
105	Current situation of Crimean Congo hemorrhagic fever (CCHF) in Anatolia and Balkan Peninsula. Turk Hijiyen Ve Deneysel Biyoloji Dergisi Turkish Bulletin of Hygiene and Experimental Biology, 2011, 68, 139-151.	0.2	13
106	Crimean-Congo Hemorrhagic Fever in Dubai, United Arab Emirates, 2010: Case Report. Iranian Red Crescent Medical Journal, 2016, 18, e38374.	0.5	15
107	Novel, In-House, SYBR Green Based One-Step rRT-PCR: Rapid and Accurate Diagnosis of Crimean-Congo Hemorrhagic Fever Virus in Suspected Patients From Iran. Jundishapur Journal of Microbiology, 2016, 9, e29246.	0.5	5
108	Clinical and Molecular Epidemiology of Crimean-Congo Hemorrhagic Fever in Humans in Uganda, 2013–2019. American Journal of Tropical Medicine and Hygiene, 2022, 106, 88-98.	1.4	9
109	Bunyaviruses., 2012,, 1102-1104.e2.		0
110	Evidence of Crimean-Congo Haemorrhagic Fever Virus Occurrence in Ixodi¬dae Ticks of Armenia. Iranian Journal of Arthropod-borne Diseases, 0, , .	0.8	2
111	Epizootiological Monitoring of Natural Focal Infections in the South of the European Part of the Russian Federation in 2017. Problemy Osobo Opasnykh Infektsii, 2019, , 45-49.	0.6	2
112	Ticks (Acari: Ixodidae) parasitizing migrating and local breeding birds in Finland. Experimental and Applied Acarology, 2022, 86, 145-156.	1.6	11

#	Article	IF	CITATIONS
113	Crimean-Congo hemorrhagic fever: a growing threat to Europe. Comptes Rendus - Biologies, 2022, 345, 17-36.	0.2	1
114	Epidemiological situation on Crimean-Congo Hemorrhagic Fever in the Russian Federation in 2021. Problemy Osobo Opasnykh Infektsii, 2022, , 6-11.	0.6	1
115	Crimean–Congo hemorrhagic fever in the Arab world: A systematic review. Frontiers in Veterinary Science, 0, 9, .	2.2	7
116	First serological evidence of Crimean–Congo haemorrhagic fever virus in transhumant bovines in Italy. Transboundary and Emerging Diseases, 2022, 69, 4022-4027.	3.0	5
117	Bunyaviruses., 2023,, 1152-1155.e3.		0
118	Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus. Nature Communications, 2022, 13, .	12.8	6
119	The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African–Western Palearctic. Microorganisms, 2023, 11, 158.	3.6	6
120	Distribution pattern of Crimean–Congo Hemorrhagic Fever in Asia and the Middle East. Frontiers in Public Health, 0, 11, .	2.7	7
121	Evaluation of Nucleoprotein-Based Enzyme-Linked Immunosorbent Assay for Serodiagnosis of Acute Crimeanâ€"Congo Hemorrhagic Fever Virus Infections in a Turkish Population. Vector-Borne and Zoonotic Diseases, 2023, 23, 44-53.	1.5	0
122	Serological Cross-Reactivity in Zoonotic Flaviviral Infections of Medical Importance. Antibodies, 2023, 12, 18.	2.5	5
123	Arthropod vectors of disease agents: Their role in public and veterinary health in Turkiye and their control measures. Acta Tropica, 2023, 243, 106893.	2.0	8
124	Epidemic intelligence data of Crimean-Congo haemorrhagic fever, European Region, 2012 to 2022: a new opportunity for risk mapping of neglected diseases. Eurosurveillance, 2023, 28, .	7.0	3
125	Crimean-Congo Hemorrhagic Fever Virus, an Emerging and Re-emerging Pathogen of Public Health Concern., 2023,, 1-27.		0
126	Geographical distribution and pathogenesis of ticks and tick-borne viral diseases. Frontiers in Microbiology, 0, 14 , .	3.5	3
127	The Spatial Distribution of Crimean–Congo Haemorrhagic Fever and Its Potential Vectors in Europe and Beyond. Insects, 2023, 14, 771.	2.2	0
128	The increasing complexity of arbovirus serology: An in-depth systematic review on cross-reactivity. PLoS Neglected Tropical Diseases, 2023, 17, e0011651.	3.0	2
129	Crimean-Congo Hemorrhagic Fever Virus: An Emerging and Re-emerging Pathogen of Public Health Concern., 2023,, 1465-1491.		0
130	Current Status and Challenges Associated with Tick-Borne Pathogens and Diseases: Where Do We Stand?. Pathogens, 2023, 12, 1271.	2.8	0

ARTICLE IF CITATIONS

Microbial diversity of ticks and a novel typhus group <i>Rickettsia</i> species (<i>Rickettsiales</i>) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 5