Large waterborne Campylobacter outbreak: use of mult contamination of the drinking water supply system, No

Eurosurveillance

25,

DOI: 10.2807/1560-7917.es.2020.25.35.2000011

Citation Report

#	Article	IF	Citations
1	Genomic and Phenotypic Characterisation of Campylobacter jejuni Isolates From a Waterborne Outbreak. Frontiers in Cellular and Infection Microbiology, 2020, 10, 594856.	3.9	5
2	Investigating Major Recurring Campylobacter jejuni Lineages in Luxembourg Using Four Core or Whole Genome Sequencing Typing Schemes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 608020.	3.9	12
3	Characteristics of hospitalized patients during a large waterborne outbreak of Campylobacter jejuni in Norway. PLoS ONE, 2021, 16, e0248464.	2.5	11
4	Risk assessment of parasites in Norwegian drinking water: opportunities and challenges. Food and Waterborne Parasitology, 2021, 22, e00112.	2.7	2
5	Clinical features of gastroenteritis during a large waterborne Campylobacter outbreak in AskÃ,y, Norway. Infection, 2022, 50, 343-354.	4.7	1
6	The effectiveness of syndromic surveillance for the early detection of waterborne outbreaks: a systematic review. BMC Infectious Diseases, 2021, 21, 696.	2.9	4
7	The effect of environmental conditions on the occurrence of <i>Campylobacter jejuni</i> and <i>Campylobacter coli</i> in wastewater and surface waters. Journal of Applied Microbiology, 2022, 132, 725-735.	3.1	6
8	Identifying challenges in drinking water supplies: assessment of boil water advisories in Norway (2008–2019). Journal of Water and Health, 2021, 19, 872-884.	2.6	1
9	Waterborne Isolates of Campylobacter jejuni Are Able to Develop Aerotolerance, Survive Exposure to Low Temperature, and Interact With Acanthamoeba polyphaga. Frontiers in Microbiology, 2021, 12, 730858.	3.5	5
10	The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens, 2021, 10, 1391.	2.8	21
11	Modelling the behaviour of chlorine within a drinking water distribution system following a microbial contamination event. Urban Water Journal, $0, 1-7$.	2.1	0
12	Overview of methodologies for the culturing, recovery and detection of <i>Campylobacter</i> International Journal of Environmental Health Research, 2023, 33, 307-323.	2.7	7
13	Immunocapture Magnetic Beads Enhanced the LAMP-CRISPR/Cas12a Method for the Sensitive, Specific, and Visual Detection of Campylobacter jejuni. Biosensors, 2022, 12, 154.	4.7	16
19	Alternatives to Antibiotics in Semen Extenders Used in Artificial Insemination. , 0, , .		1
20	Global epidemiology of campylobacteriosis and the impact of COVID-19. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	3.9	18
21	Genetic relatedness, virulence, and drug susceptibility of Campylobacter isolated from water and wild birds. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	3.9	6
22	Subtyping of Campylobacter coli isolated from raw poultry meat in retail markets using amplified intergenic locus polymorphism - A novel rapid subtyping method. Journal of Microbiological Methods, 2022, , 106662.	1.6	1
23	Molecular Prevalence and Risk Factors of Campylobacter Infection in Puppies in the Nairobi Metropolitan Region, Kenya. Veterinary Medicine International, 2023, 2023, 1-7.	1.5	1

#	Article	IF	CITATIONS
24	Detecting Enteric Pathogens in Low-Risk Drinking Water in Dhaka, Bangladesh: An Assessment of the WHO Water Safety Categories. Tropical Medicine and Infectious Disease, 2023, 8, 321.	2.3	1
25	Surveillance of wild animals carrying infectious agents based on high-throughput screening platform in the Republic of Korea. BMC Veterinary Research, 2023, 19, .	1.9	0
26	Genotyping of Campylobacter jejuni and prediction tools of its antimicrobial resistance. Folia Microbiologica, 2024, 69, 207-219.	2.3	0
27	Systematic Review and Meta-Analysis of Campylobacter Species Contamination in Poultry, Meat, and Processing Environments in South Korea. Microorganisms, 2023, 11, 2722.	3.6	0
28	The impact on primary care of a large waterborne campylobacter outbreak in Norway: a controlled observational study. Scandinavian Journal of Primary Health Care, 2024, 42, 187-194.	1.5	0
29	A Community Waterborne Salmonella Bovismorbificans Outbreak in Greece. International Journal of Environmental Research and Public Health, 2024, 21, 167.	2.6	0
30	Viable Campylobacter jejuni on Eggshells and Its Potential to Cross-contaminate Egg White and Yolk When Using a Manual Separation Technique, Determined by Culture and Propidium Monoazide (PMA) qPCR. Journal of Food Protection, 2024, 87, 100246.	1.7	0
31	Analysis of two cross-contamination cases of <i>Campylobacter jejuni</i> foodborne disease in fragile subjects in the territory of a Local Health Authority in Tuscany, Italy. Italian Journal of Food Safety, 0, , .	0.8	0