A numerical approach for 2-D Sutterby fluid-flow bound inclined magnetic field and thermal radiation impacts

Thermal Science 25, 1975-1987 DOI: 10.2298/tsci191207186s

Citation Report

#	Article	IF	CITATIONS
1	A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics. Symmetry, 2020, 12, 1628.	1.1	116
2	The Effects of Activation Energy and Thermophoretic Diffusion of Nanoparticles on Steady Micropolar Fluid along with Brownian Motion. Advances in Materials Science and Engineering, 2020, 2020, 1-12.	1.0	72
3	Radiative MHD Sutterby Nanofluid Flow Past a Moving Sheet: Scaling Group Analysis. Mathematics, 2020, 8, 1430.	1.1	16
4	Study on the oblique water entry impact performance of AUV under different launch conditions based on coupled FEM-ALE method. AIP Advances, 2020, 10, .	0.6	8
5	Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller–Box and BVP4C method. Engineering With Computers, 2022, 38, 3705-3719.	3.5	62
6	Evolutionary Integrated Heuristic with Gudermannian Neural Networks for Second Kind of Lane–Emden Nonlinear Singular Models. Applied Sciences (Switzerland), 2021, 11, 4725.	1.3	25
7	Analysis of the nanoscale heat transport and Lorentz force based on the time-dependent Cross nanofluid. Engineering With Computers, 2023, 39, 2089-2108.	3.5	14
8	An Analysis for Variable Physical Properties Involved in the Nano-Biofilm Transportation of Sutterby Fluid across Shrinking/Stretching Surface. Nanomaterials, 2022, 12, 599.	1.9	23
9	A three-dimensional flow of an Oldroyd-B liquid with magnetic field and radiation effects: An application of thermophoretic particle deposition. International Communications in Heat and Mass Transfer, 2022, 134, 106007.	2.9	23
10	Entropy Minimization on Sutterby Nanofluid past a Stretching Surface with Swimming of Gyrotactic Microorganisms and Nanoparticles. Mathematical Problems in Engineering, 2022, 2022, 1-17.	0.6	4
11	Darcy resistance flow of Sutterby nanofluid with microorganisms with applications of nano-biofuel cells. Scientific Reports, 2022, 12, 7514.	1.6	20
12	Numerical analysis of Cattaneo–Christov heat flux model over magnetic couple stress Casson nanofluid flow by Lavenberg–Marquard backpropagated neural networks. Waves in Random and Complex Media, 0, , 1-28.	1.6	12
13	Hydrogen energy storage optimization in solar-HVAC using Sutterby nanofluid via Koo-Kleinstreuer and Li (KKL) correlations model: A solar thermal application. International Journal of Hydrogen Energy, 2022, 47, 18877-18891.	3.8	31
14	Insights of Heat and Mass Transfer in Magneto-Mixed Convective Sisko Nanofluid over a Wedge with Viscous Dissipation. Mathematical Problems in Engineering, 2022, 2022, 1-13.	0.6	2
15	A design of an intelligent computing networks to study impacts of porous dissipation and slip for boundary layer flow along Darcy-Brinkman porous media. International Communications in Heat and Mass Transfer, 2022, 135, 106127.	2.9	9
16	On Thermal Distribution for Darcy–Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface. Nanomaterials, 2022, 12, 1834.	1.9	8
17	Knacks of neuro-computing to study the unsteady squeezed flow of MHD carbon nanotube with entropy generation. International Communications in Heat and Mass Transfer, 2022, 135, 106140.	2.9	12
18	Heat Transfer Analysis on Carboxymethyl Cellulose Water-Based Cross Hybrid Nanofluid Flow with Entropy Generation. Journal of Nanomaterials, 2022, 2022, 1-11.	1.5	18

#	Article	IF	CITATIONS
19	Effect of nanospray on hydrodynamic cylindrical film flow of Sutterby–Casson nanoliquids: A renewable energy application. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892211059.	1.4	4
20	Entropy minimization in Darcy Forchheimer on Sutterby nanofluid past a stretching surface with swimming of gyrotactic microorganisms. Waves in Random and Complex Media, 0, , 1-24.	1.6	5
21	A fractional order numerical study for the influenza disease mathematical model. AEJ - Alexandria Engineering Journal, 2023, 65, 615-626.	3.4	12
22	Supervised neural learning for the predator-prey delay differential system of Holling form-III. AIMS Mathematics, 2022, 7, 20126-20142.	0.7	3
23	Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses. Informatics in Medicine Unlocked, 2022, 32, 101028.	1.9	4
24	Prediction of thermal and energy transport of MHD Sutterby hybrid nanofluid flow with activation energy using Group Method of Data Handling (GMDH). Computational and Applied Mathematics, 2022, 41, .	1.0	3
25	MHD mixed convective stagnation point flow of nanofluid past a permeable stretching sheet with nanoparticles aggregation and thermal stratification. Scientific Reports, 2022, 12, .	1.6	13
26	The radiative flow of the thin-film Maxwell hybrid nanofluids on an inclined plane in a porous space. Frontiers in Energy Research, 0, 10, .	1.2	3
27	Thermal Radiation Energy Performance on Stagnation-Point Flow in the Presence of Base Fluids Ethylene Glycol and Water over Stretching Sheet with Slip Boundary Condition. Energies, 2022, 15, 7965.	1.6	2
28	A Significant Role of Activation Energy and Fourier Flux on the Quadratically Radiated Sphere in Low and High Conductivity of Hybrid Nanoparticles. Symmetry, 2022, 14, 2335.	1.1	6
29	Numerical Computation of SEIR Model for the Zika Virus Spreading. Computers, Materials and Continua, 2023, 75, 2155-2170.	1.5	1
30	Theoretical analysis of induced MHD Sutterby fluid flow with variable thermal conductivity and thermal slip over a stretching cylinder. AIMS Mathematics, 2023, 8, 10146-10159.	0.7	17
31	Thermodynamic study of radiative chemically reactive flow of induced MHD sutterby nanofluid over a nonlinear stretching cylinder. AEJ - Alexandria Engineering Journal, 2023, 70, 179-189.	3.4	21
32	Effect of Cattaneo-Christov heat flux case on Darcy-Forchheimer flowing of Sutterby nanofluid with chemical reactive and thermal radiative impacts. Case Studies in Thermal Engineering, 2023, 42, 102737.	2.8	21
33	Chemically reactive hybrid nanofluid flow past a Riga plate with nonlinear thermal radiation and a variable heat source/sink. Frontiers in Materials, 0, 10, .	1.2	0
34	Mohand homotopy transform scheme for the numerical solution of fractional Kundu–Eckhaus and coupled fractional Massive Thirring equations. Scientific Reports, 2023, 13, .	1.6	7