A comparative study between nano-cadmium oxide and polyethylene as gamma rays shielding composites

Nuclear Technology and Radiation Protection 35, 42-49 DOI: 10.2298/ntrp2001042a

Citation Report

#	Article	IF	CITATIONS
1	Fast and thermal neutrons attenuation through micro-sized and nano-sized CdO reinforced HDPE composites. Radiation Physics and Chemistry, 2021, 180, 109245.	1.4	23
2	Gamma attenuation through nano lead - nano copper PVC composites. Nuclear Technology and Radiation Protection, 2021, 36, 50-59.	0.3	24
3	Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceramics International, 2021, 47, 19651-19658.	2.3	42
4	Experimental and Theoretical Study of Radiation Shielding Features of CaO-K2O-Na2O-P2O5 Glass Systems. Materials, 2021, 14, 3772.	1.3	59
5	Analysis of particle size on mass dependent attenuation capability of bulk and nanoparticle PbO radiation shields. Results in Physics, 2021, 26, 104458.	2.0	29
6	Enhancement of Bentonite Materials with Cement for Gamma-Ray Shielding Capability. Materials, 2021, 14, 4697.	1.3	24
7	Experimental Investigation of Radiation Shielding Competence of Bi2O3-CaO-K2O-Na2O-P2O5 Glass Systems. Materials, 2021, 14, 5061.	1.3	33
8	Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nuclear Engineering and Technology, 2022, 54, 1456-1463.	1.1	45
9	Effect of hematite and iron slag as aggregate replacement on thermal, mechanical, and gamma-radiation shielding properties of concrete. Construction and Building Materials, 2021, 310, 125225.	3.2	33
10	Gamma radiation shielding properties of recycled polyvinyl chloride composites reinforced with micro/nano-structured PbO and CuO particles. Physica Scripta, 2021, 96, 125316.	1.2	20
11	Effects of different nano size and bulk WO3 enriched by HDPE composites on attenuation of the X-ray narrow spectrum. Nuclear Technology and Radiation Protection, 2021, 36, 315-328.	0.3	8
12	Radiation Attenuation Properties of Novel Glass System Using Experimental and Geant4 Simulation. SSRN Electronic Journal, 0, , .	0.4	1
13	Novel nanocomposites based on polyvinyl alcohol and molybdenum nanoparticles for Gamma irradiation shielding. Optics and Laser Technology, 2022, 156, 108560.	2.2	14
14	Structure, Mössbauer, electrical, and Î ³ -ray attenuation-properties of magnesium zinc ferrite synthesized co-precipitation method. Scientific Reports, 2022, 12, .	1.6	8
15	Effect of PbO incorporation with different particle size on X-ray attenuation of polystyrene. Nuclear Technology and Radiation Protection, 2022, 37, 18-30.	0.3	9
16	Effect of PbO-nanoparticles on dimethyl polysiloxane for use in radiation shielding applications. Scientific Reports, 2022, 12, .	1.6	18
17	Attenuation parameters of HDPE filled with different nano-size and bulk WO3 for X-ray shielding applications. European Physical Journal Plus, 2022, 137, .	1.2	15
18	A New Environmentally Friendly Mortar from Cement, Waste Marble and Nano Iron Slag as Radiation Shielding. Materials, 2023, 16, 2541.	1.3	1

#	Article	IF	CITATIONS
19	Enhancing the Gamma-Radiation-Shielding Properties of Gypsum–Lime–Waste Marble Mortars by Incorporating Micro- and Nano-PbO Particles. Materials, 2023, 16, 1577.	1.3	7
20	A comparative neutron and gamma-ray radiation shielding investigation of molybdenum and boron filled polymer composites. Applied Radiation and Isotopes, 2023, 194, 110731.	0.7	14
21	The finite size effect on the surface structure and thermal properties of nanostructured natural pumice. Advances in Materials and Processing Technologies, 0, , 1-13.	0.8	0
22	Comparisons of enhanced thermal neutron―and <scp>gammaâ€shielding</scp> properties in <scp>UHMWPE</scp> composites containing <scp>surfaceâ€treated Sm₂O₃</scp> and <scp>Cd₂O₃</scp> particles. Polymers for Advanced Technologies, 2023, 34, 2394-2406.	1.6	2

CITATION REPORT