Determinants for Sustained Use of an Activity Tracker:

JMIR MHealth and UHealth 5, e164

DOI: 10.2196/mhealth.7311

Citation Report

#	Article	IF	CITATIONS
1	Habitual exercise instigation (vs. execution) predicts healthy adults' exercise frequency Health Psychology, 2016, 35, 69-77.	1.6	98
2	Web Support for Weight-Loss Interventions: PREDIRCAM2 Clinical Trial Baseline Characteristics and Preliminary Results. Diabetes Technology and Therapeutics, 2018, 20, 380-385.	4.4	3
3	Factors Influencing Sustained Engagement with ECG Self-Monitoring: Perspectives from Patients and Health Care Providers. Applied Clinical Informatics, 2018, 09, 772-781.	1.7	22
4	Continued use of wearables for wellbeing with a cultural probe. Service Industries Journal, 2019, 39, 1140-1166.	8.3	15
5	Daily Physical Activity Classification using a Head-mounted device., 2019,,.		1
6	Empowering Diabetes Self-Management Through Technology and Nurse Health Coaching. The Diabetes Educator, 2019, 45, 586-595.	2.5	15
7	Real world usage characteristics of a novel mobile health self-monitoring device: Results from the Scanadu Consumer Health Outcomes (SCOUT) Study. PLoS ONE, 2019, 14, e0215468.	2.5	11
8	The Effects of a Mobile Wellness Intervention with Fitbit Use and Goal Setting for Workers. Telemedicine Journal and E-Health, 2019, 25, 1115-1122.	2.8	15
9	Feasibility of smart wristbands for continuous monitoring during pregnancy and one month after birth. BMC Pregnancy and Childbirth, 2019, 19, 34.	2.4	56
10	Current perspectives of physical activity in cystic fibrosis. Expert Review of Respiratory Medicine, 2019, 13, 13-22.	2.5	15
11	A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients With Heart Disease Using Activity Tracker Data. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 878-884.	6.3	45
12	Patients' experiences with commercially available activity trackers embedded in physiotherapy treatment: a qualitative study. Disability and Rehabilitation, 2020, 42, 3284-3292.	1.8	19
13	Abandonment of personal quantification: A review and empirical study investigating reasons for wearable activity tracking attrition. Computers in Human Behavior, 2020, 102, 223-237.	8.5	101
14	Using Smartphones to Capture Novel Recovery Metrics After Cancer Surgery. JAMA Surgery, 2020, 155, 123.	4.3	71
16	Factors influencing user's adherence to physical activity applications: A scoping literature review and future directions. International Journal of Medical Informatics, 2020, 134, 104039.	3.3	45
17	Usability of a Wrist-Worn Smartwatch in a Direct-to-Participant Randomized Pragmatic Clinical Trial. Digital Biomarkers, 2020, 3, 176-184.	4.4	17
18	Succeeding with prolonged usage of consumer-based activity trackers in clinical studies: a mixed methods approach. BMC Public Health, 2020, 20, 1300.	2.9	11
19	Validity of a Smart-Glasses-Based Step-Count Measure during Simulated Free-Living Conditions. Information (Switzerland), 2020, 11, 404.	2.9	2

#	Article	IF	CITATIONS
20	The Role of Self-Regulation in the Effect of Self-Tracking of Physical Activity and Weight on BMI. Journal of Technology in Behavioral Science, 2020, 5, 206-214.	2.3	1
21	From panopticon to heautopticon: A new form of surveillance introduced by quantifiedâ€self practices. Information Systems Journal, 2020, 30, 940-976.	6.9	30
22	Leveraging technology to move more and sit less. Progress in Cardiovascular Diseases, 2021, 64, 55-63.	3.1	4
23	Rethinking Wearable Activity Trackers as Assistive Technologies: A Qualitative Study on Long-Term Use. , 0, , .		3
24	Habit Formation in Wearable Activity Tracker Use Among Older Adults: Qualitative Study. JMIR MHealth and UHealth, 2021, 9, e22488.	3.7	30
25	Measuring Daily Compliance With Physical Activity Tracking in Ambulatory Surgery Patients: Comparative Analysis of Five Compliance Criteria. JMIR MHealth and UHealth, 2021, 9, e22846.	3.7	5
26	Usability and Preliminary Effectiveness of a Preoperative mHealth App for People Undergoing Major Surgery: Pilot Randomized Controlled Trial. JMIR MHealth and UHealth, 2021, 9, e23402.	3.7	19
27	Annoyed to Discontinue: Factors Influencing (Dis)Continuance of Using Activity Tracking Wearables. Lecture Notes in Computer Science, 2021, , 372-389.	1.3	0
28	Wie körpernahe und implantierte Systeme die Medizin und die Gesundheitsversorgung verädern. , 2021, , 75-88.		0
29	A qualitative analysis of barriers and facilitators to reducing sedentary time in adults with chronic low back pain. BMC Public Health, 2021, 21, 215.	2.9	6
30	Associations Between Digital Health Intervention Engagement, Physical Activity, and Sedentary Behavior: Systematic Review and Meta-analysis. Journal of Medical Internet Research, 2021, 23, e23180.	4.3	48
31	Predictors and Outcomes of Digital Weighing and Activity Tracking Lapses Among Young Adults During Weight Gain Prevention. Obesity, 2021, 29, 698-705.	3.0	1
33	Phenotypes of engagement with mobile health technology for heart rhythm monitoring. JAMIA Open, 2021, 4, ooab043.	2.0	8
34	Delivery Approaches Within Exercise Referral Schemes: A Survey of Current Practice in England. Journal of Physical Activity and Health, 2021, 18, 357-373.	2.0	4
35	A Review on Strategies for Data Collection, Reflection, and Communication in Eating Disorder Apps. , 2021, , .		13
36	Physical activity patterns, adherence to using a wearable activity tracker during a 12-week period and correlation between self-reported function and physical activity in working age individuals with hip and/or knee osteoarthritis. BMC Musculoskeletal Disorders, 2021, 22, 450.	1.9	11
37	Orthopaedic Surgeon Physiological Indicators of Strain as Measured by a Wearable Fitness Device. Journal of the American Academy of Orthopaedic Surgeons, The, 2021, Publish Ahead of Print, e1378-e1386.	2.5	5
38	Defining Valid Activity Monitor Data: A Multimethod Analysis of Weight-Loss Intervention Participants' Barriers to Wear and First 100 Days of Physical Activity. Informatics, 2021, 8, 39.	3.9	11

#	ARTICLE	IF	CITATIONS
39	The Association Between Logging Steps Using a Website, App, or Fitbit and Engaging With the 10,000 Steps Physical Activity Program: Observational Study. Journal of Medical Internet Research, 2021, 23, e22151.	4.3	8
40	Comparing Methods to Identify Wear-Time Intervals for Physical Activity With the Fitbit Charge 2. Journal of Aging and Physical Activity, 2021, 29, 529-535.	1.0	10
41	Monitoring Patients Reported Outcomes after Valve Replacement Using Wearable Devices: Insights on Feasibility and Capability Study: Feasibility Results. International Journal of Environmental Research and Public Health, 2021, 18, 7171.	2.6	7
42	The Impact of Mindset on Self-Tracking Experience. Frontiers in Digital Health, 2021, 3, 676742.	2.8	5
43	Who is more likely to adopt and comply with the electronic patient-reported outcome measure (ePROM) mobile application? A real-world study with cancer patients undergoing active treatment. Supportive Care in Cancer, 2022, 30, 659-668.	2.2	6
44	STEPS to Enhance Physical Activity After Hematopoietic Cell Transplantation for Multiple Myeloma. Cancer Nursing, 2022, 45, 211-223.	1.5	6
45	Innovation in Pain Rehabilitation Using Co-Design Methods During the Development of a Relapse Prevention Intervention: Case Study. Journal of Medical Internet Research, 2021, 23, e18462.	4.3	15
46	Fitbit wear-time and patterns of activity in cancer survivors throughout a physical activity intervention and follow-up: Exploratory analysis from a randomised controlled trial. PLoS ONE, 2020, 15, e0240967.	2.5	26
47	Evaluation of Clinical Outcomes and Simultaneous Digital Tracking of Daily Physical Activity, Heart Rate, and Inhalation Behavior in Patients With Pulmonary Arterial Hypertension Treated With Inhaled Iloprost: Protocol for the Observational VENTASTEP Study. JMIR Research Protocols, 2019, 8, e12144.	1.0	6
48	PATHway-I: Feasibility, acceptability and clinical effectiveness of a technology enabled cardiac rehabilitation platform. A randomized controlled trial. (Preprint). Journal of Medical Internet Research, 2020, 22, e14221.	4.3	24
49	The Demographic Representativeness and Health Outcomes of Digital Health Station Users: Longitudinal Study. Journal of Medical Internet Research, 2020, 22, e14977.	4.3	11
50	Patterns in Weight and Physical Activity Tracking Data Preceding a Stop in Weight Monitoring: Observational Analysis. Journal of Medical Internet Research, 2020, 22, e15790.	4.3	16
51	Remote Patient Monitoring Technologies for Predicting Chronic Obstructive Pulmonary Disease Exacerbations: Review and Comparison. JMIR MHealth and UHealth, 2020, 8, e16147.	3.7	21
52	Low-Cost Consumer-Based Trackers to Measure Physical Activity and Sleep Duration Among Adults in Free-Living Conditions: Validation Study. JMIR MHealth and UHealth, 2020, 8, e16674.	3.7	37
53	Health Gain, Cost Impacts, and Cost-Effectiveness of a Mass Media Campaign to Promote Smartphone Apps for Physical Activity: Modeling Study. JMIR MHealth and UHealth, 2020, 8, e18014.	3.7	11
54	Patterns of Fitbit Use and Activity Levels Throughout a Physical Activity Intervention: Exploratory Analysis from a Randomized Controlled Trial. JMIR MHealth and UHealth, 2018, 6, e29.	3.7	98
55	Wearable Activity Tracker Use Among Australian Adolescents: Usability and Acceptability Study. JMIR MHealth and UHealth, 2018, 6, e86.	3.7	82
56	Technology Adoption, Motivational Aspects, and Privacy Concerns of Wearables in the German Running Community: Field Study. JMIR MHealth and UHealth, 2018, 6, e201.	3.7	31

#	Article	IF	CITATIONS
57	The Use of Wearable Activity Trackers Among Older Adults: Focus Group Study of Tracker Perceptions, Motivators, and Barriers in the Maintenance Stage of Behavior Change. JMIR MHealth and UHealth, 2019, 7, e9832.	3.7	133
58	Validation of Zulu Watch against Polysomnography and Actigraphy for On-Wrist Sleep-Wake Determination and Sleep-Depth Estimation. Sensors, 2021, 21, 76.	3.8	22
59	Acceptability and Usability of a Wearable Activity Tracker and Application Among Inactive Adolescent Girls. Physical Activity and Health, 2020, 4, 52-61.	1.6	9
60	Construct validity and responsiveness of the Rapid Assessment of Physical Activity in adults living with HIV. Archives of Rehabilitation Research and Clinical Translation, 2021, 3, 100164.	0.9	4
67	Why Would You? Looking into Applicable Motives to Use Life-Logging. Advances in Intelligent Systems and Computing, 2020, , 531-543.	0.6	0
68	Apprehensions about Excessive Belief in Digital Therapeutics: Points of Concern Excluding Merits. Journal of Korean Medical Science, 2020, 35, e373.	2.5	9
74	An evaluation of mHealth adoption and health self-management in emerging adulthood. AMIA Annual Symposium proceedings, 2019, 2019, 1021-1030.	0.2	1
75	Predicting Participant Compliance With Fitness Tracker Wearing and Ecological Momentary Assessment Protocols in Information Workers: Observational Study. JMIR MHealth and UHealth, 2021, 9, e22218.	3.7	12
76	\hat{a} €œ <i>I shy away from them because they are very identifiable</i> a€• A qualitative study exploring user and non-user's perceptions of wearable activity trackers. Digital Health, 2021, 7, 205520762110549.	1.8	1
80	Stride Velocity 95th Centile: Insights into Gaining Regulatory Qualification of the First Wearable-Derived Digital Endpoint for use in Duchenne Muscular Dystrophy Trials. Journal of Neuromuscular Diseases, 2022, 9, 335-346.	2.6	25
81	An Evaluation of a Commercialized mHealth Intervention to Promote Physical Activity in the Workplace. Frontiers in Public Health, 2022, 10, 740350.	2.7	3
82	A Wearable Activity Tracker Intervention With and Without Weekly Behavioral Support Emails to Promote Physical Activity Among Women Who Are Overweight or Obese: Randomized Controlled Trial. JMIR MHealth and UHealth, 2021, 9, e28128.	3.7	6
83	Correlation between socio-demographic factors and adoption and use of wearable activity trackers in online American older adults. Educational Gerontology, 2023, 49, 1-11.	1.3	3
84	Exploring the effect of an eHealth intervention on women's physical activity: Design and rationale for a randomized controlled trial. Digital Health, 2022, 8, 205520762210931.	1.8	3
85	Wearables for Health Promotion: An Interdisciplinary Review. SSRN Electronic Journal, 0, , .	0.4	0
86	A Comparative Utility Score for Digital Health Tools. Journal of Medical Systems, 2022, 46, 34.	3.6	O
87	Why Do People Abandon Activity Trackers? The Role of User Diversity in Discontinued Use. International Journal of Human-Computer Interaction, 2023, 39, 1662-1674.	4.8	4
88	THE PSYCHOLOGICAL CHARACTERISTICS OF YOUNG USERS OF FITNESS TRACKER. UkraÃ-nsʹkij PsihologìÄnij žurnal, 2021, , 148-164.	0.1	0

#	Article	IF	CITATIONS
89	Usability, Feasibility, and Effect of a Biocueing Intervention in Addition to a Moderated Digital Social Therapy-Platform in Young People With Emerging Mental Health Problems: A Mixed-Method Approach. Frontiers in Psychiatry, 2022, 13, .	2.6	6
91	A qualitative examination of the factors affecting the adoption of injury focused wearable technologies in recreational runners. PLoS ONE, 2022, 17, e0265475.	2.5	2
92	What motivates people to continuously engage in online task-oriented check-ins? The role of perceived social presence. Aslib Journal of Information Management, 2022, ahead-of-print, .	2.1	0
93	Low– and Medium–Socioeconomic-Status Group Members' Perceived Challenges and Solutions for Healthy Nutrition: Qualitative Focus Group Study. JMIR Human Factors, 2022, 9, e40123.	2.0	1
96	Mortality and Quality of Life with Chronic Kidney Disease: A Five-Year Cohort Study with a Sample Initially Receiving Peritoneal Dialysis. Healthcare (Switzerland), 2022, 10, 2144.	2.0	1
97	Historical development of accelerometry measures and methods for physical activity and sedentary behavior research worldwide: A scoping review of observational studies of adults. PLoS ONE, 2022, 17, e0276890.	2.5	6
98	Benefits of a Wearable Activity Tracker with Safety Features for Older Adults: An Intervention Study. International Journal of Environmental Research and Public Health, 2022, 19, 15723.	2.6	0
100	The effect of fixed physical usage patterns on the engagement of physical activity apps: a real-world data analysis. Behaviour and Information Technology, 2024, 43, 246-259.	4.0	0
101	Acceptable, useful, and ineffective? Recent retirees' experiences of a 12-month activity tracker-based physical activity intervention. Digital Health, 2023, 9, 205520762211474.	1.8	0
102	Influence of smartphone-based physical activity intervention on executive functions and cardiometabolic disease risk in obese young adults: a pilot randomised controlled trial. Journal of Diabetes and Metabolic Disorders, 2023, 22, 619-628.	1.9	1
103	Predicting Habitual Use of Wearable Health Devices Among Middle-aged Individuals With Metabolic Syndrome Risk Factors in South Korea: Cross-sectional Study. JMIR Formative Research, 0, 7, e42087.	1.4	2
104	User Experience: A Bibliometric Review of the Literature. IEEE Access, 2023, 11, 12663-12676.	4.2	1
105	Engagement, acceptability, usability and satisfaction with Active for Life, a computer-tailored web-based physical activity intervention using Fitbits in older adults. International Journal of Behavioral Nutrition and Physical Activity, 2023, 20, .	4.6	2
106	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	14.6	238
108	Multi-Criteria Evaluation of Mobile Fitness Applications during Covid-19 Pandemic Based on AHP., 0,,.		0
109	Machine Learning Approaches to Classify Self-Reported Rheumatoid Arthritis Health Scores Using Activity Tracker Data: Longitudinal Observational Study. JMIR Formative Research, 0, 7, e43107.	1.4	0
110	Wireless physical activity monitor use among adults living with HIV in a community-based exercise intervention study: a quantitative, longitudinal, observational study. BMJ Open, 2023, 13, e068754.	1.9	2
112	Perceived Use Cases, Barriers, and Requirements for a Smart Health-Tracking Toilet Seat: Qualitative Focus Group Study. JMIR Human Factors, 0, 10, e44850.	2.0	2

#	Article	IF	CITATIONS
114	Recruitment and Retention of Recreational Runners in Prospective Injury Research: A Qualitative Study. International Journal of Qualitative Methods, The, 2023, 22, 160940692311782.	2.8	0
115	Technical Assistance Received by Older Adults to Use Commercially Available Physical Activity Monitors: An Ad-hoc Study of the Ready Steady 3.0 Trial (Preprint). JMIR MHealth and UHealth, 0, , .	3.7	0
116	Iterative Patient Testing of a Stimuli-Responsive Swallowing Activity Sensor to Promote Extended User Engagement During the First Year After Radiation: Multiphase Remote and In-Person Observational Cohort Study. JMIR Cancer, 0, 10, e47359.	2.4	0
118	Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study. JMIR Cancer, 0, 9, e47646.	2.4	0
119	Wearable, epidermal devices for assessment of swallowing function. Npj Flexible Electronics, 2023, 7, .	10.7	0
120	Prevalent elements of consumer wellbeing in wearable technology use: An interdisciplinary systematic review and future research agenda. Psychology and Marketing, 2024, 41, 1006-1021.	8.2	0
121	Objectively measured daily steps as an outcome in a clinical trial of chronic kidney disease: a systematic review. BMC Nephrology, 2024, 25, .	1.8	0
122	The Burnout PRedictiOn Using Wearable aNd ArtIficial IntelligEnce (BROWNIE) study: a decentralized digital health protocol to predict burnout in registered nurses. BMC Nursing, 2024, 23, .	2.5	0
124	Objective gait analysis following total knee arthroplasty with a smart implant directs early intervention with manipulation under anesthesia. , 0 , , .		0