Mobile Applications for Diabetics: A Systematic Review Evaluation Considering the Special Requirements of Dia Older

Journal of Medical Internet Research 16, e104 DOI: 10.2196/jmir.2968

Citation Report

#	Article	IF	CITATIONS
1	Telehealth Technologies: Changing the Way We Deliver Efficacious and Cost-Effective Diabetes Self-Management Education. Journal of Health Care for the Poor and Underserved, 2014, 25, 1853-1897.	0.8	26
2	Medical apps in endocrine diseases – hide and seek. Therapeutic Advances in Endocrinology and Metabolism, 2014, 5, 23-33.	3.2	4
3	Mobile PHRs Compliance with Android and iOS Usability Guidelines. Journal of Medical Systems, 2014, 38, 81.	3.6	62
4	Using a Mobile App to Manage Type 1 Diabetes. , 2015, , .		3
5	Make it usable: Highlighting the importance of improving the intuitiveness and usability of a computer-based training simulation. , 2015, , .		4
6	The Application of Gaming Theory in Health Care. Nursing Administration Quarterly, 2015, 39, 340-344.	1.5	3
7	Designing and Developing a Mobile Smartphone Application for Women with Gestational Diabetes Mellitus Followed-Up at Diabetes Outpatient Clinics in Norway. Healthcare (Switzerland), 2015, 3, 310-323.	2.0	66
8	mHealth App for Cannabis Users: Satisfaction and Perceived Usefulness. Frontiers in Psychiatry, 2015, 6, 120.	2.6	44
9	Evaluating Diabetes Mobile Applications for Health Literate Designs and Functionality, 2014. Preventing Chronic Disease, 2015, 12, E61.	3.4	49
10	Mobile applications for people with diabetes published between 2010 and 2015. Diabetes Management, 2015, 5, 539-550.	0.5	9
11	Apps for Hearing Science and Care. American Journal of Audiology, 2015, 24, 293-298.	1.2	43
12	Empirical Studies on Usability of mHealth Apps: A Systematic Literature Review. Journal of Medical Systems, 2015, 39, 1.	3.6	683
13	Older Adult Self-Efficacy Study of Mobile Phone Diabetes Management. Diabetes Technology and Therapeutics, 2015, 17, 455-461.	4.4	49
14	Manuscripts Reviewed for the 2014 Yearbook. Diabetes Technology and Therapeutics, 2015, 17, S-134-S-141.	4.4	0
15	Integrating Visual Dietary Documentation in Mobile-Phone-Based Self-Management Application for Adolescents With Type 1 Diabetes. Journal of Diabetes Science and Technology, 2015, 9, 541-548.	2.2	52
16	Upcoming Devices for Diabetes Management: The Artificial Pancreas as the Hallmark Device. Diabetes Technology and Therapeutics, 2015, 17, 538-541.	4.4	4
17	Evidence of poor adherence to secondary prevention after acute coronary syndromes: possible remedies through the application of new technologies. Open Heart, 2015, 2, e000166.	2.3	36
18	Current Science on Consumer Use of Mobile Health for Cardiovascular Disease Prevention. Circulation, 2015, 132, 1157-1213.	1.6	446

-		_		
CIT		INT DI		-
	A LIU		EPUR	
U /				

#	Article	IF	CITATIONS
19	The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Computer Methods and Programs in Biomedicine, 2015, 122, 393-408.	4.7	114
20	Social media for empowering people with diabetes: Current status and future trends. , 2015, 2015, 2135-8.		8
21	eHealth technologies to support nutrition and physical activity behaviors in diabetes self-management. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2016, Volume 9, 381-390.	2,4	81
22	Empowering Diabetes Patient with Mobile Health Technologies. , 2016, , .		4
23	Evaluation of TRANSFoRm Mobile eHealth Solution for Remote Patient Monitoring during Clinical Trials. Mobile Information Systems, 2016, 2016, 1-16.	0.6	2
24	Development and Evaluation of a Computer-Based, Self-Management Tool for People Recently Diagnosed with Type 2 Diabetes. Journal of Diabetes Research, 2016, 2016, 1-11.	2.3	11
25	Usability Pitfalls of Diabetes mHealth Apps for the Elderly. Journal of Diabetes Research, 2016, 2016, 1-9.	2.3	80
26	Are Patients and Relatives the Better Innovators? The Case of Medical Smartphone Applications. SSRN Electronic Journal, 2016, , .	0.4	5
27	T2DM Self-Management via Smartphone Applications: A Systematic Review and Meta-Analysis. PLoS ONE, 2016, 11, e0166718.	2.5	214
28	Creating connections – the development of a mobile-health monitoring system for heart failure: Qualitative findings from a usability cohort study. Digital Health, 2016, 2, 205520761667146.	1.8	13
29	User interactivity in eHealth applications: A novel taxonomy. , 2016, , .		2
31	Disaster EHealth-Sustainability in the Extreme. , 2016, , .		1
32	Smartphone apps for the self-management ofÂlow back pain: A systematic review. Best Practice and Research in Clinical Rheumatology, 2016, 30, 1098-1109.	3.3	124
33	Secure Messaging in Electronic Health Records and Its Impact on Diabetes Clinical Outcomes: A Systematic Review. Telemedicine Journal and E-Health, 2016, 22, 769-777.	2.8	44
34	Using Mobile Technology to Improve Nutritional Information of Diabetic Patient's. Advances in Intelligent Systems and Computing, 2016, , 3-11.	0.6	4
35	Evidence-based Mobile Medical Applications in Diabetes. Endocrinology and Metabolism Clinics of North America, 2016, 45, 943-965.	3.2	58
36	Impact of mobile apps to combat obesity in children and adolescents: A systematic literature review. Journal for Specialists in Pediatric Nursing, 2016, 21, 5-17.	1.1	91
37	Mitigating the elderly's privacy concerns when making use of Mobile Monitoring and Care systems. , 2016, , .		0

	CITATION R	EPORT	
# 38	ARTICLE m-santé francophone et diabète : mise au point. Medecine Des Maladies Metaboliques, 2016, 10, 243-253.	IF 0.1	Citations
39	The role of interdisciplinary research team in the impact of health apps in health and computer science publications: a systematic review. BioMedical Engineering OnLine, 2016, 15, 77.	2.7	22
41	Mobile personal health records for pregnancy monitoring functionalities: Analysis and potential. Computer Methods and Programs in Biomedicine, 2016, 134, 121-135.	4.7	48
42	Mobile applications to enhance self-management of gout. International Journal of Medical Informatics, 2016, 94, 67-74.	3.3	33
43	Usability of Commercially Available Mobile Applications for Diverse Patients. Journal of General Internal Medicine, 2016, 31, 1417-1426.	2.6	212
44	What do we know about mobile applications for diabetes self-management? A review of reviews. Journal of Behavioral Medicine, 2016, 39, 981-994.	2.1	142
45	Smartphone applications for seizure care and management in children and adolescents with epilepsy: Feasibility and acceptability assessment among caregivers in China. Epilepsy Research, 2016, 127, 1-5.	1.6	18
46	Psychology, technology, and diabetes management American Psychologist, 2016, 71, 577-589.	4.2	55
47	Use of Mobile Health Technology in the Prevention and Management of Diabetes Mellitus. Current Cardiology Reports, 2016, 18, 130.	2.9	49
49	The Use of Mobile Applications Among Adolescents with Type 1 Diabetes: Results from Diabetes MILES Youth—Australia. Diabetes Technology and Therapeutics, 2016, 18, 813-819.	4.4	16
50	Exploring educational needs and design aspects of internet-enabled patient education for persons with diabetes: a qualitative interview study: TableÂ1. BMJ Open, 2016, 6, e013282.	1.9	13
51	SAMURAI: A batch and streaming context architecture for large-scale intelligent applications and environments. Journal of Ambient Intelligence and Smart Environments, 2016, 8, 63-78.	1.4	18
53	A synthesis of recent analyses of human resources for health requirements and labour market dynamics in high-income OECD countries. Human Resources for Health, 2016, 14, 59.	3.1	42
54	Android Mobile Informatics Application for some Hereditary Diseases and Disorders (AMAHD): A complementary framework for medical practitioners and patients. Informatics in Medicine Unlocked, 2016, 2, 38-69.	3.4	9
55	Characteristics of Chinese m-Health Applications for Diabetes Self-Management. Telemedicine Journal and E-Health, 2016, 22, 614-619.	2.8	24
56	MyDiabetesMyWay. Journal of Diabetes Science and Technology, 2016, 10, 1050-1058.	2.2	27
57	Feasibility and acceptability of smartphone applications for seizure self-management in China: Questionnaire study among people with epilepsy. Epilepsy and Behavior, 2016, 55, 57-61.	1.7	35
58	mHealth applications for diabetes: User preference and implications for app development. Health Informatics Journal, 2016, 22, 1111-1120.	2.1	81

#	Article	IF	CITATIONS
59	Using Digital Health Technology to Prevent and Treat Diabetes. Diabetes Technology and Therapeutics, 2016, 18, S-56-S-68.	4.4	34
60	Exploring the Challenges and Opportunities of Health Mobile Apps for Individuals with Type 2 Diabetes Living in Rural Communities. Telemedicine Journal and E-Health, 2016, 22, 733-738.	2.8	72
61	Review Paper on Nutritional Information Using Mobile Augmented Reality Technology. Lecture Notes in Electrical Engineering, 2016, , 1439-1445.	0.4	5
62	A Review of Nutritional Tracking Mobile Applications for Diabetes Patient Use. Diabetes Technology and Therapeutics, 2016, 18, 200-212.	4.4	30
63	A Digital Ecosystem of Diabetes Data and Technology. Journal of Diabetes Science and Technology, 2016, 10, 35-41.	2.2	87
65	Is the Health App Challenge approach of patient-led application conception, development, and review worthwhile?. Health Policy and Technology, 2017, 6, 83-92.	2.5	8
66	Current Status of Cardiovascular Disease-Related Smartphone Apps Downloadable in China. Telemedicine Journal and E-Health, 2017, 23, 219-225.	2.8	21
67	Willingness of patients with diabetes to use an ICT-based self-management tool: a cross-sectional study. BMJ Open Diabetes Research and Care, 2017, 5, e000322.	2.8	23
68	Mobile application for diabetes self-management in China: Do they fit for older adults?. International Journal of Medical Informatics, 2017, 101, 68-74.	3.3	60
69	Cross-national comparisons of college students' attitudes toward diet/fitness apps on smartphones. Journal of American College Health, 2017, 65, 437-449.	1.5	10
70	Consumer Health Informatics Interventions Must Support User Workflows, Be Easy-To-Use, and Improve Cognition: Applying the SEIPS 2.0 Model to Evaluate Patients' and Clinicians' Experiences with the CONDUIT-HID Intervention. International Journal of Human-Computer Interaction, 2017, 33, 333-343.	4.8	15
71	Factors Influencing the Use of a Mobile App for Reporting Adverse Drug Reactions and Receiving Safety Information: A Qualitative Study. Drug Safety, 2017, 40, 443-455.	3.2	50
72	Strategies to improve monitoring disease progression, assessing cardiovascular risk, and defining prognostic biomarkers in chronic kidney disease. Kidney International Supplements, 2017, 7, 107-113.	14.2	19
73	Multimedia education program and nutrition therapy improves HbA1c, weight, and lipid profile of patients with type 2 diabetes: a randomized clinical trial. Endocrine, 2017, 58, 236-245.	2.3	14
75	Evaluation of Functionality and Usability on Diabetes Mobile Applications: A Systematic Literature Review. Lecture Notes in Computer Science, 2017, , 108-116.	1.3	5
76	The ALFA4Hearing Model (At-a-Glance Labeling for Features of Apps for Hearing Health Care) to Characterize Mobile Apps for Hearing Health Care. American Journal of Audiology, 2017, 26, 408-425.	1.2	12
77	Parent Education is Changing. MCN the American Journal of Maternal Child Nursing, 2017, 42, 248-256.	0.7	52
78	Usability and clinical efficacy of diabetes mobile applications for adults with type 2 diabetes: A systematic review. Diabetes Research and Clinical Practice, 2017, 131, 70-81.	2.8	142

#	Article	IF	CITATIONS
79	Development and testing of a mobile application to support diabetes self-management for people with newly diagnosed type 2 diabetes: a design thinking case study. BMC Medical Informatics and Decision Making, 2017, 17, 91.	3.0	53
80	Educational software usability: Artifact or Design?. Anatomical Sciences Education, 2017, 10, 190-199.	3.7	17
81	Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics (Switzerland), 2017, 6, 65.	3.1	153
82	Cervical cancer screening in low-resource settings: a smartphone image application as an alternative to colposcopy. International Journal of Women's Health, 2017, Volume 9, 455-461.	2.6	45
83	Aspectos importantes a incorporar en una aplicación móvil para la adherencia al tratamiento de la diabetes mellitus tipo 2 en Costa Rica según pacientes y profesionales de salud. Perspectivas En Nutrición Humana, 2017, 18, 155-170.	0.2	0
84	Diabetes Predicting mHealth Application Using Machine Learning. , 2017, , .		20
85	Diabetes Mellitus m-Health Applications: A Systematic Review of Features and Fundamentals. Telemedicine Journal and E-Health, 2018, 24, 839-852.	2.8	28
86	Decision Support in Diabetes Care: The Challenge of Supporting Patients in Their Daily Living Using a Mobile Glucose Predictor. Journal of Diabetes Science and Technology, 2018, 12, 243-250.	2.2	30
87	Reducing risk of type 2 diabetes after gestational diabetes: a qualitative study to explore the potential of technology in primary care. British Journal of General Practice, 2018, 68, e260-e267.	1.4	20
88	Home Blood Clucose Monitoring and Digital-Health in Diabetes. Endocrinology, 2018, , 1-20.	0.1	0
89	An Analysis of Diabetes Mobile Applications Features Compared to AADE7â,,¢: Addressing Self-Management Behaviors in People With Diabetes. Journal of Diabetes Science and Technology, 2018, 12, 808-816.	2.2	31
90	User Experience of an Innovative Mobile Health Program to Assist in Insulin Dose Adjustment: Outcomes of a Proof-Of-Concept Trial. Telemedicine Journal and E-Health, 2018, 24, 536-543.	2.8	19
91	Climate change and the health of older people in Australia: A scoping review on the role of mobile applications (apps) in ameliorating impact. Australasian Journal on Ageing, 2018, 37, 99-106.	0.9	5
92	Development and evaluation of a healthy coping voice interface application using the Google home for elderly patients with type 2 diabetes. , 2018, , .		56
93	Evaluating mobile phone applications for health behaviour change: A systematic review. Journal of Telemedicine and Telecare, 2018, 24, 22-30.	2.7	268
94	Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes, Obesity and Metabolism, 2018, 20, 488-496.	4.4	167
95	Overcoming Barriers to Adoption of Digital Health Tools for Diabetes. Journal of Diabetes Science and Technology, 2018, 12, 3-6.	2.2	32
96	Smartphone apps and the nutrition care process: Current perspectives and future considerations. Patient Education and Counseling, 2018, 101, 750-757.	2.2	72

#	Article	IF	CITATIONS
97	What Is Offered on Mobile Applications in Spanish About Diabetes Mellitus?. Journal of Diabetes Science and Technology, 2018, 12, 541-542.	2.2	0
98	Experiences of Using Web-Based and Mobile Technologies to Support Self-Management of Type 2 Diabetes: Qualitative Study. JMIR Diabetes, 2018, 3, e9.	1.9	18
99	Telemonitoring of Blood Glucose. , 2018, , .		0
100	Feasibility and Effectiveness of Mobile Phones in Physical Activity Promotion for Adults 50 Years and Older. Topics in Geriatric Rehabilitation, 2018, 34, 213-222.	0.4	8
101	A Brief Systematic Review of Mobile App Markets Research: User, Developer and Platform Perspectives. SSRN Electronic Journal, 2018, , .	0.4	2
102	Continuous glucose monitoring: data management and evaluation by patients and health care professionals – current situation and developments. Laboratoriums Medizin, 2018, 42, 225-233.	0.6	3
103	Users' preferences and design recommendations to promote engagements with mobile apps for diabetes self-management: Multi-national perspectives. PLoS ONE, 2018, 13, e0208942.	2.5	58
105	SUITABILITY OF CURRENT EVALUATION FRAMEWORKS FOR USE IN THE HEALTH TECHNOLOGY ASSESSMENT OF MOBILE MEDICAL APPLICATIONS: A SYSTEMATIC REVIEW. International Journal of Technology Assessment in Health Care, 2018, 34, 464-475.	0.5	58
106	An overview on the emerging area of identification, characterization, and assessment of health apps. Journal of Biomedical Informatics, 2018, 83, 97-102.	4.3	58
107	Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications. Journal of Diabetes Science and Technology, 2018, 12, 1064-1071.	2.2	68
108	Design and Testing of a Smartphone Application for Real-Time Self-Tracking Diabetes Self-Management Behaviors. Applied Clinical Informatics, 2018, 09, 440-449.	1.7	13
109	Glycaemic control apps for diabetes: lifting the lid. Medical Journal of Australia, 2018, 209, 426.	1.7	3
110	Diabetic assistant tool. , 2018, , .		1
111	Double-Loop Health Technology. , 2018, , 167-186.		4
112	Rapid Evidence Review of Mobile Applications for Self-management of Diabetes. Journal of General Internal Medicine, 2018, 33, 1167-1176.	2.6	130
113	Engaging older adults to inform diabetes medication adherence mobile application selection. Healthy Aging Research, 2018, 7, e20.	0.3	3
114	Conformity of Diabetes Mobile apps with the Chronic Care Model. BMJ Health and Care Informatics, 2019, 26, e000017.	3.0	1
115	Determining minimum set of features for diabetes mobile apps. Journal of Diabetes and Metabolic Disorders, 2019, 18, 333-340.	1.9	15

#	Article	IF	CITATIONS
116	Feasibility of a voice-enabled automated platform for medical data collection: CardioCube. International Journal of Medical Informatics, 2019, 129, 388-393.	3.3	24
117	Factors influencing the download of mobile health apps: Content review-led regression analysis. Health Policy and Technology, 2019, 8, 356-364.	2.5	17
118	Systematic review and usability evaluation of writing mobile apps for children. New Review of Hypermedia and Multimedia, 2019, 25, 137-160.	1.1	8
119	Has Technology Improved Diabetes Management in Relation to Age, Gender, and Ethnicity?. Current Diabetes Reports, 2019, 19, 111.	4.2	17
120	A roundup of the simplest mobile phone uses in diabetes management. Diabetes Research and Clinical Practice, 2019, 158, 107895.	2.8	1
121	Redesigning the user interface of a healthcare management system for the elderly with a systematic usability testing method. Journal of Industrial and Production Engineering, 2019, 36, 324-334.	3.1	4
122	Startup workplace, mobile games, and older adults. , 2019, , .		1
123	Designing Self-tracking Devices for Vulnerable Chronic Ill. , 2019, , .		2
124	Mobile phone applications for diabetes management: A systematic review. EndocrinologÃa Diabetes Y Nutrición (English Ed), 2019, 66, 330-337.	0.2	5
125	A personalized diet and exercise recommender system for type 1 diabetes self-management: An in silico study. Smart Health, 2019, 13, 100069.	3.2	10
126	What Do Adults with Type 2 Diabetes Want from the "Perfect―App? Results from the Second Diabetes MILES: Australia (MILES-2) Study. Diabetes Technology and Therapeutics, 2019, 21, 393-399.	4.4	36
127	Development of a Complex Intervention to Improve Adherence to Antidiabetic Medication in Older People Using an Anthropomorphic Virtual Assistant Software. Frontiers in Pharmacology, 2019, 10, 680.	3.5	19
128	Beyond the Patient Portal. , 2019, , .		14
129	The mHealth. EAI/Springer Innovations in Communication and Computing, 2019, , 5-17.	1.1	6
130	How Do Smart Device Apps for Diabetes Self-Management Correspond with Theoretical Indicators of Empowerment? An Analysis of App Features. International Journal of Technology Assessment in Health Care, 2019, 35, 150-159.	0.5	12
132	Improving pregnancy outcomes in women with diabetes mellitus: modern management. Nature Reviews Endocrinology, 2019, 15, 406-416.	9.6	75
133	A need-based approach to self-management education for adults with co-morbid diabetes and chronic kidney disease. BMC Nephrology, 2019, 20, 113.	1.8	8
135	Characteristics and quality of genetics and genomics mobile apps: a systematic review. European Journal of Human Genetics, 2019, 27, 833-840.	2.8	17

#	Article	IF	CITATIONS
136	Requirements of an Application to Monitor Diet, Physical Activity and Glucose Values in Patients with Type 2 Diabetes: The Diameter. Nutrients, 2019, 11, 409.	4.1	15
137	A Machine Learning-Based Intelligent System for Predicting Diabetes. International Journal of Big Data and Analytics in Healthcare, 2019, 4, 1-20.	0.7	8
138	Usability of a Disease Management Mobile Application as Perceived by Patients With Diabetes. CIN - Computers Informatics Nursing, 2019, 37, 413-419.	0.5	4
139	Patientâ€oriented mobile applications in ophthalmology. Australasian journal of optometry, The, 2019, 102, 180-183.	1.3	5
140	The Effect of a Smartphone-Based, Patient-Centered Diabetes Care System in Patients With Type 2 Diabetes: A Randomized, Controlled Trial for 24 Weeks. Diabetes Care, 2019, 42, 3-9.	8.6	48
141	Going digital: a narrative overview of the effects, quality and utility of mobile apps in chronic disease self-management. Australian Health Review, 2020, 44, 62.	1.1	68
142	Patient Input for Design of a Decision Support Smartphone Application for Type 1 Diabetes. Journal of Diabetes Science and Technology, 2020, 14, 1081-1087.	2.2	5
143	Mobile health app usability and quality rating scales: a systematic review. Disability and Rehabilitation: Assistive Technology, 2021, 16, 712-721.	2.2	72
144	Diabetes digital app technology: benefits, challenges, and recommendations. A consensus report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetologia, 2020, 63, 229-241.	6.3	56
146	Diabetes Digital App Technology: Benefits, Challenges, and Recommendations. A Consensus Report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care, 2020, 43, 250-260.	8.6	175
147	lssues in reporting of systematic review methods in health app-focused reviews: A scoping review. Health Informatics Journal, 2020, 26, 2930-2945.	2.1	24
148	Usability Evaluation of Four Top-Rated Commercially Available Diabetes Apps for Adults With Type 2 Diabetes. CIN - Computers Informatics Nursing, 2020, 38, 274-280.	0.5	22
149	How patient-generated health data and patient-reported outcomes affect patient–clinician relationships: A systematic review. Health Informatics Journal, 2020, 26, 2689-2706.	2.1	40
150	Effect of mobile applications on blood pressure control and their development in China: a systematic review and meta-analysis. Public Health, 2020, 185, 356-363.	2.9	9
151	Effect of Transforming Offline Purchasing of Tamil Books into Online Mobile. Journal of Physics: Conference Series, 2020, 1529, 032069.	0.4	2
152	Using the RE-AIM framework to evaluate internal and external validity of mobile phone–based interventions in diabetes self-management education and support. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 946-956.	4.4	13
153	Theoretical advances in mobile health communication research. , 2020, , 151-177.		6
155	Diabetes Management During Breastfeeding in Women with Type 1 Diabetes. Current Diabetes Reports, 2020, 20, 34.	4.2	10

#	Article	IF	CITATIONS
156	Usability of an Intelligent Virtual Assistant for Promoting Behavior Change and Self-Care in Older People with Type 2 Diabetes. Journal of Medical Systems, 2020, 44, 130.	3.6	32
157	Evaluating the effectiveness and feasibility of nurse-led distant and face-to-face interviews programs for promoting behavioral change and disease management in patients with diabetic nephropathy: a triangulation approach. BMC Nursing, 2020, 19, 16.	2.5	6
158	Optimising epilepsy management with a smartphone application: a randomised controlled trial. Medical Journal of Australia, 2020, 212, 258-262.	1.7	16
159	The development of My Care Hub Mobile-Phone App to Support Self-Management in Australians with Type 1 or Type 2 Diabetes. Scientific Reports, 2020, 10, 7.	3.3	50
161	Current Developments in Digital Quantitative Volume Estimation for the Optimisation of Dietary Assessment. Nutrients, 2020, 12, 1167.	4.1	22
162	Health goes mobile. , 2020, , 179-204.		2
163	Health-Related Correlates of Demonstrated Smartphone Expertise in Community-Dwelling Older Adults. Journal of Applied Gerontology, 2021, 40, 510-518.	2.0	13
164	A close look at socio-technical design features of mobile applications for diabetes self-management. Health and Technology, 2021, 11, 227-238.	3.6	1
165	Systematic evaluation of mobile fitness apps: Apps as the Tutor, Recorder, Game Companion, and Cheerleader. Telematics and Informatics, 2021, 59, 101552.	5.8	20
166	Content Analysis: First-Time Patient User Challenges with Top-Rated Commercial Diabetes Apps. Telemedicine Journal and E-Health, 2021, 27, 663-669.	2.8	4
167	Effectiveness of Mobile Apps to Promote Health and Manage Disease: Systematic Review and Meta-analysis of Randomized Controlled Trials. JMIR MHealth and UHealth, 2021, 9, e21563.	3.7	75
168	Technology-based solutions to address the family care gap challenge. , 2021, , 367-385.		4
169	Analysis of Diabetes Apps to Assess Privacy-Related Permissions: Systematic Search of Apps. JMIR Diabetes, 2021, 6, e16146.	1.9	7
172	A Mobile Health Platform for Self-Management of Pediatric Cystic Fibrosis: Qualitative Study of Adaptation to Stakeholder Needs and Integration in Clinical Settings. JMIR Formative Research, 2021, 5, e19413.	1.4	10
173	Mobile apps for self-management in pregnancy: a systematic review. Health and Technology, 2021, 11, 283-294.	3.6	20
174	A Study on the Relationship between Usability of GUIs and Power Consumption of a PC: The Case of PHRs. International Journal of Environmental Research and Public Health, 2021, 18, 1385.	2.6	2
176	Scoping review: Development and assessment of evaluation frameworks of mobile health apps for recommendations to consumers. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1318-1329.	4.4	43
177	Assessing the quality of mobile applications in chronic disease management: a scoping review. Npj Digital Medicine, 2021, 4, 46.	10.9	38

#	Article	IF	CITATIONS
178	Mobile Apps to Support Family Caregivers of People With Alzheimer Disease and Related Dementias in Managing Disruptive Behaviors: Qualitative Study With Users Embedded in a Scoping Review. JMIR Aging, 2021, 4, e21808.	3.0	8
179	Desenvolvimento de aplicativo móvel para monitorização dos nÃveis glicêmicos obtidos por medições capilar e sensor subcutâneo. Research, Society and Development, 2021, 10, e58210414400.	0.1	0
180	Mobile Apps to Improve Medication Adherence in Cardiovascular Disease: Systematic Review and Meta-analysis. Journal of Medical Internet Research, 2021, 23, e24190.	4.3	64
181	Systematic review of applied usability metrics within usability evaluation methods for hospital electronic healthcare record systems. Journal of Evaluation in Clinical Practice, 2021, 27, 1403-1416.	1.8	19
182	Analysis of Effectiveness and Psychological Techniques Implemented in mHealth Solutions for Middle-Aged and Elderly Adults with Type 2 Diabetes: A Narrative Review of the Literature. Journal of Clinical Medicine, 2021, 10, 2701.	2.4	4
183	Mobile-Based and Cloud-Based System for Self-management of People With Type 2 Diabetes: Development and Usability Evaluation. Journal of Medical Internet Research, 2021, 23, e18167.	4.3	19
184	Comparing Two Commercially Available Diabetes Apps to Explore Challenges in User Engagement: Randomized Controlled Feasibility Study. JMIR Formative Research, 2021, 5, e25151.	1.4	12
185	Independent Use of a Home-Based Telemonitoring App by Older Patients With Multimorbidity and Mild Cognitive Impairment: Qualitative Study. JMIR Human Factors, 2021, 8, e27156.	2.0	4
186	Exploring the Constituent Elements of a Successful Mobile Health Intervention for Prediabetic Patients in King Saud University Medical City Hospitals in Saudi Arabia: Cross-sectional Study. JMIR Formative Research, 2021, 5, e22968.	1.4	3
187	Association Between eHealth Literacy in Online Health Communities and Patient Adherence: Cross-sectional Questionnaire Study. Journal of Medical Internet Research, 2021, 23, e14908.	4.3	24
188	Utilization of Health Applications Among Patients Diagnosed with Chronic Diseases in Jazan, Saudi Arabia During the COVID-19 Pandemic. Patient Preference and Adherence, 2021, Volume 15, 2063-2070.	1.8	5
189	Mobile apps for weight management in children and adolescents; An updated systematic review. Patient Education and Counseling, 2021, 104, 2181-2188.	2.2	21
190	A feature-oriented analysis of developers' descriptions and user reviews of top mHealth applications for diabetes and hypertension. International Journal of Medical Informatics, 2021, 156, 104598.	3.3	3
192	Intelligent Virtual Assistant for Promoting Behaviour Change in Older People with T2D. Lecture Notes in Computer Science, 2019, , 372-383.	1.3	8
193	Impact of Health Apps in Health and Computer Science Publications. A Systematic Review from 2010 to 2014. Lecture Notes in Computer Science, 2015, , 24-34.	1.3	7
194	mHealth Applications Use and Potential for Older Adults, Overview of. , 2016, , 1-9.		4
195	Using diabetes technology in older adults. , 2020, , 131-143.		8
196	Mobile phone applications for diabetes management: A systematic review. Endocrinologia, Diabetes Y NutriciA"n, 2019, 66, 330-337.	0.3	26

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
197	A Comprehensive Evaluation of Tinnitus Apps. American Journal of Audiology, 2019, 28,	605-616.	1.2	15
198	Quality and Usability of Arthritic Pain Self-Management Apps for Older Adults: A System Pain Medicine, 2018, 19, 471-484.	atic Review.	1.9	48
199	Users' acceptance of electronic patient portals in Lebanon. BMC Medical Informatic Making, 2020, 20, 31.	s and Decision	3.0	12
200	Patient-reported outcomes feedback report for knee arthroplasty patients should prese information in a simple design - findings of a qualitative study. Journal of Patient-Report 2020, 4, 6.	nt selective ed Outcomes,	1.9	11
201	Use of Wearable Device among Adults in the US with Self-reported Diabetes Mellitus: A the 2019 Health Information National Trends Survey. Journal of Physical Activity Researd 72-78.	ו Analysis of h, 2020, 5,	0.2	1
202	Effectiveness of mHealth interventions for patients with diabetes: An overview of syster PLoS ONE, 2017, 12, e0173160.	natic reviews.	2.5	292
203	The attitudes of pharmacists, students and the general public on mHealth applications f adherence. Pharmacy Practice, 2015, 13, 644-644.	or medication	1.5	26
204	Promoting Self-Care of Diabetic Foot Ulcers Through a Mobile Phone App: User-Centere Evaluation. JMIR Diabetes, 2018, 3, e10105.	d Design and	1.9	48
205	Considerations for the Development of Mobile Phone Apps to Support Diabetes Self-Ma Systematic Review. JMIR MHealth and UHealth, 2018, 6, e10115.	nagement:	3.7	49
206	Mobile Phone–Based Telemedicine Practice in Older Chinese Patients with Type 2 Dia Randomized Controlled Trial. JMIR MHealth and UHealth, 2019, 7, e10664.	betes Mellitus:	3.7	74
207	Mobile Apps to Support the Self-Management of Hypertension: Systematic Review of Ef Usability, and User Satisfaction. JMIR MHealth and UHealth, 2018, 6, e10723.	fectiveness,	3.7	102
208	Research-Tested Mobile Apps for Breast Cancer Care: Systematic Review. JMIR MHealth 2019, 7, e10930.	and UHealth,	3.7	105
209	The App Behavior Change Scale: Creation of a Scale to Assess the Potential of Apps to F Behavior Change. JMIR MHealth and UHealth, 2019, 7, e11130.	romote	3.7	77
210	Exploration of Users' Perspectives and Needs and Design of a Type 1 Diabetes Mana Mixed-Methods Study. JMIR MHealth and UHealth, 2018, 6, e11400.	igement Mobile App:	3.7	36
211	Measuring the Implementation of Behavioral Intervention Technologies: Recharacterizat Established Outcomes. Journal of Medical Internet Research, 2019, 21, e11752.	ion of	4.3	98
212	Efficacy and Effectiveness of Mobile Health Technologies for Facilitating Physical Activit Adolescents: Scoping Review. JMIR MHealth and UHealth, 2019, 7, e11847.	y in	3.7	69
213	A Mobile Phone App for the Self-Management of Pediatric Concussion: Development an Testing. JMIR Human Factors, 2019, 6, e12135.	d Usability	2.0	9
214	The Efficacy of Mobile Phone Apps for Lifestyle Modification in Diabetes: Systematic Rev Meta-Analysis. JMIR MHealth and UHealth, 2019, 7, e12297.	view and	3.7	187

#	Article	IF	CITATIONS
215	Mobile Apps for the Care Management of Chronic Kidney and End-Stage Renal Diseases: Systematic Search in App Stores and Evaluation. JMIR MHealth and UHealth, 2019, 7, e12604.	3.7	37
216	Evaluation of Self-Management Support Functions in Apps for People With Persistent Pain: Systematic Review. JMIR MHealth and UHealth, 2019, 7, e13080.	3.7	74
217	Usability Evaluations of Mobile Mental Health Technologies: Systematic Review. Journal of Medical Internet Research, 2020, 22, e15337.	4.3	58
218	Effectiveness of Mobile Health Interventions on Diabetes and Obesity Treatment and Management: Systematic Review of Systematic Reviews. JMIR MHealth and UHealth, 2020, 8, e15400.	3.7	136
219	Factors Related to User Ratings and User Downloads of Mobile Apps for Maternal and Infant Health: A Cross-Sectional Study. JMIR MHealth and UHealth, 2020, 8, e15663.	3.7	41
220	Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research, 2020, 22, e16206.	4.3	153
221	User Retention and Engagement With a Mobile App Intervention to Support Self-Management in Australians With Type 1 or Type 2 Diabetes (My Care Hub): Mixed Methods Study. JMIR MHealth and UHealth, 2020, 8, e17802.	3.7	17
222	Applying the Electronic Health Literacy Lens: Systematic Review of Electronic Health Interventions Targeted at Socially Disadvantaged Groups. Journal of Medical Internet Research, 2020, 22, e18476.	4.3	102
223	Changes in Patient-Reported Outcome Measures With a Technology-Supported Behavioral Lifestyle Intervention Among Patients With Type 2 Diabetes: Pilot Randomized Controlled Clinical Trial. JMIR Diabetes, 2020, 5, e19268.	1.9	10
224	Design and Usability Evaluation of Mobile Voice-Added Food Reporting for Elderly People: Randomized Controlled Trial. JMIR MHealth and UHealth, 2020, 8, e20317.	3.7	25
225	iOS Appstore-Based Phone Apps for Diabetes Management: Potential for Use in Medication Adherence. JMIR Diabetes, 2017, 2, e12.	1.9	17
226	Smartphone App Use for Diabetes Management: Evaluating Patient Perspectives. JMIR Diabetes, 2017, 2, e2.	1.9	33
227	DiaFit: The Development of a Smart App for Patients with Type 2 Diabetes and Obesity. JMIR Diabetes, 2016, 1, e5.	1.9	23
228	Mixed-Methods Research in Diabetes Management via Mobile Health Technologies: A Scoping Review. JMIR Diabetes, 2017, 2, e3.	1.9	9
229	Mobile App for Simplifying Life With Diabetes: Technical Description and Usability Study of GlucoMan. JMIR Diabetes, 2018, 3, e6.	1.9	9
230	Views of Patients on Using mHealth to Monitor and Prevent Diabetic Foot Ulcers: Qualitative Study. JMIR Diabetes, 2017, 2, e22.	1.9	27
231	Usability Test of Exercise Games Designed for Rehabilitation of Elderly Patients After Hip Replacement Surgery: Pilot Study. JMIR Serious Games, 2017, 5, e19.	3.1	30
232	A Patient-Facing Diabetes Dashboard Embedded in a Patient Web Portal: Design Sprint and Usability Testing. JMIR Human Factors, 2018, 5, e26.	2.0	33

#	Article	IF	CITATIONS
233	Patient Perspectives on Online Health Information and Communication With Doctors: A Qualitative Study of Patients 50 Years Old and Over. Journal of Medical Internet Research, 2015, 17, e19.	4.3	182
234	Overcoming Clinical Inertia: A Randomized Clinical Trial of a Telehealth Remote Monitoring Intervention Using Paired Glucose Testing in Adults With Type 2 Diabetes. Journal of Medical Internet Research, 2015, 17, e178.	4.3	91
235	Barriers to Remote Health Interventions for Type 2 Diabetes: A Systematic Review and Proposed Classification Scheme. Journal of Medical Internet Research, 2017, 19, e28.	4.3	66
236	A Mobile App to Improve Self-Management of Individuals With Type 2 Diabetes: Qualitative Realist Evaluation. Journal of Medical Internet Research, 2018, 20, e81.	4.3	105
237	Acceptance Factors of Mobile Apps for Diabetes by Patients Aged 50 or Older: A Qualitative Study. Medicine 2 0, 2015, 4, e1.	2.4	142
238	Popular Glucose Tracking Apps and Use of mHealth by Latinos With Diabetes: Review. JMIR MHealth and UHealth, 2015, 3, e84.	3.7	50
239	Valuable Features in Mobile Health Apps for Patients and Consumers: Content Analysis of Apps and User Ratings. JMIR MHealth and UHealth, 2015, 3, e40.	3.7	184
240	The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment. JMIR MHealth and UHealth, 2015, 3, e104.	3.7	198
241	Health App Use Among US Mobile Phone Owners: A National Survey. JMIR MHealth and UHealth, 2015, 3, e101.	3.7	1,077
242	Smartphone Applications to Support Tuberculosis Prevention and Treatment: Review and Evaluation. JMIR MHealth and UHealth, 2016, 4, e25.	3.7	51
243	Review and Analysis of Existing Mobile Phone Apps to Support Heart Failure Symptom Monitoring and Self-Care Management Using the Mobile Application Rating Scale (MARS). JMIR MHealth and UHealth, 2016, 4, e74.	3.7	212
244	A Mobile App for the Self-Management of Type 1 Diabetes Among Adolescents: A Randomized Controlled Trial. JMIR MHealth and UHealth, 2017, 5, e82.	3.7	110
245	Mobile Device Accuracy for Step Counting Across Age Groups. JMIR MHealth and UHealth, 2017, 5, e88.	3.7	44
246	User Acceptance of Wrist-Worn Activity Trackers Among Community-Dwelling Older Adults: Mixed Method Study. JMIR MHealth and UHealth, 2017, 5, e173.	3.7	135
247	The Impact of a Mobile Diabetes Health Intervention on Diabetes Distress and Depression Among Adults: Secondary Analysis of a Cluster Randomized Controlled Trial. JMIR MHealth and UHealth, 2017, 5, e183.	3.7	26
248	Medical Correctness and User Friendliness of Available Apps for Cardiopulmonary Resuscitation: Systematic Search Combined With Guideline Adherence and Usability Evaluation. JMIR MHealth and UHealth, 2018, 6, e190.	3.7	41
249	Health and Fitness Apps for Hands-Free Voice-Activated Assistants: Content Analysis. JMIR MHealth and UHealth, 2018, 6, e174.	3.7	49
250	A Novel mHealth Approach for a Patient-Centered Medication and Health Management System in Taiwan: Pilot Study. JMIR MHealth and UHealth, 2018, 6, e154.	3.7	14

#	Article	IF	CITATIONS
252	An Interactive-Technology Health Behavior Promotion Program for Heart Failure Patients: A Pilot Study of Experiences and Needs of Patients and Nurses in the Hospital Setting. JMIR Research Protocols, 2014, 3, e32.	1.0	10
253	eHealth Use Among First-Generation Immigrants From Pakistan in the Oslo Area, Norway, With Focus on Diabetes: Survey Protocol. JMIR Research Protocols, 2016, 5, e79.	1.0	5
254	Protocol of a Pilot Study of Technology-Enabled Coproduction in Pediatric Chronic Illness Care. JMIR Research Protocols, 2017, 6, e71.	1.0	17
255	MAIN REASONS AND CURRENT METHODS OF CORRECTION OF POOR ADHERENCE TO ANTIRETROVIRAL TREATMENT IN DIFFICULT PATIENTS. HIV Infection and Immunosuppressive Disorders, 2019, 10, 37-56.	0.3	5
256	Healthy Lottery: An Economically Viable Mobile System to Increase Compliance of Individuals with Diabetes. , 2017, , .		2
257	Apps for Hearing Healthcare. Advances in Medical Technologies and Clinical Practice Book Series, 2019, , 161-195.	0.3	9
258	Contribution of an Intelligent Virtual Assistant to Healthy Ageing in Adults With Type 2 Diabetes. Advances in Medical Technologies and Clinical Practice Book Series, 2020, , 194-230.	0.3	3
259	The Use of an Adapted Health IT Usability Evaluation Model (Health-ITUEM) for Evaluating Consumer Reported Ratings of Diabetes mHealth Applications: Implications for Diabetes Care and Management. Acta Informatica Medica, 2015, 23, 290.	1.1	7
260	Exploring the relationship between the usability of a goal-oriented mobile health application and non-usage attrition in patients with multimorbidity: A blended data analysis approach. Digital Health, 2021, 7, 205520762110455.	1.8	7
261	Telemedicine solutions for patients with mental disorders: a Delphi study and review of mobile applications in virtual stores. Informatics for Health and Social Care, 2021, , 1-20.	2.6	1
262	Dr. Google, The Specialist in Diabetes and Metabolic Diseases. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2014, 21, 221-227.	0.3	0
267	Engaging older adults to inform diabetes medication adherence mobile application selection. Healthy Aging Research, 2018, 07, .	0.3	0
268	Home Blood Glucose Monitoring and Digital-Health in Diabetes. Endocrinology, 2018, , 401-420.	0.1	0
276	Health Care Apps Reported in Newspapers: Content Analysis. JMIR MHealth and UHealth, 2018, 6, e10237.	3.7	5
278	Development and Primary Evaluation of a Smartphone Application for Blood Glucose Control in Hospitalized Patients. Advanced Biomedical Research, 2019, 8, 45.	0.5	0
279	Text Messaging and Type 1 Diabetes Management: Qualitative Study Exploring Interactions Among Patients and Health Care Professionals. JMIR Diabetes, 2019, 4, e11343.	1.9	2
281	Tools for Evaluating the Content, Efficacy, and Usability of Mobile Health Apps According to the Consensus-Based Standards for the Selection of Health Measurement Instruments: Systematic Review. JMIR MHealth and UHealth, 2021, 9, e15433.	3.7	24
290	Comparing a Social and Communication App, Telephone Intervention, and Usual Care for Diabetes Self-Management: 3-Arm Quasiexperimental Evaluation Study. JMIR MHealth and UHealth, 2020, 8, e14024.	3.7	10

	Сітатіо	n Report	
#	Article	IF	CITATIONS
292	Designing Mobile Health and Well-being Applications: A Value-oriented Approach. , 2020, , .		0
293	Automatisierung von Dienstleistungen zur digital unterstützten Versorgung multimorbider Patienten – Eine qualitative Analyse der Nutzerakzeptanz. Forum Dienstleistungsmanagement, 2020, , 295-309.	1.2	0
294	Usability of a mobile application on diabetic foot self-care. Revista Brasileira De Enfermagem, 2020, 73, e20180862.	0.7	10
295	Diabetes Link: Platform for Self-control and Monitoring People with Diabetes. Communications in Computer and Information Science, 2020, , 359-373.	0.5	0
298	A Possible Mobile Health Solution in Orthopedics and Trauma Surgery: Development Protocol and User Evaluation of the Ankle Joint App. JMIR MHealth and UHealth, 2020, 8, e16403.	3.7	3
303	Quality Assessment Criteria for Mobile Health Apps: A Systematic Review. Walailak Journal of Science and Technology, 2020, 17, 745-759.	0.5	8
305	Using an Electronic App to Promote Home-Based Self-Care in Older Patients With Heart Failure: Qualitative Study on Patient and Informal Caregiver Challenges. JMIR Cardio, 2020, 4, e15885.	1.7	13
306	Mobile Clinical Decision Support System for the Management of Diabetic Patients With Kidney Complications in UK Primary Care Settings: Mixed Methods Feasibility Study. JMIR Diabetes, 2020, 5, e19650.	1.9	7
309	The effect of an android-based application on the knowledge of the caregivers of children with cerebral palsy. Medical Journal of the Islamic Republic of Iran, 2016, 30, 456.	0.9	6
311	Early Development of a Virtual Coach for Healthy Coping Interventions in Type 2 Diabetes Mellitus: Validation Study. JMIR Formative Research, 2022, 6, e27500.	1.4	0
313	Cross-Sectional Study Concerning the Knowledge, Attitude, and Practice of People With Diabetes Regarding the Prevention of Foot Ulcers in a Community. Clinical Diabetes, 2022, 40, 298-304.	2.2	2
314	Managing Diabetes Using Mobiab: Long-Term Case Study of the Impact of a Mobile App on Self-management. JMIR Diabetes, 2022, 7, e36675.	1.9	0
315	Standardized evaluation of the quality and persuasiveness of mobile health applications for diabetes management. Scientific Reports, 2022, 12, 3639.	3.3	9
316	Suitability of the Unified Theory of Acceptance and Use of Technology 2 Model for Predicting mHealth Acceptance Using Diabetes as an Example: Qualitative Methods Triangulation Study. JMIR Human Factors, 2022, 9, e34918.	2.0	7
317	Patient reported data integration for management of Eosinophilic Esophagitis. Ecological Management and Restoration, 2022, , .	0.4	1
318	Self-care Diabetes: a diabetes self-management application based on the seven self-management areas (AADE7) of the American Association of Diabetes Educators. , 2021, , .		0
321	The current state of diabetes treatment. , 2022, , 1-31.		0
322	Multi-Criteria Usability Evaluation of mHealth Applications on Type 2 Diabetes Mellitus Using Two Hybrid MCDM Models: CODAS-FAHP and MOORA-FAHP. Applied Sciences (Switzerland), 2022, 12, 4156.	2.5	8

#	Article	IF	CITATIONS
323	Contribution of an Intelligent Virtual Assistant to Healthy Ageing in Adults With Type 2 Diabetes. , 2022, , 666-695.		0
324	Automated Information Systems as a New Approach to Risk Management of Pharmacotherapy in the Treatment of Epilepsy. Safety and Risk of Pharmacotherapy, 2022, 10, 151-160.	0.2	1
325	A Smartphone-Based Application to Assist Insulin Titration in Patients Undergoing Basal Insulin-Supported Oral Antidiabetic Treatment. Journal of Diabetes Science and Technology, 2023, 17, 988-997.	2.2	0
326	The Impact of Government Social Media Information Quality on Public Panic During the Infodemic. Frontiers in Psychology, 2022, 13, .	2.1	4
329	Predictors of the Acceptance of an eCoach targeting Self-management of Type 2 Diabetes Patients: A Web-Based Survey (Preprint). JMIR Formative Research, 0, , .	1.4	2
330	Blood donor app usage behaviour and perceptions: Considerations for a blood donation app. South African Journal of Information Management, 2022, 24, .	0.8	1
331	Patients, caregivers, and healthcare professionals' needs when designing the content of a mobile application for the clinical monitoring of patients with chronic obstructive pulmonary disease and home oxygen therapy: A user-centered design. Internet Interventions, 2022, 29, 100552.	2.7	3
332	Explore How Online Healthcare Can Influence Willingness to Seek Offline Care. International Journal of Environmental Research and Public Health, 2022, 19, 7925.	2.6	7
333	Promoting Physical Activity in Older Adults With Type 2 Diabetes via an Anthropomorphic Conversational Agent: Development of an Evidence and Theory-Based Multi-Behavior Intervention. Frontiers in Psychology, 0, 13, .	2.1	3
334	Application of mHealth Technologies to Improve Self-Control of Children and Adolescents with Type 1 Diabetes. , 2022, , .		Ο
335	Standardization of the assessment process within telerehabilitation in chronic diseases: a scoping meta-review. BMC Health Services Research, 2022, 22, .	2.2	1
336	Telehealth examination of the lumbar spine. Technology and Health Care, 2023, 31, 81-93.	1.2	1
337	Barriers to and Facilitators of Using eHealth to Support Gestational Diabetes Mellitus Self-management: Systematic Literature Review of Perceptions of Health Care Professionals and Women With Gestational Diabetes Mellitus. Journal of Medical Internet Research, 2022, 24, e39689.	4.3	7
338	App-Based Rehabilitation in Back Pain, a Systematic Review. Journal of Personalized Medicine, 2022, 12, 1558.	2.5	5
339	A Systematic Review on Usability of mHealth Applications on Type 2 Diabetes Mellitus. Lecture Notes in Networks and Systems, 2023, , 115-128.	0.7	0
340	A mobilapplikÃ;cióval tÃ;mogatott alacsony-FODMAP-étrend a funkcionÃ;lis gastrointestinalis és a gyulladÃ;sos bA©lbetegségek kezelésében. Orvosi Hetilap, 2022, 163, 1224-1230.	0.4	1
341	Preferences of Older Adult Veterans With Heart Failure for Engaging With Mobile Health Technology to Support Self-care: Qualitative Interview Study Among Patients With Heart Failure and Content Analysis. JMIR Formative Research, 2022, 6, e41317.	1.4	2
342	Usability evaluation of mHealth apps for elderly individuals: a scoping review. BMC Medical Informatics and Decision Making, 2022, 22, .	3.0	15

#	Article	IF	CITATIONS
343	A Usability Evaluation Instrument for Pain Management Mobile Applications: An Elderly's Perspective. International Journal of Human-Computer Interaction, 0, , 1-17.	4.8	0
344	How tablets/applications enhance social connections and social support in people with dementia: A qualitative systematic review. International Journal of Mental Health Nursing, 2023, 32, 727-743.	3.8	1
345	A fuzzy-set qualitative comparative analysis exploration of multiple paths to users' continuous use behavior of diabetes self-management apps. International Journal of Medical Informatics, 2023, 172, 105000.	3.3	1
346	Usability Evaluation by Primary Care Providers of a Novel Digital Intervention for Type 2 Diabetes Self-Management in Older Adults. CIN - Computers Informatics Nursing, 2023, 41, 185-191.	0.5	0
347	Smartphone Apps for Domestic Violence Prevention: A Systematic Review. International Journal of Environmental Research and Public Health, 2023, 20, 5246.	2.6	2
348	Effect of smartphone apps on glycemic control in young patients with type 1 diabetes: A meta-analysis. Frontiers in Public Health, 0, 11, .	2.7	5
349	Relationship between Diabetes Self-Management and the Use of Health Care Apps: A Cross-Sectional Study. ACI Open, 2023, 07, e23-e29.	0.5	0
350	Mobile health platform for self-management of pediatric cystic fibrosis: Impact on patient-centered care outcomes. Journal of Cystic Fibrosis, 2023, , .	0.7	3
351	Designing a Collaborative Patient-Centered Digital Health Platform for Pediatric Diabetes Care in British Columbia: Formative Needs Assessment by Caregivers of Children and Youths Living With Type 1 Diabetes and Health Care Providers. JMIR Pediatrics and Parenting, 0, 6, e46432.	1.6	0
353	Digital technology for elders better living: a usability and user-experience assessment. , 2023, , .		Ο
354	Efficacy of a basal insulin dose management smartphone application for controlling fasting blood glucose in patients with typeâ€2 diabetes mellitus: A singleâ€centre, randomised clinical study. Clinical Endocrinology, 2023, 99, 361-369.	2.4	0
355	Identification of Critical Success Factors in Adoption of Health IT Services from Older People's Perspective. , 2023, , .		Ο
356	A multisectoral and multidisciplinary endeavor: a review of diabetes self-management apps in China. BMC Public Health, 2023, 23, .	2.9	1
357	Avazum app usability testing. CoDAS, 2023, 35, .	0.7	0
358	Teste de usabilidade do aplicativo Avazum. CoDAS, 2023, 35, .	0.7	0
359	Personalized Methodological Approaches to the Issues of Monitoring the Effectiveness and Safety of Pharmacotherapy with Antiepileptic Drugs Based on Mobile Medicine Technologies. Personalized Psychiatry and Neurology, 2023, 3, 22-27.	0.5	1
360	Neural Models for Generating Natural Language Summaries from Temporal Personal Health Data. Journal of Healthcare Informatics Research, 2024, 8, 370-399.	7.6	0
361	Understanding the integration of accessibility requirements in the development process of information systems: a systematic literature review. Requirements Engineering, 0, , .	3.1	0

#	Article	IF	CITATIONS
362	Evaluation of Mobile Applications for Patients with Diabetes Mellitus: A Scoping Review. Healthcare (Switzerland), 2024, 12, 368.	2.0	0
364	App-Mohedo®: A mobile app for the management of chronic pelvic pain. A design and development study. International Journal of Medical Informatics, 2024, 186, 105410.	3.3	0