A novel double-negative feedback loop between miR-48 axis regulates breast cancer cell proliferation and tumo

Oncotarget 7, 18295-18308 DOI: 10.18632/oncotarget.7577

Citation Report

#	Article	IF	CITATIONS
1	miR-489 Suppresses Proliferation and Invasion of Human Bladder Cancer Cells. Oncology Research, 2016, 24, 391-398.	0.6	31
2	microRNA-489 Plays an Anti-Metastatic Role in Human Hepatocellular Carcinoma by Targeting Matrix Metalloproteinase-7. Translational Oncology, 2017, 10, 211-220.	1.7	29
3	Upregulation of miR-101 enhances the cytotoxic effect of anticancer drugs through inhibition of colon cancer cell proliferation. Oncology Reports, 2017, 38, 100-108.	1.2	22
4	The miR-30 family: Versatile players in breast cancer. Tumor Biology, 2017, 39, 101042831769220.	0.8	70
5	CCL20/CCR6 promotes cell proliferation and metastasis in laryngeal cancer by activating p38 pathway. Biomedicine and Pharmacotherapy, 2017, 85, 486-492.	2.5	32
6	miR-489 inhibits proliferation, cell cycle progression and induces apoptosis of glioma cells via targeting SPIN1-mediated PI3K/AKT pathway. Biomedicine and Pharmacotherapy, 2017, 93, 435-443.	2.5	50
7	Use of potential dietary phytochemicals to target miRNA: Promising option for breast cancer prevention and treatment?. Journal of Functional Foods, 2017, 28, 177-193.	1.6	39
8	Shp2 Plays a Critical Role in IL-6-Induced EMT in Breast Cancer Cells. International Journal of Molecular Sciences, 2017, 18, 395.	1.8	27
9	Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3. International Journal of Molecular Sciences, 2017, 18, 134.	1.8	25
10	Long non-coding RNA ENST01108 promotes carcinogenesis of glioma by acting as a molecular sponge to modulate miR-489. Biomedicine and Pharmacotherapy, 2018, 100, 20-28.	2.5	20
11	A 4-microRNA signature predicts lymph node metastasis and prognosis in breast cancer. Human Pathology, 2018, 76, 122-132.	1.1	46
12	H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death and Disease, 2018, 8, e2569-e2569.	2.7	199
13	Autophagy, Cell Viability, and Chemoresistance Are Regulated By miR-489 in Breast Cancer. Molecular Cancer Research, 2018, 16, 1348-1360.	1.5	55
14	Autotaxin exacerbates tumor progression by enhancing MEK1 and overriding the function of miR-489-3p. Cancer Letters, 2018, 432, 84-92.	3.2	14
15	Gene Expression Detection Assay for Cancer Clinical Use. Journal of Cancer, 2018, 9, 2249-2265.	1.2	96
16	Overexpression of miR-489 derails mammary hierarchy structure and inhibits HER2/neu-induced tumorigenesis. Oncogene, 2019, 38, 445-453.	2.6	18
17	Micro <scp>RNA</scp> â€9 exerts antitumor effects on hepatocellular carcinoma progression by targeting <scp>HMGA</scp> 2. FEBS Open Bio, 2019, 9, 1784-1797.	1.0	15
18	High-Temperature Liquid Chromatography and the Hyphenation with Mass Spectrometry Using High-Pressure Electrospray Ionization. Mass Spectrometry, 2019, 8, S0079-S0079.	0.2	8

.,		15	C
Ŧ	ARTICLE	IF	CITATIONS
19	Autoimmune Myasthenia Gravis by Downregulating TRIM9. NeuroImmunoModulation, 2019, 26, 7-18.	0.9	8
20	Gene Expression and miRNAs Profiling: Function and Regulation in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer. Cancers, 2019, 11, 646.	1.7	37
21	Overexpression of microRNA‑101 causes anti‑tumor effects by targeting CREB1 in colon cancer. Molecular Medicine Reports, 2019, 19, 3159-3167.	1.1	23
22	Upregulation of miR-489-3p and miR-630 inhibits oxaliplatin uptake in renal cell carcinoma by targeting OCT2. Acta Pharmaceutica Sinica B, 2019, 9, 1008-1020.	5.7	50
23	HER2 signaling regulates the tumor immune microenvironment and trastuzumab efficacy. Oncolmmunology, 2019, 8, e1512942.	2.1	57
24	Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1525-1538.	2.0	17
25	miR-489-3p/SIX1 Axis Regulates Melanoma Proliferation and Glycolytic Potential. Molecular Therapy - Oncolytics, 2020, 16, 30-40.	2.0	27
26	Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Research International, 2020, 137, 109623.	2.9	13
27	Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities – A comprehensive review. Chemical Biology and Drug Design, 2021, 97, 721-773.	1.5	12
28	Exploring the mechanism of the potent allosteric inhibitor compound2 on SHP2 WT and SHP2F285S by molecular dynamics study. Journal of Molecular Graphics and Modelling, 2021, 103, 107807.	1.3	3
29	The Anticancer Effects of Flavonoids through miRNAs Modulations in Triple-Negative Breast Cancer. Nutrients, 2021, 13, 1212.	1.7	27
30	microRNA-489 negatively modulates RIG-I signaling pathway via targeting TRAF6 in miiuy croaker after poly(I:C) stimulation. Fish and Shellfish Immunology, 2021, 113, 61-68.	1.6	14
31	Circulating and Intracellular miRNAs as Prognostic and Predictive Factors in HER2-Positive Early Breast Cancer Treated with Neoadjuvant Chemotherapy: A Review of the Literature. Cancers, 2021, 13, 4894.	1.7	6
32	Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. International Journal of Biological Macromolecules, 2021, 191, 727-737.	3.6	33
33	MicroRNAs expression profile in solid and unicystic ameloblastomas. PLoS ONE, 2017, 12, e0186841.	1.1	12
34	LncRNA CHRF-induced miR-489 loss promotes metastasis of colorectal cancer via TWIST1/EMT signaling pathway. Oncotarget, 2017, 8, 36410-36422.	0.8	65
35	Expression of miR‑221 and miR‑489 in breast cancer patients and their relationship with prognosis. Oncology Letters, 2020, 19, 1523-1529.	0.8	6
36	Prediction of clusters of miRNA binding sites in mRNA candidate genes of breast cancer subtypes. PeerJ, 2019, 7, e8049.	0.9	18

CITATION REPORT

CITATION REPORT

#	ARTICLE	IF	CITATIONS
37	miR‑489 promotes apoptosis and inhibits invasiveness of glioma cells by targeting PAK5/RAF1 signaling pathways. Oncology Reports, 2019, 42, 2390-2401.	1.2	2
38	miR-489 acts as a tumor suppressor in human gastric cancer by targeting PROX1. American Journal of Cancer Research, 2016, 6, 2021-2030.	1.4	20
39	Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway. American Journal of Translational Research (discontinued), 2017, 9, 90-102.	0.0	44
40	miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. Journal of Molecular Endocrinology, 2022, 68, 99-110.	1.1	3
41	Fasudil prevents neomycinâ€ʻinduced hair cell damage by inhibiting autophagy through the miRâ€ʻ489/NDP52 signaling pathway in HElâ€ʻOC1 cells. Experimental and Therapeutic Medicine, 2021, 23, 43.	0.8	2
42	Prognostic significance of SHP2 (PTPN11) expression in solid tumors: A meta-analysis. PLoS ONE, 2022, 17, e0262931.	1.1	7
43	Evaluation of Serum MicroRNAs (miR-9-5p, miR-17-5p, and miR-148a-3p) as Potential Biomarkers of Breast Cancer. BioMed Research International, 2022, 2022, 1-8.	0.9	9
44	Blood Circulating Non-Coding RNAs for the Clinical Management of Triple-Negative Breast Cancer. Cancers, 2022, 14, 803.	1.7	5
45	Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Frontiers in Oncology, 0, 12, .	1.3	11
46	miR-489 Confines Uncontrolled Estrogen Signaling through a Negative Feedback Mechanism and Regulates Tamoxifen Resistance in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 8086.	1.8	4
47	A comprehensive review of SHP2 and its role in cancer. Cellular Oncology (Dordrecht), 2022, 45, 729-753.	2.1	32
48	MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 15978.	1.8	3
49	Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers, 2023, 15, 1632.	1.7	7
50	Molecular imprinting of miR-559 on a peptide-immobilized poly L-DOPA/silica core–shell and in vitro investigating its effects on HER2-positive breast cancer cells. Drug Delivery and Translational Research, 2023, 13, 2487-2502.	3.0	3