Virus-encoded microRNA contributes to the molecular lymphomas

Oncotarget 7, 224-240

DOI: 10.18632/oncotarget.4399

Citation Report

#	Article	IF	CITATIONS
1	New developments in the pathology of malignant lymphoma: a review of the literature published from May 2015–September 2015. Journal of Hematopathology, 2015, 8, 225-234.	0.2	2
2	Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103. Cell Death and Disease, 2016, 7, e2353-e2353.	2.7	118
3	Nextâ€generation sequencing of miRNAs in clinical samples of Epstein–Barr virusâ€associated Bâ€cell lymphomas. Cancer Medicine, 2017, 6, 605-618.	1.3	31
4	Epstein–Barr virus-associated lymphomas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160271.	1.8	301
5	miRNAs in B-cell lymphoma: Molecular mechanisms and biomarker potential. Cancer Letters, 2017, 405, 79-89.	3.2	29
6	Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Modern Pathology, 2017, 30, 1338-1366.	2.9	36
7	Serine/threonine-kinase 33 (Stk33) – Component of the neuroendocrine network?. Brain Research, 2017, 1655, 152-160.	1.1	6
8	Pathogenic Role of Exosomes in Epstein-Barr Virus (EBV)-Associated Cancers. International Journal of Biological Sciences, 2017, 13, 1276-1286.	2.6	41
9	Unveiling Another Missing Piece in EBV-Driven Lymphomagenesis: EBV-Encoded MicroRNAs Expression in EBER-Negative Burkitt Lymphoma Cases. Frontiers in Microbiology, 2017, 8, 229.	1.5	35
10	Human and Epstein-Barr Virus miRNA Profiling as Predictive Biomarkers for Endemic Burkitt Lymphoma. Frontiers in Microbiology, 2017, 8, 501.	1.5	19
11	Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability. Journal of Immunology Research, 2017, 2017, 1-8.	0.9	5
12	Epstein–Barr virus in the pathogenesis of oral cancers. Oral Diseases, 2018, 24, 497-508.	1.5	62
13	Rotavirus-encoded virus-like small RNA triggers autophagy by targeting IGF1R via the PI3K/Akt/mTOR pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 60-68.	1.8	32
14	mSELâ€1L deficiency affects vasculogenesis and neural stem cell lineage commitment. Journal of Cellular Physiology, 2018, 233, 3152-3163.	2.0	2
15	Current understanding of the role and regulation of miRNAs in Burkitt lymphoma. Blood and Lymphatic Cancer: Targets and Therapy, 2018, Volume 8, 33-45.	1.2	1
16	Epstein–Barr Virus â~†. , 2018, , .		0
17	Infection of Epstein–Barr Virus in Type III Latency Modulates Biogenesis of Exosomes and the Expression Profile of Exosomal miRNAs in the Burkitt Lymphoma Mutu Cell Lines. Cancers, 2018, 10, 237.	1.7	23
18	Pathobiologic Roles of Epstein–Barr Virus-Encoded MicroRNAs in Human Lymphomas. International Journal of Molecular Sciences, 2018, 19, 1168.	1.8	36

CITATION REPORT

#	Article	IF	CITATIONS
19	Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Human Cell, 2019, 32, 160-171.	1.2	19
20	The impact of EBV on the epigenetics of gastric carcinoma. Future Virology, 2020, , .	0.9	1
21	Relationship between apical junction proteins, gene expression and cancer. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183278.	1.4	18
22	A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Molecular Biology Reports, 2021, 48, 1801-1817.	1.0	12
23	MicroRNA and Other Non-Coding RNAs in Epstein–Barr Virus-Associated Cancers. Cancers, 2021, 13, 3909.	1.7	15
24	MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma. Oncotarget, 2017, 8, 107356-107373.	0.8	24
25	Epigenetic Consequences of Epstein–Barr Virus Infection. Epigenetics and Human Health, 2017, , 65-87.	0.2	0
26	Pathology and Molecular Pathogenesis of Burkitt Lymphoma and Lymphoblastic Lymphoma. Technik Im Fokus, 2019, , 75-94.	0.2	1
27	Systematic analysis of prognostic significance, functional enrichment and immune implication of STK10 in acute myeloid leukemia. BMC Medical Genomics, 2022, 15, 101.	0.7	3
28	EBV persistence in gastric cancer cases conventionally classified as EBER-ISH negative. Infectious Agents and Cancer, 2022, 17, .	1.2	6
29	Oncogenic Viruses-Encoded microRNAs and Their Role in the Progression of Cancer: Emerging Targets for Antiviral and Anticancer Therapies. Pharmaceuticals, 2023, 16, 485.	1.7	4
30	EBV and Lymphomagenesis. Cancers, 2023, 15, 2133.	1.7	11
31	The Evolving Concept of Viruses and Immune System Interaction in Head and Neck Neoplasms. , 2023, , .		0