NOX2 oxidase expressed in endosomes promotes cell predevelopment

Oncotarget 9, 35378-35393

DOI: 10.18632/oncotarget.26237

Citation Report

#	Article	IF	CITATIONS
1	Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules, 2019, 9, 735.	1.8	759
2	Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget, 2019, 10, 883-896.	0.8	51
3	The Role of Epac in Cancer Progression. International Journal of Molecular Sciences, 2020, 21, 6489.	1.8	27
4	Implications of Altered Endosome and Lysosome Biology in Space Environments. International Journal of Molecular Sciences, 2020, 21, 8205.	1.8	4
5	LC3-Associated Phagocytosis (LAP): A Potentially Influential Mediator of Efferocytosis-Related Tumor Progression and Aggressiveness. Frontiers in Oncology, 2020, 10, 1298.	1.3	25
6	Targeting Evolutionary Conserved Oxidative Stress and Immunometabolic Pathways for the Treatment of Respiratory Infectious Diseases. Antioxidants and Redox Signaling, 2020, 32, 993-1013.	2.5	20
7	Inhibiting the Activity of NADPH Oxidase in Cancer. Antioxidants and Redox Signaling, 2020, 33, 435-454.	2.5	44
8	Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chemical Research in Toxicology, 2021, 34, 1826-1845.	1.7	9
9	The secret identities of TMPRSS2: Fertility factor, virus trafficker, inflammation moderator, prostate protector and tumor suppressor. Tumor Biology, 2021, 43, 159-176.	0.8	4
11	Novel and conventional inhibitors of canonical autophagy differently affect LC3â€associated phagocytosis. FEBS Letters, 2022, 596, 491-509.	1.3	9
12	ROS and miRNA Dysregulation in Ovarian Cancer Development, Angiogenesis and Therapeutic Resistance. International Journal of Molecular Sciences, 2022, 23, 6702.	1.8	15
13	The Effects of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Erythropoietin, and Their Interactions in Angiogenesis: Implications in Retinopathy of Prematurity. Cells, 2022, 11, 1951.	1.8	4
14	NADPH Oxidase 2 Has a Crucial Role in Cell Cycle Progression of Esophageal Squamous Cell Carcinoma. Annals of Surgical Oncology, 0, , .	0.7	3
16	Structure, Activation, and Regulation of NOX2: At the Crossroad between the Innate Immunity and Oxidative Stress-Mediated Pathologies. Antioxidants, 2023, 12, 429.	2.2	8
17	Genomic Interplay between Neoneurogenesis and Neoangiogenesis in Carcinogenesis: Therapeutic Interventions. Cancers, 2023, 15, 1805.	1.7	1