GLI inhibitor GANT-61 diminishes embryonal and alveo inhibiting Shh/AKT-mTOR axis

Oncotarget 5, 12151-12165

DOI: 10.18632/oncotarget.2569

Citation Report

#	Article	IF	CITATIONS
1	Cul4A overexpression associated with Gli1 expression in malignant pleural mesothelioma. Journal of Cellular and Molecular Medicine, 2015, 19, 2385-2396.	1.6	10
2	Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. Cancers, 2015, 7, 2330-2351.	1.7	64
3	The Role of Hedgehog Signaling in Tumor Induced Bone Disease. Cancers, 2015, 7, 1658-1683.	1.7	18
4	Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget, 2015, 6, 13899-13913.	0.8	148
5	Rhabdomyosarcoma in Adults: New Perspectives on Therapy. Current Treatment Options in Oncology, 2015, 16, 27.	1.3	48
6	Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 62-72.	3.3	44
7	Micro <scp>RNA</scp> dysregulation in rhabdomyosarcoma: a new player enters the game. Cell Proliferation, 2015, 48, 511-516.	2.4	23
8	Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers, 2016, 8, 22.	1.7	476
9	Development of mediastinal lymphoma after radiotherapy for concurrent medulloblastoma and PNET in a patient with Gorlin syndrome. World Journal of Surgical Oncology, 2016, 14, 215.	0.8	4
10	Suppression of GLI sensitizes medulloblastoma cells to mitochondria-mediated apoptosis. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2469-2478.	1.2	23
11	Translating Hedgehog in Cancer: Controlling Protein Synthesis. Trends in Molecular Medicine, 2016, 22, 851-862.	3.5	13
12	Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Translational Oncology, 2016, 9, 263-273.	1.7	12
13	Emerging from their burrow: Hedgehog pathway inhibitors for cancer. Expert Opinion on Investigational Drugs, 2016, 25, 1153-1166.	1.9	27
14	Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions. Toxicology and Applied Pharmacology, 2016, 308, 46-58.	1.3	10
15	P/ <scp>CAF</scp> mediates <scp>PAX3–FOXO1</scp> â€dependent oncogenesis in alveolar rhabdomyosarcoma. Journal of Pathology, 2016, 240, 269-281.	2.1	19
16	Defining cutaneous molecular pathobiology of arsenicals using phenylarsine oxide as a prototype. Scientific Reports, 2016, 6, 34865.	1.6	21
17	Small GTPase Arl6 controls RH30 rhabdomyosarcoma cell growth through ciliogenesis and Hedgehog signaling. Cell and Bioscience, 2016, 6, 61.	2.1	4
18	Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells. Cell Death and Disease, 2016, 7, e2048-e2048.	2.7	24

#	Article	IF	Citations
19	The Effect of SHH-Gli Signaling Pathway on the Synovial Fibroblast Proliferation in Rheumatoid Arthritis. Inflammation, 2016, 39, 503-512.	1.7	29
20	FOXM1 expression in rhabdomyosarcoma: a novel prognostic factor and therapeutic target. Tumor Biology, 2016, 37, 5213-5223.	0.8	16
21	Hedgehog signaling pathway as a therapeutic target for ovarian cancer. Cancer Epidemiology, 2016, 40, 152-157.	0.8	24
22	Antiâ€cancer stem cell activity of a hedgehog inhibitor <scp>GANT</scp> 61 in estrogen receptorâ€positive breast cancer cells. Cancer Science, 2017, 108, 918-930.	1.7	40
23	Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Molecular Carcinogenesis, 2017, 56, 2543-2557.	1.3	74
24	Development of anticancer agents targeting the Hedgehog signaling. Cellular and Molecular Life Sciences, 2017, 74, 2773-2782.	2.4	18
25	Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and inÂvivo tumor growth of inflammatory breast cancer cells. Cancer Letters, 2017, 411, 136-149.	3.2	21
26	Epithelial-to-Mesenchymal and Mesenchymal-to-Epithelial Transition in Mesenchymal Tumors: A Paradox in Sarcomas?. Cancer Research, 2017, 77, 4556-4561.	0.4	91
27	Sonic Hedgehog Signaling in Thyroid Cancer. Frontiers in Endocrinology, 2017, 8, 284.	1.5	19
28	GLI1 inhibitor GANT61 exhibits antitumor efficacy in T-cell lymphoma cells through down-regulation of p-STAT3 and SOCS3. Oncotarget, 2017, 8, 48701-48710.	0.8	20
29	Hedgehog signaling pathway: Epigenetic regulation and role in disease and cancer development. Journal of Cellular Physiology, 2018, 233, 5726-5735.	2.0	69
30	Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treatment Reviews, 2018, 64, 1-10.	3.4	63
31	Different Response of Ptch Mutant and Ptch Wildtype Rhabdomyosarcoma Toward SMO and PI3K Inhibitors. Frontiers in Oncology, 2018, 8, 396.	1.3	11
32	Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. International Journal of Molecular Sciences, 2018, 19, 2562.	1.8	49
33	Current trends in Hedgehog signaling pathway inhibition by small molecules. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3131-3140.	1.0	30
34	Potential use of CXCL12/CXCR4 and sonic hedgehog pathways as therapeutic targets in medulloblastoma. Acta Oncol $ ilde{A}^3$ gica, 2018, 57, 1134-1142.	0.8	12
35	Targeted Therapy–based Combination Treatment in Rhabdomyosarcoma. Molecular Cancer Therapeutics, 2018, 17, 1365-1380.	1.9	34
36	Targeting GLI Transcription Factors in Cancer. Molecules, 2018, 23, 1003.	1.7	63

#	Article	IF	Citations
37	GLI1 overexpression promotes gastric cancer cell proliferation and migration and induces drug resistance by combining with the AKT-mTOR pathway. Biomedicine and Pharmacotherapy, 2019, 111, 993-1004.	2.5	40
38	Genetics, epigenetics and redox homeostasis in rhabdomyosarcoma: Emerging targets and therapeutics. Redox Biology, 2019, 25, 101124.	3.9	22
39	Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair, 2019, 79, 10-21.	1.3	18
40	Regulation of fibroblast-like synoviocyte transformation by transcription factors in arthritic diseases. Biochemical Pharmacology, 2019, 165, 145-151.	2.0	15
41	Targeting the Hedgehog Pathway in Cancer: Current Evidence and Future Perspectives. Cells, 2019, 8, 153.	1.8	43
42	Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer and Metastasis Reviews, 2019, 38, 625-642.	2.7	31
43	Combined mTORC1/mTORC2 inhibition blocks growth and induces catastrophic macropinocytosis in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24583-24592.	3.3	34
44	Safety and Tolerability of Sonic Hedgehog Pathway Inhibitors in Cancer. Drug Safety, 2019, 42, 263-279.	1.4	77
45	Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Molecular and Cellular Biochemistry, 2019, 454, 11-23.	1.4	45
46	Role of Sonic hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma. Journal of Cellular Physiology, 2020, 235, 3798-3814.	2.0	22
47	Gant61 ameliorates CCl4-induced liver fibrosis by inhibition of Hedgehog signaling activity. Toxicology and Applied Pharmacology, 2020, 387, 114853.	1.3	19
48	Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nature Reviews Clinical Oncology, 2020, 17, 204-232.	12.5	431
49	GANT61 Reduces Hedgehog Molecule (GLI1) Expression and Promotes Apoptosis in Metastatic Oral Squamous Cell Carcinoma Cells. International Journal of Molecular Sciences, 2020, 21, 6076.	1.8	10
50	Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression. Theranostics, 2020, 10, 10001-10015.	4.6	22
51	Up-regulation of GLI1 in vincristine-resistant rhabdomyosarcoma and Ewing sarcoma. BMC Cancer, 2020, 20, 511.	1.1	16
52	5′-Capâ€'Dependent Translation as a Potent Therapeutic Target for Lethal Human Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2021, 141, 742-753.e10.	0.3	7
53	GANT61 plays antitumor effects by inducing oxidative stress through the miRNAâ€1286/RAB31 axis in osteosarcoma. Cell Biology International, 2021, 45, 61-73.	1.4	7
54	Targeting Hedgehog signalling in CD133-positive hepatocellular carcinoma: improving Lenvatinib therapeutic efficiency. Medical Oncology, 2021, 38, 41.	1.2	4

#	Article	IF	CITATIONS
55	Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduction and Targeted Therapy, 2021, 6, 246.	7.1	42
56	The critical role of Hedgehog-responsive mesenchymal progenitors in meniscus development and injury repair. ELife, $2021,10,.$	2.8	14
57	GEFT Inhibits Autophagy and Apoptosis in Rhabdomyosarcoma via Activation of the Rac1/Cdc42-mTOR Signaling Pathway. Frontiers in Oncology, 2021, 11 , 656608.	1.3	5
58	Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in gorlin syndrome. Oncotarget, 2015, 6, 36789-36814.	0.8	25
59	<i>In vitro</i> and <i>in vivo</i> inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. Oncotarget, 2016, 7, 9250-9270.	0.8	112
60	The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met. Oncotarget, 2016, 7, 10472-10485.	0.8	31
61	Targeting Hedgehog Pathway and DNA Methyltransferases in Uterine Leiomyosarcoma Cells. Cells, 2021, 10, 53.	1.8	11
62	GLI1 activation is a key mechanism of erlotinib resistance in human non‑small cell lung cancer. Oncology Letters, 2020, 20, 76.	0.8	8
63	Interfering with Hedgehog Pathway: New Avenues for Targeted Therapy in Rhabdomyosarcoma. Current Drug Targets, 2016, 17, 1228-1234.	1.0	2
64	The Role of Hedgehog Pathway in Female Cancers. Journal of Cancer Science and Clinical Therapeutics, 2020, 04, 487-498.	0.2	9
65	GLI1-targeting drugs induce replication stress and homologous recombination deficiency and synergize with PARP-targeted therapies in triple negative breast cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166300.	1.8	8
67	Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Investigational New Drugs, 2022, 40, 370-388.	1.2	10
68	Molecular Targets for Novel Therapeutics in Pediatric Fusion-Positive Non-CNS Solid Tumors. Frontiers in Pharmacology, 2021, 12, 747895.	1.6	10
69	Molecular Targeted Therapies: Time for a Paradigm Shift in Medulloblastoma Treatment?. Cancers, 2022, 14, 333.	1.7	6
70	GANT61 elevates chemosensitivity to cisplatin through regulating the Hedgehog, AMPK and cAMP pathways in ovarian cancer. Future Medicinal Chemistry, 2022, 14, 479-500.	1.1	5
72	GLI1 expression is an important prognostic factor that contributes to the poor prognosis of rhabdomyosarcoma. Histology and Histopathology, 2016, 31, 329-37.	0.5	3
73	Combined inhibition of BET bromodomain and mTORC1/2 provides therapeutic advantage for rhabdomyosarcoma by switching cell death mechanism. Molecular Carcinogenesis, 2022, 61, 737-751.	1.3	6
75	Reversion of methionine addiction of osteosarcoma cells to methionine independence results in loss of malignancy, modulation of the epithelial-mesenchymal phenotype and alteration of histone-H3 lysine-methylation. Frontiers in Oncology, 0, 12, .	1.3	4

ARTICLE IF CITATIONS

The Hedgehog Pathway as a Therapeutic Target in Chronic Myeloid Leukemia. Pharmaceutics, 2023, 15, 2.0 1