p-21 activated kinase 4 promotes proliferation and surv through AKT- and ERK-dependent activation of NF- ${\rm \hat{I}^oB}$

Oncotarget 5, 8778-8789 DOI: 10.18632/oncotarget.2398

Citation Report

#	Article	IF	CITATIONS
1	Histidineâ€rich calcium binding protein promotes growth of hepatocellular carcinoma <i>inÂvitro</i> and <i>inÂvivo</i> . Cancer Science, 2015, 106, 1288-1295.	1.7	14
2	Development and Characterization of a Novel in vitro Progression Model for UVB-Induced Skin Carcinogenesis. Scientific Reports, 2015, 5, 13894.	1.6	33
3	Size is an essential parameter in governing the UVB-protective efficacy of silver nanoparticles in human keratinocytes. BMC Cancer, 2015, 15, 636.	1.1	17
4	<scp>MiR</scp> â€199a/bâ€3p suppresses migration and invasion of breast cancer cells by downregulating <scp>PAK4/MEK/ERK</scp> signaling pathway. IUBMB Life, 2015, 67, 768-777.	1.5	50
5	MiR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway. Oncotarget, 2015, 6, 37557-37569.	0.8	68
6	Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation. Oncotarget, 2015, 6, 11231-11241.	0.8	92
7	Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis. British Journal of Cancer, 2015, 112, 1772-1781.	2.9	48
8	Signaling, Regulation, and Specificity of the Type II p21-activated Kinases. Journal of Biological Chemistry, 2015, 290, 12975-12983.	1.6	51
9	microRNA: Cancer. Advances in Experimental Medicine and Biology, 2015, , .	0.8	2
10	MYB is a novel regulator of pancreatic tumour growth and metastasis. British Journal of Cancer, 2015, 113, 1694-1703.	2.9	40
11	Insights into the Role of microRNAs in Pancreatic Cancer Pathogenesis: Potential for Diagnosis, Prognosis, and Therapy. Advances in Experimental Medicine and Biology, 2015, 889, 71-87.	0.8	49
12	Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Advances in Biological Regulation, 2015, 59, 65-81.	1.4	121
13	Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2371-2382.	1.9	14
14	Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1265-1275.	1.7	67
15	MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. British Journal of Cancer, 2015, 113, 660-668.	2.9	61
16	Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. Journal of Drug Delivery Science and Technology, 2015, 29, 269-282.	1.4	87
17	Potential therapeutic applications of plant toxin-ricin in cancer: challenges and advances. Tumor Biology, 2015, 36, 8239-8246.	0.8	41
18	SHARPIN overexpression induces tumorigenesis in human prostate cancer LNCaP, DU145 and PC-3 cells via NF-κB/ERK/Akt signaling pathway. Medical Oncology. 2015. 32. 444.	1.2	73

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
19	Combination Therapy for Chronic Lymphoid Leukemia. Journal of Cancer Science & Therapy, 2016, 08, .	1.7	0
20	Liposome and Their Applications in Cancer Therapy. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	68
21	Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson's disease. Science Translational Medicine, 2016, 8, 367ra170.	5.8	24
22	Deubiquitinases and cancer: A snapshot. Critical Reviews in Oncology/Hematology, 2016, 103, 22-26.	2.0	30
23	RelB/NF-κB links cell cycle transition and apoptosis to endometrioid adenocarcinoma tumorigenesis. Cell Death and Disease, 2016, 7, e2402-e2402.	2.7	25
24	Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis. Cancer Letters, 2016, 383, 53-61.	3.2	68
25	Paeoniflorin inhibits human pancreatic cancer cell apoptosis via suppression of MMP-9 and ERK signaling. Oncology Letters, 2016, 12, 1471-1476.	0.8	32
27	Glucose Metabolism Reprogrammed by Overexpression of IKKϵ Promotes Pancreatic Tumor Growth. Cancer Research, 2016, 76, 7254-7264.	0.4	33
28	p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling. Cancer Letters, 2016, 370, 260-267.	3.2	67
29	Targeting polyamine biosynthetic pathway through RNAi causes the abrogation of MCF 7 breast cancer cell line. Tumor Biology, 2016, 37, 1159-1171.	0.8	20
30	Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood, 2017, 129, 2233-2245.	0.6	33
31	Novel p21-Activated Kinase 4 (PAK4) Allosteric Modulators Overcome Drug Resistance and Stemness in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2017, 16, 76-87.	1.9	69
32	PAK4 interacts with p85 alpha: implications for pancreatic cancer cell migration. Scientific Reports, 2017, 7, 42575.	1.6	34
33	Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Letters, 2017, 398, 24-36.	3.2	70
34	DNA methylation of a novel PAK4 locus influences ototoxicity susceptibility following cisplatin and radiation therapy for pediatric embryonal tumors. Neuro-Oncology, 2017, 19, 1372-1379.	0.6	7
35	p21-activated kinase 4 regulates HIF-1α translation in cancer cells. Biochemical and Biophysical Researcl Communications, 2017, 486, 270-276.	h 1.0	13
36	Structure, biochemistry, and biology of PAK kinases. Gene, 2017, 605, 20-31.	1.0	176
37	MicroRNA-342 inhibits the progression of glioma by directly targeting PAK4. Oncology Reports, 2017, 38, 1240-1250.	1.2	15

#	Article	IF	CITATIONS
38	Centrosomal protein 55 activates NF-κB signalling and promotes pancreatic cancer cells aggressiveness. Scientific Reports, 2017, 7, 5925.	1.6	39
39	Pdx1-Cre-driven conditional gene depletion suggests PAK4 as dispensable for mouse pancreas development. Scientific Reports, 2017, 7, 7031.	1.6	4
40	Inhibition of neuroblastoma proliferation by PF-3758309, a small-molecule inhibitor that targets p21-activated kinase 4. Oncology Reports, 2017, 38, 2705-2716.	1.2	17
41	Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Review of Anticancer Therapy, 2017, 17, 19-31.	1.1	51
42	Targeting Rho, Rac, CDC42 GTPase Effector p21 Activated Kinases in Mutant K-Ras-Driven Cancer. , 2017, , 251-270.		0
43	Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. International Journal of Molecular Sciences, 2017, 18, 779.	1.8	63
44	p21-Activated Kinase 4 Signaling Promotes Japanese Encephalitis Virus-Mediated Inflammation in Astrocytes. Frontiers in Cellular and Infection Microbiology, 2017, 7, 271.	1.8	18
45	DUSP1 inhibits cell proliferation, metastasis and invasion and angiogenesis in gallbladder cancer. Oncotarget, 2017, 8, 12133-12144.	0.8	38
46	Inhibition of p21 activated kinase enhances tumour immune response and sensitizes pancreatic cancer to gemcitabine. International Journal of Oncology, 2018, 52, 261-269.	1.4	10
47	Activated-PAK4 predicts worse prognosis in breast cancer and promotes tumorigenesis through activation of PI3K/AKT signaling. Oncotarget, 2017, 8, 17573-17585.	0.8	56
48	LINC01088 inhibits tumorigenesis of ovarian epithelial cells by targeting miR-24-1-5p. Scientific Reports, 2018, 8, 2876.	1.6	24
49	NF-κB in pancreatic cancer: Its key role in chemoresistance. Cancer Letters, 2018, 421, 127-134.	3.2	71
50	MiR-199a/b-3p inhibits gastric cancer cell proliferation via down-regulating PAK4/MEK/ERK signaling pathway. BMC Cancer, 2018, 18, 34.	1.1	38
51	ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. Molecular Cancer Research, 2018, 16, 187-196.	1.5	32
52	p21-activated kinase 4 as a switch between caspase-8 apoptosis and NF-κB survival signals in response to TNF-α in hepatocarcinoma cells. Biochemical and Biophysical Research Communications, 2018, 503, 3003-3010.	1.0	11
53	DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncology Reports, 2018, 40, 1203-1222.	1.2	46
54	MicroRNA-375 regulates proliferation and apoptosis of glioma cancer cells by inhibiting CTGF-EGFR signaling pathway. Bratislava Medical Journal, 2018, 119, 17-21.	0.4	11
55	Targeted Therapies for Pancreatic Cancer. Cancers, 2018, 10, 36.	1.7	69

#	Article	IF	CITATIONS
56	miR-199a-3p Modulates MTOR and PAK4 Pathways and Inhibits Tumor Growth in a Hepatocellular Carcinoma Transgenic Mouse Model. Molecular Therapy - Nucleic Acids, 2018, 11, 485-493.	2.3	81
57	P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. American Journal of Physiology - Renal Physiology, 2018, 315, G302-G317.	1.6	12
58	Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 2019, 11, .	5.8	418
59	p21-Activated kinase 3 promotes cancer stem cell phenotypes through activating the Akt-GSK3Î ² -Î ² -catenin signaling pathway in pancreatic cancer cells. Cancer Letters, 2019, 456, 13-22.	3.2	16
60	Epigallocatechin Gallate-Gold Nanoparticles Exhibit Superior Antitumor Activity Compared to Conventional Gold Nanoparticles: Potential Synergistic Interactions. Nanomaterials, 2019, 9, 396.	1.9	43
61	MicroRNA-Based Prophylaxis in a Mouse Model of Cirrhosis and Liver Cancer. Molecular Therapy - Nucleic Acids, 2019, 14, 239-250.	2.3	14
62	MicroRNA miRâ€⊋52 targets <i>mbt</i> to control the developmental growth of <i>Drosophila</i> . Insect Molecular Biology, 2019, 28, 444-454.	1.0	14
63	Overexpression of KCNJ4 correlates with cancer progression and unfavorable prognosis in lung adenocarcinoma. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22270.	1.4	15
64	P21 activated kinase signaling in cancer. Seminars in Cancer Biology, 2019, 54, 40-49.	4.3	154
65	PB-10, a thiazolo[4,5-d] pyrimidine derivative, targets p21-activated kinase 4 in human colorectal cancer cells. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126807.	1.0	9
66	Zyflamend induces apoptosis in pancreatic cancer cells via modulation of the JNK pathway. Cell Communication and Signaling, 2020, 18, 126.	2.7	4
67	The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein and Cell, 2022, 13, 6-25.	4.8	25
68	Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Research, 2021, 81, 199-212.	0.4	20
70	Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and β-catenin in rat pancreatic acinar cells. American Journal of Physiology - Renal Physiology, 2020, 318, G490-G503.	1.6	6
71	Therapeutically actionable PAK4 is amplified, overexpressed, and involved in bladder cancer progression. Oncogene, 2020, 39, 4077-4091.	2.6	19
72	LINC00671 suppresses cell proliferation and metastasis in pancreatic cancer by inhibiting AKT and ERK signaling pathway. Cancer Gene Therapy, 2021, 28, 221-233.	2.2	7
73	p21â€activated kinase 4 promotes the progression of esophageal squamous cell carcinoma by targeting LASP1. Molecular Carcinogenesis, 2021, 60, 38-50.	1.3	9
74	Polyphenols Targeting and Influencing Cellular Signaling During Progression and Treatment of Cancer. , 2021, , 95-141.		0

#	Article	IF	CITATIONS
75	PAK4 suppresses motor neuron degeneration in hSOD1 G93A â€linked amyotrophic lateral sclerosis cell and rat models. Cell Proliferation, 2021, 54, e13003.	2.4	8
76	hsa-miR-199a-3p Inhibits Motility, Invasiveness, and Contractility of Ovarian Endometriotic Stromal Cells. Reproductive Sciences, 2021, 28, 3498-3507.	1.1	6
77	Ziziphus nummularia Attenuates the Malignant Phenotype of Human Pancreatic Cancer Cells: Role of ROS. Molecules, 2021, 26, 4295.	1.7	13
78	Chronic exposure to cigarette smoke leads to activation of p21 (RAC1)-activated kinase 6 (PAK6) in non-small cell lung cancer cells. Oncotarget, 2016, 7, 61229-61245.	0.8	45
79	Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer?. Oncotarget, 2017, 8, 14173-14191.	0.8	31
80	Tolfenamic acid-induced alterations in genes and pathways in pancreatic cancer cells. Oncotarget, 2017, 8, 14593-14603.	0.8	11
81	P21-activated kinase 4 involves TSH induced papillary thyroid cancer cell proliferation. Oncotarget, 2017, 8, 24882-24891.	0.8	21
82	Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget, 2017, 8, 103167-103181.	0.8	22
83	MiR-199a-3p decreases esophageal cancer cell proliferation by targeting p21 activated kinase 4. Oncotarget, 2018, 9, 28391-28407.	0.8	27
84	Gemcitabine triggers angiogenesis-promoting molecular signals in pancreatic cancer cells: Therapeutic implications. Oncotarget, 2015, 6, 39140-39150.	0.8	21
85	Inactivation of M2 AChR/NF-ήB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC). Oncotarget, 2015, 6, 29335-29346.	0.8	32
86	Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World Journal of Gastroenterology, 2016, 22, 1224.	1.4	26
87	p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World Journal of Gastroenterology, 2018, 24, 3709-3723.	1.4	33
88	PAK6 promotes cervical cancer progression through activation of the Wnt/β‑catenin signaling pathway. Oncology Letters, 2020, 20, 2387-2395.	0.8	9
89	p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia, 2022, 36, 315-326.	3.3	6
90	NF-κB: Its Role in Pancreatic Cancer. , 2017, , 327-339.		0
92	PAK inhibition by PF-3758309 enhanced the sensitivity of multiple chemotherapeutic reagents in patient-derived pancreatic cancer cell lines. American Journal of Translational Research (discontinued), 2019, 11, 3353-3364.	0.0	3
93	IRS-1 regulates proliferation, invasion and metastasis of pancreatic cancer cells through MAPK and PI3K signaling pathways. International Journal of Clinical and Experimental Pathology, 2018, 11, 5185-5193.	0.5	2

#	Article	IF	CITATIONS
94	p21â€activated kinase 4 inhibition protects against liver ischemia/reperfusion injury: Role of nuclear factor erythroid 2â€related factor 2 phosphorylation. Hepatology, 2022, 76, 345-356.	3.6	8
95	Synthesis of selective PAK4 inhibitors for lung metastasis of lung cancer and melanoma cells. Acta Pharmaceutica Sinica B, 2022, 12, 2905-2922.	5.7	8
96	The significance of PAK4 in signaling and clinicopathology: A review. Open Life Sciences, 2022, 17, 586-598.	0.6	4
97	Targeting of p21-Activated Kinase 4 Radiosensitizes Glioblastoma Cells via Impaired DNA Repair. Cells, 2022, 11, 2133.	1.8	2
98	PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Letters, 2022, 545, 215813.	3.2	4
99	PAK4 expression is associated with the prognosis in non-small cell lung cancer. Medicine (United) Tj ETQq1 1 0.78	84314 rgB 0.4	T ¦Overlock
100	miR-199a-3p increases the anti-tumor activity of palbociclib in liver cancer models. Molecular Therapy - Nucleic Acids, 2022, 29, 538-549.	2.3	6
101	The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Letters, 2022, 548, 215868.	3.2	9
102	p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers, 2022, 14, 4736.	1.7	4
103	Biological Role of the PAK4 Signaling Pathway: A Prospective Therapeutic Target for Multivarious Cancers. Arabian Journal of Chemistry, 2022, , 104438.	2.3	1
104	CircDUSP1 regulates tumor growth, metastasis, and paclitaxel sensitivity in tripleâ€negative breast cancer by targeting miRâ€761/DACT2 signaling axis. Molecular Carcinogenesis, 2023, 62, 450-463.	1.3	3