A novel Cdk9 inhibitor preferentially targets tumor cell

Oncotarget 5, 375-385 DOI: 10.18632/oncotarget.1568

Citation Report

#	Article	IF	CITATIONS
1	Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget, 2014, 5, 7691-7704.	0.8	48
2	Bay 61-3606 Sensitizes TRAIL-Induced Apoptosis by Downregulating Mcl-1 in Breast Cancer Cells. PLoS ONE, 2015, 10, e0146073.	1.1	19
3	CDK8 kinase—An emerging target in targeted cancer therapy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1617-1629.	1.1	56
4	Targeting cell cycle regulators in hematologic malignancies. Frontiers in Cell and Developmental Biology, 2015, 3, 16.	1.8	93
5	The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews Drug Discovery, 2015, 14, 130-146.	21.5	1,316
6	Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnology Advances, 2015, 33, 856-872.	6.0	34
7	Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors. Cancers, 2015, 7, 179-237.	1.7	257
8	Cyclin-dependent kinase inhibitors for cancer therapy: a patent review (2009 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 953-970.	2.4	38
9	Cyclic Dependent Kinase (CDK): Role in Cancer Pathogenesis and as Drug Target in Cancer Therapeutics. Journal of Cancer Science & Therapy, 2016, 8, .	1.7	9
10	Antitumor action of CDK inhibitor LS-007 as a single agent and in combination with ABT-199 against human acute leukemia cells. Acta Pharmacologica Sinica, 2016, 37, 1481-1489.	2.8	30
11	Targeting CDK9: a promising therapeutic opportunity in prostate cancer. Endocrine-Related Cancer, 2016, 23, T211-T226.	1.6	57
12	Recent progress of cyclin-dependent kinase inhibitors as potential anticancer agents. Future Medicinal Chemistry, 2016, 8, 2047-2076.	1.1	10
13	Dual inhibition of Mcl-1 by the combination of carfilzomib and TG02 in multiple myeloma. Cancer Biology and Therapy, 2016, 17, 769-777.	1.5	17
14	Overview of CDK9 as a target in cancer research. Cell Cycle, 2016, 15, 519-527.	1.3	156
15	Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies. Physical Chemistry Chemical Physics, 2016, 18, 2034-2046.	1.3	21
16	Highly Potent, Selective, and Orally Bioavailable 4-Thiazol- <i>N</i> -(pyridin-2-yl)pyrimidin-2-amine Cyclin-Dependent Kinases 4 and 6 Inhibitors as Anticancer Drug Candidates: Design, Synthesis, and Evaluation. Journal of Medicinal Chemistry, 2017, 60, 1892-1915.	2.9	55
17	Inhibitors of cyclin-dependent kinases as cancer therapeutics. , 2017, 173, 83-105.		278
18	Targeting Cyclin-Dependent Kinases in Ovarian Cancer. Cancer Investigation, 2017, 35, 367-376.	0.6	20

#	Article	IF	CITATIONS
19	Systematic Kinase Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline Carcinoma. Cell Reports, 2017, 20, 2833-2845.	2.9	40
20	Cyclin-dependent kinase 9 is required for the survival of adult Drosophila melanogaster glia. Scientific Reports, 2017, 7, 6796.	1.6	4
21	Inhibition of CDK9 induces apoptosis and potentiates the effect of cisplatin in hypopharyngeal carcinoma cells. Biochemical and Biophysical Research Communications, 2017, 482, 536-541.	1.0	7
22	Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group. Cancer Chemotherapy and Pharmacology, 2018, 81, 427-441.	1.1	15
23	Transcriptional targeting of oncogene addiction in medullary thyroid cancer. JCI Insight, 2018, 3, .	2.3	19
24	Potent anti-leukemic activity of a specific cyclin-dependent kinase 9 inhibitor in mouse models of chronic lymphocytic leukemia. Oncotarget, 2018, 9, 26353-26369.	0.8	5
25	Combined protein and ligand based physicochemical aspects of molecular recognition for the discovery of CDK9 inhibitor. Gene Reports, 2018, 13, 212-219.	0.4	6
26	Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)te (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor. European Journal of Medicinal Chemistry, 2018, 158, 896-916	trahydro-2	H-pyran-4-ca
27	Cyclin-dependent kinase 9 as a potential specific molecular target in NK-cell leukemia/lymphoma. Haematologica, 2018, 103, 2059-2068.	1.7	14
28	CDK9 inhibitors in acute myeloid leukemia. Journal of Experimental and Clinical Cancer Research, 2018, 37, 36.	3.5	110
29	Targeting CDK9 for treatment of colorectal cancer. Molecular Oncology, 2019, 13, 2178-2193.	2.1	39
30	Targeting CDK9 and MCL-1 by a new CDK9/p-TEFb inhibitor with and without 5-fluorouracil in esophageal adenocarcinoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986485.	1.4	11
31	CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic Î ² Cells. Cell Reports, 2019, 28, 2892-2904.e7.	2.9	13
32	Cyclinâ€dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer. FASEB Journal, 2019, 33, 5990-6000.	0.2	47
33	CDKI-73: an orally bioavailable and highly efficacious CDK9 inhibitor against acute myeloid leukemia. Investigational New Drugs, 2019, 37, 625-635.	1.2	26
34	EZH2 inhibitors abrogate upregulation of trimethylation of H3K27 by CDK9 inhibitors and potentiate its activity against diffuse large B-cell lymphoma. Haematologica, 2020, 105, 1021-1031.	1.7	6
35	Antitumor activity, multitarget mechanisms, and molecular docking studies of quinazoline derivatives based on a benzenesulfonamide scaffold: Cell cycle analysis. Bioorganic Chemistry, 2020, 104, 104345.	2.0	15
36	Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma. Cancers, 2020, 12, 304.	1.7	13

ARTICLE IF CITATIONS # Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. Journal of Enzyme 37 2.5 17 Inhibition and Medicinal Chemistry, 2021, 36, 693-706. Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents. European Journal of Medicinal Chemistry, 2021, 214, 113244. 2.6 39 Targeting CDK9 for Anti-Cancer Therapeutics. Cancers, 2021, 13, 2181. 1.7 56 CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Frontiers in Oncology, 2021, 11, 678559. Cyclin-Dependent Kinase Inhibitors in Hematological Malignanciesâ€"Current Understanding, 41 1.7 12 (Pre-)Clinical Application and Promising Approaches. Cancers, 2021, 13, 2497. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. Current Chemical Biology, 2021, 15, 139-162. 0.2 Synthesis and biological evaluation of seliciclib derivatives as potent and selective CDK9 inhibitors 43 0.9 3 for prostate cancer therapy. Monatshefte FÃ1/4r Chemie, 2021, 152, 109-120. Synthesis and biological evaluation of selected 7-azaindole derivatives as CDK9/Cyclin T and Haspin 44 1.1 9 inhibitors. Medicinal Chemistry Research, 2020, 29, 1449-1462. Cyclin-Dependent Kinase Inhibitor P1446A Induces Apoptosis in a JNK/p38 MAPK-Dependent Manner in 32 46 1.1 Chronic Lymphocytic Leukemia B-Cells. PLoS ONE, 2015, 10, e0143685. Inhibition of cyclin dependent kinase 9 by dinaciclib suppresses cyclin B1 expression and tumor growth 0.8 in triple negative breast cancer. Oncotarget, 2016, 7, 56864-56875. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in 48 0.8 51 hepatocellular carcinoma. Oncotarget, 2014, 5, 5403-5415. The p53 transcriptional pathway is preserved in ATMmutated and NOTCH1mutated chronic lymphocytic leukemias. Oncotarget, 2014, 5, 12635-12645. 49 0.8 Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of 50 0.8 52 ovarian cancer. Oncotarget, 2015, 6, 14926-14939. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of <i>MYB</i>and<i>MCL-1</i>expression. Oncotarget, 2016, 7, 9069-9083. 0.8 38 Phenylamino-pyrimidine (PAP) Privileged Structure: Synthesis and Medicinal Applications. Current 52 1.0 7 Topics in Medicinal Chemistry, 2020, 20, 227-243. Targeting CDK9: A novel biomarker in�the�treatment of endometrial cancer. Oncology Reports, 2020, 44, 1929-1938. 1.2 The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers, 2022, 14, 293. 55 1.7 27 CDK9 is up-regulated and associated with prognosis in patients with papillary thyroid carcinoma. Medicine (United States), 2022, 101, e28309.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
57	Metabolomics-based phenotypic screens for evaluation of drug synergy via direct-infusion mass spectrometry. IScience, 2022, 25, 104221.	1.9	8
58	CDK9 inhibitors in cancer research. RSC Medicinal Chemistry, 2022, 13, 688-710.	1.7	10
59	Molecular Insights on Selective and Specific Inhibitors of Cyclin Dependent Kinase 9 Enzyme (CDK9) for the Purpose of Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 383-403.	0.9	2
60	Design, synthesis, and biological evaluation of (E)-N′-substitute-4-((4-pyridylpyrimidin-2-yl)amino)benzohydrazide derivatives as novel potential CDK9 inhibitors. Arabian Journal of Chemistry, 2022, 15, 104039.	2.3	4
61	Synthesis and Biological Evaluation of Imadazo[1,2-a]pyrazines as Anticancer and Antiviral Agents through Inhibition of CDK9 and Human Coronavirus. Pharmaceuticals, 2022, 15, 859.	1.7	3
62	Computational Investigations of Coumarin Derivatives as Cyclindependent Kinase 9 Inhibitors Using 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation. Current Computer-Aided Drug Design, 2022, 18, 363-380.	0.8	1
63	LS-007 inhibits melanoma growth via inducing apoptosis and cell cycle arrest and regulating macrophage polarization. Melanoma Research, 0, Publish Ahead of Print, .	0.6	0
64	Discovery of Novel and Potent Inhibitors of Cyclinâ€Dependent Kinases 7 and 9: Design, Synthesis, Structureâ€Activity Relationship Analysis and Biological Evaluation. ChemMedChem, 0, , .	1.6	3
65	Nature-Derived Compounds as Potential Bioactive Leads against CDK9-Induced Cancer: Computational and Network Pharmacology Approaches. Processes, 2022, 10, 2512.	1.3	1
66	Synthesis, Cytotoxic Evaluation, and Structure-Activity Relationship of Substituted Quinazolinones as Cyclin-Dependent Kinase 9 Inhibitors. Molecules, 2023, 28, 120.	1.7	2
67	CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. Advances in Protein Chemistry and Structural Biology, 2023, , 125-177.	1.0	9
68	Cyclin-dependent kinases in cancer: Role, regulation, and therapeutic targeting. Advances in Protein Chemistry and Structural Biology, 2023, , 21-55.	1.0	6
69	CDK9 inhibition induces epigenetic reprogramming revealing strategies to circumvent resistance in lymphoma. Molecular Cancer, 2023, 22, .	7.9	5