Deep Clustering to Identify Sources of Urban Seismic N

Seismological Research Letters 92, 1011-1022

DOI: 10.1785/0220200164

Citation Report

#	Article	IF	Citations
1	Unsupervised Deep Clustering of Seismic Data: Monitoring the Ross Ice Shelf, Antarctica. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021716.	3.4	19
2	Dataâ€Driven Velocity Model Evaluation Using Kâ€Means Clustering. Geophysical Research Letters, 2021, 48, e2021GL096040.	4.0	5
3	Hierarchical Exploration of Continuous Seismograms With Unsupervised Learning. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	15
4	Characteristics and impact of environmental shaking in the Taipei metropolitan area. Scientific Reports, 2022, 12, 743.	3.3	4
5	Deep convolutional autoencoders as generic feature extractors in seismological applications. Artificial Intelligence in Geosciences, 2021, 2, 96-106.	1.9	4
6	Toward improved urban earthquake monitoring through deep-learning-based noise suppression. Science Advances, 2022, 8, eabl3564.	10.3	19
7	Fusing Multimodal and Anatomical Volumes of Interest Features Using Convolutional Auto-Encoder and Convolutional Neural Networks for Alzheimer's Disease Diagnosis. Frontiers in Aging Neuroscience, 2022, 14, 812870.	3.4	1
8	Big Data Seismology. Reviews of Geophysics, 2022, 60, .	23.0	24
9	Alâ€Based Unmixing of Medium and Source Signatures From Seismograms: Ground Freezing Patterns. Geophysical Research Letters, 2022, 49, .	4.0	3
10	Automatic classification with an autoencoder of seismic signals on a distributed acoustic sensing cable. Computers and Geotechnics, 2023, 155, 105223.	4.7	1
11	Machine learning in microseismic monitoring. Earth-Science Reviews, 2023, 239, 104371.	9.1	16
12	Shallow Seismicity in the Long Beach–Seal Beach, California Area. Seismological Research Letters, 0, , .	1.9	O
13	Cluster Analysis of Slope Hazard Seismic Recordings Based Upon Unsupervised Deep Embedded Clustering. Seismological Research Letters, 0, , .	1.9	1
14	Convolutional variational autoencoder for ground motion classification and generation toward efficient seismic fragility assessment. Computer-Aided Civil and Infrastructure Engineering, 2024, 39, 165-185.	9.8	2
15	Unsupervised clustering of ambient seismic noise in an urban environment. Computers and Geosciences, 2023, 179, 105432.	4.2	1
16	Intelligent Aerospace Terminologies Recognition based on Spectrogram using Machine Learning. , 2023, , , .		O
17	Tremor clustering reveals pre-eruptive signals and evolution of the 2021 Geldingadalir eruption of the Fagradalsfjall Fires, Iceland. Communications Earth & Environment, 2024, 5, .	6.8	0