Segmental chloride transport in the Dahl-S rat kidney d

Journal of the American Society of Nephrology: JASN 5, 1567-1572 DOI: 10.1681/asn.v581567

Citation Report

#	Article	IF	CITATIONS
1	Renal P450 Metabolites of Arachidonic Acid and the Development of Hypertension in Dahl Salt-Sensitive Rats. American Journal of Hypertension, 1997, 10, 63S-67S.	1.0	56
2	Nitric oxide in renal health and disease. American Journal of Kidney Diseases, 1997, 30, 311-333.	2.1	199
3	Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. American Journal of Physiology - Renal Physiology, 1997, 272, F561-F578.	1.3	201
4	NITRIC OXIDE, THE KIDNEY AND HYPERTENSION Clinical and Experimental Pharmacology and Physiology, 1997, 24, 600-606.	0.9	26
5	Candidate Genes in the Regulation of Na ⁺ Transport by Inner Medullary Collecting Duct Cells From Dahl Rats. Hypertension, 1998, 31, 608-614.	1.3	4
6	Endogenous nitric oxide inhibits chloride transport in the thick ascending limb. American Journal of Physiology - Renal Physiology, 1999, 276, F159-F163.	1.3	90
7	Nitric Oxide–Induced Inhibition of Transport by Thick Ascending Limbs From Dahl Salt-Sensitive Rats. Hypertension, 1999, 34, 508-513.	1.3	77
8	Abnormal pressure-natriuresis in hypertension: role of nitric oxide. Acta Physiologica Scandinavica, 2000, 168, 161-168.	2.3	57
9	Endothelin inhibits thick ascending limb chloride flux via ET _B receptor-mediated NO release. American Journal of Physiology - Renal Physiology, 2000, 279, F326-F333.	1.3	106
10	Increased levels of hypothalamic neuronal nitric oxide synthase and vasopressin in salt-loaded Dahl rat. Autonomic Neuroscience: Basic and Clinical, 2001, 87, 225-235.	1.4	21
11	α-2 And β-adrenergic receptors mediate NE's biphasic effects on rat thick ascending limb chloride flux. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R979-R986.	0.9	17
12	α ₂ -Adrenergic-mediated tubular NO production inhibits thick ascending limb chloride absorption. American Journal of Physiology - Renal Physiology, 2001, 281, F679-F686.	1.3	39
13	Intrarenal Transport and Vasoactive Substances in Hypertension. Hypertension, 2001, 38, 621-624.	1.3	83
14	Role of nitric oxide in the regulation of nephron transport. American Journal of Physiology - Renal Physiology, 2002, 282, F777-F784.	1.3	227
15	High-Salt Diet Increases Sensitivity to NO and eNOS Expression But Not NO Production in THALs. Hypertension, 2003, 41, 682-687.	1.3	30
16	Gene Transfer of eNOS to the Thick Ascending Limb of eNOS-KO Mice Restores the Effects of I -Arginine on NaCl Absorption. Hypertension, 2003, 42, 674-679.	1.3	66
17	Flow increases superoxide production by NADPH oxidase via activation of Na-K-2Cl cotransport and mechanical stress in thick ascending limbs. American Journal of Physiology - Renal Physiology, 2007, 292, F993-F998.	1.3	52
18	Angiotensin II–Dependent Hypertension Increases Na Transport-Related Oxygen Consumption by the Thick Ascending Limb. Hypertension, 2008, 52, 1091-1098.	1.3	49

CITATION REPORT

#	Article	IF	CITATIONS
19	Cellular Stretch Increases Superoxide Production in the Thick Ascending Limb. Hypertension, 2008, 51, 488-493.	1.3	37
20	PKC-α mediates flow-stimulated superoxide production in thick ascending limbs. American Journal of Physiology - Renal Physiology, 2010, 298, F885-F891.	1.3	31
21	Regulation of Renal NaCl Transport by Nitric Oxide, Endothelin, and ATP: Clinical Implications. Annual Review of Physiology, 2011, 73, 359-376.	5.6	86
22	Molecular regulation of NKCC2 in the thick ascending limb. American Journal of Physiology - Renal Physiology, 2011, 301, F1143-F1159.	1.3	147
23	High salt differentially regulates surface NKCC2 expression in thick ascending limbs of Dahl salt-sensitive and salt-resistant rats. American Journal of Physiology - Renal Physiology, 2011, 300, F1096-F1104.	1.3	45
24	NADPH oxidase 4 mediates flow-induced superoxide production in thick ascending limbs. American Journal of Physiology - Renal Physiology, 2012, 303, F1151-F1156.	1.3	25
25	Hyperphosphorylation of Na-K-2Cl Cotransporter in Thick Ascending Limbs of Dahl Salt-Sensitive Rats. Hypertension, 2012, 60, 1464-1470.	1.3	20
26	Angiotensin II Type 2 Receptor–Mediated Inhibition of NaCl Absorption Is Blunted in Thick Ascending Limbs From Dahl Salt-Sensitive Rats. Hypertension, 2012, 60, 765-769.	1.3	20
27	Overexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 936-941.	1.8	27
28	Silencing of HIF Prolyl-Hydroxylase 2 Gene in the Renal Medulla Attenuates Salt-Sensitive Hypertension in Dahl S Rats. American Journal of Hypertension, 2014, 27, 107-113.	1.0	26
29	Molecular regulation of NKCC2 in blood pressure control and hypertension. Current Opinion in Nephrology and Hypertension, 2019, 28, 474-480.	1.0	14
30	Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiological Reviews, 2019, 99, 235-309.	13.1	31
31	Fructose acutely stimulates NKCC2 activity in rat thick ascending limbs by increasing surface NKCC2 expression. American Journal of Physiology - Renal Physiology, 2019, 316, F550-F557.	1.3	16
32	Stretch-Induced Increases in Intracellular Ca Stimulate Thick Ascending Limb O ₂ ^{â~'} Production and Are Enhanced in Dahl Salt-Sensitive Rats. Hypertension, 2020, 75, 431-438.	1.3	3
33	Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and hypertension. Journal of Hypertension, 2021, 39, 1490-1504.	0.3	13
34	Cytochrome P4504A Genotype Cosegregates With Hypertension in Dahl S Rats. Hypertension, 1996, 27, 564-568.	1.3	62
35	Role of 20-HETE in Elevating Loop Chloride Reabsorption in Dahl SS/Jr Rats. Hypertension, 1996, 27, 631-635.	1.3	67
36	Ubiquitination of NKCC2 by the cullin-RING E3 ubiquitin ligase family in the thick ascending limb of the loop of Henle, American Journal of Physiology - Renal Physiology, 2023, 324, F315-F328	1.3	0