Noninvasive Evaluation of a Novel Swine Model of Rena

Journal of the American Society of Nephrology: JASN 10, 1455-1465 DOI: 10.1681/asn.v1071455

Citation Report

#	Article	IF	CITATIONS
1	In Vivo Renal Vascular and Tubular Function in Experimental Hypercholesterolemia. Hypertension, 1999, 34, 859-864.	2.7	46
2	Renal blood flow measurement by positron emission tomography using 150-labeled water. Kidney International, 2000, 57, 2511-2518.	5.2	39
3	ELECTRON BEAM COMPUTERIZED TOMOGRAPHY ASSESSMENT OF IN VIVO SINGLE KIDNEY GLOMERULAR FILTRATION RATE AND TUBULAR DYNAMICS DURING CHRONIC PARTIAL UNILATERAL URETERAL OBSTRUCTION IN THE PIG. Journal of Urology, 2001, 166, 2530-2535.	0.4	12
4	Noninvasive measurement of concurrent single-kidney perfusion, glomerular filtration, and tubular function. American Journal of Physiology - Renal Physiology, 2001, 281, F630-F638.	2.7	140
5	Functional Assessment of the Circulation of the Single Kidney. Hypertension, 2001, 38, 625-629.	2.7	11
7	Atherosclerotic renal artery stenosis in 2001—are we less confused than before?. Nephrology Dialysis Transplantation, 2001, 16, 2124-2127.	0.7	14
8	Increased Oxidative Stress in Experimental Renovascular Hypertension. Hypertension, 2001, 37, 541-546.	2.7	247
9	Combination of Hypercholesterolemia and Hypertension Augments Renal Function Abnormalities. Hypertension, 2001, 37, 774-780.	2.7	52
10	Distinct Renal Injury in Early Atherosclerosis and Renovascular Disease. Circulation, 2002, 106, 1165-1171.	1.6	235
11	Dynamic renal blood flow measurement by positron emission tomography in patients with CRF. American Journal of Kidney Diseases, 2002, 40, 947-954.	1.9	26
12	Cortical thickness: An early morphological marker of atherosclerotic renal disease. Kidney International, 2002, 61, 591-598.	5.2	73
13	Renal Handling of Xâ€ray Contrast Media Imaging and Exploration with Electron Beam CT. Annals of the New York Academy of Sciences, 2002, 972, 317-324.	3.8	2
14	Stable patients with atherosclerotic renal artery stenosis should be treated first with medical management. American Journal of Kidney Diseases, 2003, 42, 858-863.	1.9	14
15	Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): Results in animals and humans with renal artery stenosis. Magnetic Resonance in Medicine, 2003, 49, 288-298.	3.0	67
16	Renal blood flow in hypercholesterolemic pigs is increased by chronic antioxidant treatment. Journal of Veterinary Pharmacology and Therapeutics, 2003, 26, 113-116.	1.3	7
17	Angiotensin II AT1 Receptor Blockade Improves Renal Perfusion in Hypercholesterolemia. American Journal of Hypertension, 2003, 16, 111-115.	2.0	23
18	Hypertension exacerbates the effect of hypercholesterolemia on the myocardial microvasculature. Cardiovascular Research, 2003, 58, 213-221.	3.8	31
19	Beneficial Effects of Antioxidant Vitamins on the Stenotic Kidney. Hypertension, 2003, 42, 605-612.	2.7	67

	Сітатіо	n Report	
#	Article	IF	CITATIONS
20	Hypercholesterolemia and Hypertension Have Synergistic Deleterious Effects on Coronary Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 885-891.	2.4	71
21	Mechanisms of Renal Structural Alterations in Combined Hypercholesterolemia and Renal Artery Stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1295-1301.	2.4	145
22	Long-Term Antioxidant Intervention Improves Myocardial Microvascular Function in Experimental Hypertension. Hypertension, 2004, 43, 493-498.	2.7	41
23	Comparison of acute and chronic antioxidant interventions in experimental renovascular disease. American Journal of Physiology - Renal Physiology, 2004, 286, F1079-F1086.	2.7	75
24	Antioxidant Intervention Blunts Renal Injury in Experimental Renovascular Disease. Journal of the American Society of Nephrology: JASN, 2004, 15, 958-966.	6.1	114
25	Cortical Microvascular Remodeling in the Stenotic Kidney. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1854-1859.	2.4	141
26	Renal-Portal Shunt Ameliorates Renovascular Hypertension in Pigs. Artificial Organs, 2005, 29, 333-337.	1.9	3
27	Animal models of hypertension: An overview. Translational Research, 2005, 146, 160-173.	2.3	147
28	Differential Effect of Experimental Hypertension and Hypercholesterolemia on Adventitial Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 447-453.	2.4	61
29	Pathways of Renal Fibrosis and Modulation of Matrix Turnover in Experimental Hypercholesterolemia. Hypertension, 2005, 46, 772-779.	2.7	64
30	Vascular wall elasticity measurement by magnetic resonance imaging. Magnetic Resonance in Medicine, 2006, 56, 593-600.	3.0	67
31	Endothelin-A Receptor Blockade Improves Renal Microvascular Architecture and Function in Experimental Hypercholesterolemia. Journal of the American Society of Nephrology: JASN, 2006, 17, 3394-3403.	6.1	40
32	Functional and structural remodeling of the myocardial microvasculature in early experimental hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H978-H984.	3.2	48
33	Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia. FASEB Journal, 2006, 20, 1706-1708.	0.5	116
34	Assessment of Renal Hemodynamics and Function in Pigs with 64-Section Multidetector CT: Comparison with Electron-Beam CT. Radiology, 2007, 243, 405-412.	7.3	109
35	Hypertension and Hypercholesterolemia Differentially Affect the Function and Structure of Pig Carotid Artery. Hypertension, 2007, 50, 1063-1068.	2.7	19
36	Renovascular Hypertension: Pathophysiology and Evaluation of Renal Function. , 2007, , 101-111.		2
37	Positron-Emission Tomography Imaging of the Angiotensin II Subtype 1 Receptor in Swine Renal Artery Stenosis. Hypertension, 2008, 51, 466-473.	2.7	25

#	Article	IF	CITATIONS
38	Simvastatin abates development of renal fibrosis in experimental renovascular disease. Journal of Hypertension, 2008, 26, 1651-1660.	0.5	59
39	Endothelial Progenitor Cells Restore Renal Function in Chronic Experimental Renovascular Disease. Circulation, 2009, 119, 547-557.	1.6	209
40	Renal artery stenosis: pathophysiology and treatment. Expert Review of Cardiovascular Therapy, 2009, 7, 1413-1420.	1.5	14
41	Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension. American Journal of Physiology - Renal Physiology, 2009, 297, F981-F986.	2.7	49
42	Monocyte Chemoattractant Proteins Mediate Myocardial Microvascular Dysfunction in Swine Renovascular Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1810-1816.	2.4	22
43	Mechanisms of Tissue Injury in Renal Artery Stenosis: Ischemia and Beyond. Progress in Cardiovascular Diseases, 2009, 52, 196-203.	3.1	102
44	Phaseâ€contrast MRIâ€based elastography technique detects early hypertensive changes in ex vivo porcine aortic wall. Journal of Magnetic Resonance Imaging, 2009, 29, 583-587.	3.4	29
45	The Uncertain Value of Renal Artery Interventions. JACC: Cardiovascular Interventions, 2009, 2, 175-182.	2.9	41
46	Advances in noninvasive methods for functional evaluation of renovascular disease. Journal of the American Society of Hypertension, 2009, 3, 42-51.	2.3	1
47	CT Perfusion in the Treatment of a Swine Model of Unilateral Renal Artery Stenosis: Validation with Microspheres. Journal of Vascular and Interventional Radiology, 2009, 20, 513-523.	0.5	4
48	Current Approaches to Renovascular Hypertension. Medical Clinics of North America, 2009, 93, 717-732.	2.5	48
49	A Biological Phantom for Contrast-Media-Based Perfusion Studies With CT. Investigative Radiology, 2009, 44, 676-682.	6.2	19
50	Absolute Quantification of Regional Renal Blood Flow in Swine by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent. Investigative Radiology, 2009, 44, 125-134.	6.2	27
51	Regional decreases in renal oxygenation during graded acute renal arterial stenosis: a case for renal ischemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R67-R71.	1.8	47
52	Renal Microvascular Disease Determines the Responses to Revascularization in Experimental Renovascular Disease. Circulation: Cardiovascular Interventions, 2010, 3, 376-383.	3.9	65
53	Early atherosclerosis aggravates the effect of renal artery stenosis on the swine kidney. American Journal of Physiology - Renal Physiology, 2010, 299, F135-F140.	2.7	32
54	Role of renal microcirculation in experimental renovascular disease. Nephrology Dialysis Transplantation, 2010, 25, 1079-1087.	0.7	109
55	Revascularization of swine renal artery stenosis improves renal function but not the changes in vascular structure. Kidney International, 2010, 78, 1110-1118.	5.2	51

#	Article	IF	CITATIONS
56	Radiology Imaging of Renal Structure and Function by Computed Tomography, Magnetic Resonance Imaging, and Ultrasound. Seminars in Nuclear Medicine, 2011, 41, 45-60.	4.6	25
57	Determinations of Renal Cortical and Medullary Oxygenation Using Blood Oxygen Level-Dependent Magnetic Resonance Imaging and Selective Diuretics. Investigative Radiology, 2011, 46, 41-47.	6.2	84
58	Noninvasive In Vivo Assessment of Renal Tissue Elasticity During Graded Renal Ischemia Using MR Elastography. Investigative Radiology, 2011, 46, 509-514.	6.2	119
59	The role of oxidative stress in renovascular hypertension. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 144-152.	1.9	51
60	Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease. American Journal of Physiology - Renal Physiology, 2011, 301, F218-F225.	2.7	39
61	Renal Perfusion: Noninvasive Measurement with Multidetector CT versus Fluorescent Microspheres in a Pig Model. Radiology, 2011, 260, 414-420.	7.3	26
62	Reversal of Experimental Renovascular Hypertension Restores Coronary Microvascular Function and Architecture. American Journal of Hypertension, 2011, 24, 458-465.	2.0	14
63	Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis. American Journal of Physiology - Renal Physiology, 2012, 302, F1478-F1485.	2.7	40
64	Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney. American Journal of Physiology - Renal Physiology, 2012, 303, F576-F583.	2.7	18
65	Reversal of renal dysfunction by targeted administration of VEGF into the stenotic kidney: a novel potential therapeutic approach. American Journal of Physiology - Renal Physiology, 2012, 302, F1342-F1350.	2.7	63
66	Changes in Glomerular Filtration Rate After Renal Revascularization Correlate With Microvascular Hemodynamics and Inflammation in Swine Renal Artery Stenosis. Circulation: Cardiovascular Interventions, 2012, 5, 720-728.	3.9	63
67	Selective improvement in renal function preserved remote myocardial microvascular integrity and architecture in experimental renovascular disease. Atherosclerosis, 2012, 221, 350-358.	0.8	24
69	Compartmental Analysis of Renal BOLD MRI Data. Investigative Radiology, 2012, 47, 175-182.	6.2	73
70	Experimental Models of Hypertension and Their Relevance to Human Hypertension. , 2013, , 121-128.		1
71	Renoprotective effects of hepatocyte growth factor in the stenotic kidney. American Journal of Physiology - Renal Physiology, 2013, 304, F625-F633.	2.7	30
72	Ischemic Renal Disease. , 2013, , 2577-2604.		0
73	Assessment of Renal Function; Clearance, the Renal Microcirculation, Renal Blood Flow, and Metabolic Balance. , 2013, 3, 165-200.		34
74	Hemodynamic Determinants of Perivascular Collateral Development in Swine Renal Artery Stenosis. American Journal of Hypertension, 2013, 26, 209-217.	2.0	14

#	Article	IF	CITATIONS
75	Magnetic Resonance Elastography Noninvasively Detects In Vivo Renal Medullary Fibrosis Secondary to Swine Renal Artery Stenosis. Investigative Radiology, 2013, 48, 61-68.	6.2	64
76	Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis. PLoS ONE, 2013, 8, e67474.	2.5	95
77	Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough. Stem Cells International, 2014, 2014, 1-26.	2.5	130
78	Disparate effects of single endothelin-A and -B receptor blocker therapy on the progression of renal injury in advanced renovascular disease. Kidney International, 2014, 85, 833-844.	5.2	29
79	Assessment of Renal Artery Stenosis Using Intravoxel Incoherent Motion Diffusion-Weighted Magnetic Resonance Imaging Analysis. Investigative Radiology, 2014, 49, 640-646.	6.2	45
80	Renal Relevant Radiology. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 395-405.	4.5	68
81	The effect of a thermal renal denervation cycle on the mechanical properties of the arterial wall. Journal of Biomechanics, 2014, 47, 3689-3694.	2.1	5
82	Generation of AQP2-Cre transgenic mini-pigs specifically expressing Cre recombinase in kidney collecting duct cells. Transgenic Research, 2014, 23, 365-375.	2.4	16
83	Mitochondrial targeted peptides attenuate residual myocardial damage after reversal of experimental renovascular hypertension. Journal of Hypertension, 2014, 32, 154-165.	0.5	46
84	Intrarenal Delivery of Mesenchymal Stem Cells and Endothelial Progenitor Cells Attenuates Hypertensive Cardiomyopathy in Experimental Renovascular Hypertension. Cell Transplantation, 2015, 24, 2041-2053.	2.5	39
85	Strategies to optimize kidney recovery and preservation in transplantation: specific aspects in pediatric transplantation. Pediatric Nephrology, 2015, 30, 1243-1254.	1.7	6
86	Chronic blockade of endothelin A and B receptors using macitentan in experimental renovascular disease. Nephrology Dialysis Transplantation, 2015, 30, 584-593.	0.7	14
87	Endothelin-A Receptor Antagonism after Renal Angioplasty Enhances Renal Recovery in Renovascular Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 1071-1080.	6.1	24
88	Effect of three different bariatric obesity surgery procedures on nutrient and energy digestibility using a swine experimental model. Experimental Biology and Medicine, 2015, 240, 1158-1164.	2.4	4
89	3-Methyl-methcathinone: Pharmacokinetic profile evaluation in pigs in relation to pharmacodynamics. Journal of Psychopharmacology, 2015, 29, 734-743.	4.0	22
90	Gained in Translation. Hypertension, 2015, 65, 976-982.	2.7	16
91	Heart rate-induced modifications of concentric left ventricular hypertrophy: exploration of a novel therapeutic concept. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1031-H1039.	3.2	18
92	Low–Energy Shockwave Therapy Improves Ischemic Kidney Microcirculation. Journal of the American Society of Nephrology: JASN, 2016, 27, 3715-3724.	6.1	25

#	Article	IF	CITATIONS
93	Renal Therapeutic Angiogenesis Using a Bioengineered Polymer-Stabilized Vascular Endothelial Growth Factor Construct. Journal of the American Society of Nephrology: JASN, 2016, 27, 1741-1752.	6.1	53
94	A Novel Swine Model of Spontaneous Hypertension With Sympathetic Hyperactivity Responds Well to Renal Denervation. American Journal of Hypertension, 2016, 29, 63-72.	2.0	24
95	Mesenchymal stem cell–derived extracellular vesicles attenuate kidney inflammation. Kidney International, 2017, 92, 114-124.	5.2	247
96	Establishment and evaluation of a reversible two-kidney, one-clip renovascular hypertensive rat model. Experimental and Therapeutic Medicine, 2017, 13, 3291-3296.	1.8	6
97	Animal Models of Kidney Disease. , 2017, , 379-417.		14
98	Mesenchymal Stem Cell-Derived Extracellular Vesicles Improve the Renal Microvasculature in Metabolic Renovascular Disease in Swine. Cell Transplantation, 2018, 27, 1080-1095.	2.5	75
99	A translational model of chronic kidney disease in swine. American Journal of Physiology - Renal Physiology, 2018, 315, F364-F373.	2.7	37
100	The Metabolic Syndrome Does Not Affect Development of Collateral Circulation in the Poststenotic Swine Kidney. American Journal of Hypertension, 2018, 31, 1307-1316.	2.0	7
101	Renal Artery Stenosis Alters Gene Expression in Swine Scattered Tubular-Like Cells. International Journal of Molecular Sciences, 2019, 20, 5069.	4.1	9
102	Renovascular disease induces mitochondrial damage in swine scattered tubular cells. American Journal of Physiology - Renal Physiology, 2019, 317, F1142-F1153.	2.7	18
103	Biopolymer-delivered vascular endothelial growth factor improves renal outcomes following revascularization. American Journal of Physiology - Renal Physiology, 2019, 316, F1016-F1025.	2.7	17
104	Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension, 2019, 73, e87-e120.	2.7	177
105	Urinary mitochondrial <scp>DNA</scp> copy number identifies renal mitochondrial injury in renovascular hypertensive patients undergoing renal revascularization: A Pilot Study. Acta Physiologica, 2019, 226, e13267.	3.8	22
106	Coexisting renal artery stenosis and metabolic syndrome magnifies mitochondrial damage, aggravating poststenotic kidney injury in pigs. Journal of Hypertension, 2019, 37, 2061-2073.	0.5	17
107	The Role of Hypoxia in Ischemic Chronic Kidney Disease. Seminars in Nephrology, 2019, 39, 589-598.	1.6	12
108	Metabolic syndrome increases senescence-associated micro-RNAs in extracellular vesicles derived from swine and human mesenchymal stem/stromal cells. Cell Communication and Signaling, 2020, 18, 124.	6.5	27
109	Metabolic Syndrome Alters the Cargo of Mitochondria-Related microRNAs in Swine Mesenchymal Stem Cell-Derived Extracellular Vesicles, Impairing Their Capacity to Repair the Stenotic Kidney. Stem Cells International, 2020, 2020, 1-15.	2.5	11
110	Recovery of Renal Function following Kidney-Specific VEGF Therapy in Experimental Renovascular Disease. American Journal of Nephrology, 2020, 51, 891-902.	3.1	12

#	Article	IF	CITATIONS
111	Renal ischemia alters expression of mitochondria-related genes and impairs mitochondrial structure and function in swine scattered tubular-like cells. American Journal of Physiology - Renal Physiology, 2020, 319, F19-F28.	2.7	13
112	Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F139-F148.	2.7	15
113	Experimental Renovascular Disease Induces Endothelial Cell Mitochondrial Damage and Impairs Endothelium-Dependent Relaxation of Renal Artery Segments. American Journal of Hypertension, 2020, 33, 765-774.	2.0	5
114	Extracellular vesicles released by adipose tissue-derived mesenchymal stromal/stem cells from obese pigs fail to repair the injured kidney. Stem Cell Research, 2020, 47, 101877.	0.7	25
115	Selective intrarenal delivery of mesenchymal stem cell-derived extracellular vesicles attenuates myocardial injury in experimental metabolic renovascular disease. Basic Research in Cardiology, 2020, 115, 16.	5.9	44
116	Low-Energy Shockwave Treatment Promotes Endothelial Progenitor Cell Homing to the Stenotic Pig Kidney. Cell Transplantation, 2020, 29, 096368972091734.	2.5	9
117	Percutaneous transluminal renal angioplasty attenuates poststenotic kidney mitochondrial damage in pigs with renal artery stenosis and metabolic syndrome. Journal of Cellular Physiology, 2021, 236, 4036-4049.	4.1	4
118	Renovascular Disease Induces Senescence in Renal Scattered Tubular-Like Cells and Impairs Their Reparative Potency. Hypertension, 2021, 77, 507-518.	2.7	13
119	Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Elicit Better Preservation of the Intra-Renal Microvasculature Than Renal Revascularization in Pigs with Renovascular Disease. Cells, 2021, 10, 763.	4.1	8
120	Mesenchymal stem cells protect renal tubular cells via TSC-6 regulating macrophage function and phenotype switching. American Journal of Physiology - Renal Physiology, 2021, 320, F454-F463.	2.7	22
121	Renal Revascularization Attenuates Myocardial Mitochondrial Damage and Improves Diastolic Function in Pigs with Metabolic Syndrome and Renovascular Hypertension. Journal of Cardiovascular Translational Research, 2022, 15, 15-26.	2.4	6
122	Cell-based regenerative medicine for renovascular disease. Trends in Molecular Medicine, 2021, 27, 882-894.	6.7	8
123	Models of Renovascular Disease. , 2014, , 105-116.		1
124	Renovascular Hypertension Induces Myocardial Mitochondrial Damage, Contributing to Cardiac Injury and Dysfunction in Pigs With Metabolic Syndrome. American Journal of Hypertension, 2021, 34, 172-182.	2.0	8
125	Two Cases of Renovascular Hypertension and Ischemic Renal Dysfunction: Reliable Choice of Examinations and Treatments. Hypertension Research, 2004, 27, 985-992.	2.7	3
126	Assessment of Renal Function in Patients with Unilateral Ureteral Obstruction Using Whole-Organ Perfusion Imaging with 320-Detector Row Computed Tomography. PLoS ONE, 2015, 10, e0122454.	2.5	14
127	Correlation of Hemodynamic Impact and Morphologic Degree of Renal Artery Stenosis in a Canine Model. Journal of the American Society of Nephrology: JASN, 2000, 11, 2190-2198.	6.1	81
128	Renal Vascular Function in Hypercholesterolemia Is Preserved by Chronic Antioxidant Supplementation. Journal of the American Society of Nephrology: JASN, 2001, 12, 1882-1891.	6.1	47

#	Article	IF	CITATIONS
130	Aldosterone and Mineralocorticoid Receptors. , 2007, , 159-174.		0
131	Ischemic Renal Disease. , 2008, , 2193-2214.		0
133	Ultrasound-Guided Placement of a Renal Artery Stent Using an Intracardiac Probe for Transvascular Imaging. Open Cardiovascular Medicine Journal, 2011, 5, 215-217.	0.3	0
134	Reactive Oxygen Species and Cardiovascular Diseases. , 0, , .		0
135	Preclinical Model and Histopathology Translational Medicine and Renal Denervation. , 2015, , 15-24.		0
136	ROS in Atherosclerotic Renovascular Disease. Oxidative Stress in Applied Basic Research and Clinical Practice, 2017, , 19-45.	0.4	0
138	Hypertensive Models and Their Relevance to Pediatric Hypertension. , 2018, , 809-818.		0
139	Modern opportunities for improving the technique of radiofrequency denervation of the renal arteries. Vestnik Nacionalʹnogo Mediko-hirurgiÄeskogo Centra Im N I Pirogova, 2020, 15, 114-118.	0.1	1
140	Reliable Assessment of Swine Renal Fibrosis Using Quantitative Magnetization Transfer Imaging. Investigative Radiology, 2022, 57, 334-342.	6.2	2
141	Microvascular remodeling and altered angiogenic signaling in human kidneys distal to occlusive atherosclerotic renal artery stenosis. Nephrology Dialysis Transplantation, 2022, 37, 1844-1856.	0.7	5
142	Ischemic nephropathy - pathogenesis and treatment. Nefrologia, 2012, 32, 432-8.	0.4	13
143	Renal Ischemia Induces Epigenetic Changes in Apoptotic, Proteolytic, and Mitochondrial Genes in Swine Scattered Tubular-like Cells. Cells, 2022, 11, 1803.	4.1	5
146	IL-10 partly mediates the ability of MSC-derived extracellular vesicles to attenuate myocardial damage in experimental metabolic renovascular hypertension. Frontiers in Immunology, 0, 13, .	4.8	10
147	Autologous Extracellular Vesicles Attenuate Cardiac Injury in Experimental Atherosclerotic Renovascular Disease More Effectively Than Their Parent Mesenchymal Stem/Stromal Cells. Stem Cell Reviews and Reports, 0, , .	3.8	0
148	Hypertensive Models and Their Relevance to Pediatric Hypertension. , 2023, , 909-919.		0
149	Renal ischemia alters the transcriptomic and epigenetic profile of inflammatory genes in swine scattered tubular-like cells. Clinical Science, 2023, 137, 1265-1283.	4.3	1
150	Kidney Intrinsic Mechanisms as Novel Targets in Renovascular Hypertension. Hypertension, 2024, 81, 206-217.	2.7	1
151	Preclinical Model and Histopathology Translational Medicine and Renal Denervation. , 2023, , 21-35.		0