Bound Excitons and Donor-Acceptor Pairs in Natural an

Physical Review 139, A588-A602 DOI: 10.1103/physrev.139.a588

Citation Report

#	Article	IF	CITATIONS
1	Intrinsic and Extrinsic Recombination Radiation from Natural and Synthetic Aluminum-Doped Diamond. Physical Review, 1965, 140, A352-A368.	2.7	369
2	Energy Bands in Diamond. Physical Review, 1966, 150, 568-573.	2.7	59
3	Thermoluminescence of Semiconducting Diamonds. Physical Review, 1966, 148, 839-845.	2.7	81
4	Electrical-Transport Measurements on Synthetic Semiconducting Diamond. Physical Review, 1966, 151, 685-688.	2.7	37
5	Ultraviolet Intrinsic and Extrinsic Photoconductivity of Natural Diamond. Physical Review, 1967, 161, 762-768.	2.7	110
6	Extrinsic Recombination Radiation from Natural Diamond: Exciton Luminescence Associated with the N9Center. Physical Review, 1967, 154, 689-696.	2.7	37
7	Phonon interactions, piezo-optical properties and the inter-relationship of the N3 and N9 absorption-emission systems in diamond. Journal of Physics and Chemistry of Solids, 1967, 28, 1115-1136.	4.0	33
8	Vibronic series in the x-ray luminescence of diamond. Journal of Applied Spectroscopy, 1968, 9, 1279-1280.	0.7	1
9	Vibronic series in the x-ray luminescence of diamond. Journal of Applied Spectroscopy, 1968, 9, 1279-1280.	0.7	1
10	Donor—acceptor pairs in semiconductors. Physica Status Solidi (B): Basic Research, 1968, 25, 493-512.	1.5	223
11	Electric-Field Modulation of Luminescence-Excitation in Natural Diamond in the Spectral Energy Range 5.0-6.0 eV Physical Review, 1968, 174, 800-808.	2.7	2
12	Nature of the peaks in the luminescence-excitation spectrum of diamond near the fundamental absorption band. Journal of Applied Spectroscopy, 1969, 10, 675-676.	0.7	0
13	Lamellar formations in the structure of natural diamonds. Journal of Structural Chemistry, 1969, 9, 917-920.	1.0	16
14	The symmetry properties of the ND1 absorption centre in electron- irradiated diamond. Journal of Physics C: Solid State Physics, 1970, 3, 638-650.	1.5	22
15	Impurity conduction in synthetic semiconducting diamond. Journal of Physics C: Solid State Physics, 1970, 3, 1727-1735.	1.5	133
16	Linear Combination of Atomic Orbital-Molecular Orbital Treatment of the Deep Defect Level in a Semiconductor: Nitrogen in Diamond. Physical Review Letters, 1970, 25, 656-659.	7.8	142
17	Radiation induced defects in diamond. Radiation Effects, 1971, 9, 219-234.	0.4	29
18	Dispersed paramagnetic nitrogen content of large laboratory diamonds. Philosophical Magazine and Journal, 1971, 23, 313-318.	1.7	100

#	Article	IF	CITATIONS
19	The nature of the acceptor centre in semiconducting diamond. Journal of Physics C: Solid State Physics, 1971, 4, 1789-1800.	1.5	299
20	Role played by trace aluminum in the optical properties of diamonds. Journal of Structural Chemistry, 1971, 11, 977-980.	1.0	1
21	Thermoluminescence and phosphorescence in natural and synthetic semiconducting diamond. Journal of Luminescence, 1971, 4, 369-392.	3.1	21
22	Luminescence from natural and man-made diamond in the near infrared. Journal of Luminescence, 1971, 4, 169-193.	3.1	52
23	Point defect calculations in diamond-type crystals by the extended Huckel method II: The substitutional impurity problem. Journal of Physics C: Solid State Physics, 1971, 4, 3077-3082.	1.5	34
24	Generation and Detection of Large-k-Vector Phonons. Physical Review Letters, 1971, 27, 670-674.	7.8	40
25	Photoconductivity in irradiated diamond. Journal of Physics C: Solid State Physics, 1972, 5, 2762-2768.	1.5	64
26	A unified treatment of the theory of donor-acceptor pair recombination emission. Journal of Luminescence, 1972, 5, 285-296.	3.1	7
27	Pulse irradiation of diamonds. Journal of Physics and Chemistry of Solids, 1972, 33, 2217-2227.	4.0	1
28	Boron, the Dominant Acceptor in Semiconducting Diamond. Physical Review B, 1973, 7, 4560-4567.	3.2	157
29	Inter-impurity recombinations in semiconductors. Progress in Solid State Chemistry, 1973, 8, 1-126.	7.2	185
30	Molecular-Orbital Treatment for Deep Levels in Semiconductors: Substitutional Nitrogen and the Lattice Vacancy in Diamond. Physical Review B, 1973, 7, 2568-2590.	3.2	311
31	Thermoluminescence theory. Journal of Physics C: Solid State Physics, 1973, 6, 784-796.	1.5	7
32	Excitation and preâ€excitation of glow curves in natural semiconducting diamonds. Journal of Chemical Physics, 1974, 60, 4804-4809.	3.0	5
33	Stokes and anti-stokes excitation of the resonance emission band of crystal phosphors. Journal of Luminescence, 1974, 8, 326-337.	3.1	4
34	Cathodoluminescence, optical absorption and x-ray topographic studies of synthetic diamonds. Journal of Crystal Growth, 1975, 28, 215-226.	1.5	91
35	Electron microscopy of â€~giant' platelets on cube planes in diamond. Philosophical Magazine and Journal, 1976, 34, 993-1012.	1.7	49
36	On the correspondence between cathodoluminescence images and X-ray diffraction contrast images of individual dislocations in diamond. Philosophical Magazine and Journal, 1976, 33, 697-701.	1.7	56

#	Article	IF	CITATIONS
37	Tunnel-injection-luminescence in semiconducting diamond. Journal of Luminescence, 1976, 12-13, 897-901.	3.1	1
38	Determination of boron in natural semiconducting diamond by prompt particle nuclear microanalysis and Schottky barrier differential-capacitance measurements. Journal Physics D: Applied Physics, 1976, 9, 951-963.	2.8	79
39	Semiconducting diamonds. Uspekhi Fizicheskikh Nauk, 1976, 19, 301-316.	0.3	26
40	On topographically identifiable sources of cathodoluminescence in natural diamonds. Philosophical Transactions of the Royal Society A, 1977, 284, 329-368.	1.1	123
41	Group IV materials (mainly SiC). Topics in Applied Physics, 1977, , 31-61.	0.8	25
42	Defects in natural diamonds: Recent observations by new methods. Journal of Crystal Growth, 1977, 42, 625-631.	1.5	18
43	Polarised infrared cathodoluminescence from platelet defects in natural diamonds. Nature, 1977, 267, 36-37.	27.8	42
44	The N3 center in natural diamonds, from ESR data. Journal of Structural Chemistry, 1978, 19, 261-269.	1.0	9
45	Current-voltage characteristics of synthetic semiconductor diamonds doped with boron during synthesis. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii,) Tj ETQq0 0 0 rg	;B T D /O verlo	oc lo 10 Tf 50
	Photocapacity measurements on natural semiconducting diamond Journal of Physics C. Solid State		

46	Photocapacity measurements on natural semiconducting diamond. Journal of Physics C: Solid State Physics, 1978, 11, 1375-1380.	1.5	13
47	Cathodoluminescence at dislocations in divalent oxides. Journal of Luminescence, 1979, 18-19, 905-909.	3.1	47
48	Optical absorption and luminescence in diamond. Reports on Progress in Physics, 1979, 42, 1605-1659.	20.1	520
49	Polarized infra-red cathodoluminescence from synthetic diamonds. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1980, 41, 689-698.	0.6	12
50	Visible emission from crystal growth-sector boundaries: A new luminescence phenomenon. Journal of Luminescence, 1981, 26, 47-52.	3.1	0
51	Cathodoluminescence from â€~giant' platelets, and of the 2·526 eV vibronic system, in type Ia diamonds. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1982, 45, 385-397.	0.6	39
52	Cathodoluminescence and polarization studies from individual dislocations in diamond. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1984, 49, 609-629.	0.6	148
53	Magnetic resonance spectroscopy in semiconducting diamond. Journal of Physics C: Solid State Physics, 1985, 18, 2623-2629.	1.5	7
54	Absorption and luminescence studies of synthetic diamond in which the nitrogen has been aggregated. Journal Physics D: Applied Physics, 1985, 18, 2537-2545.	2.8	50

#	Article	IF	CITATIONS
55	Preparation and Ion-Beam-Induced Luminescence of Thermal CVD Diamond. Japanese Journal of Applied Physics, 1987, 26, 1923-1924.	1.5	4
56	Effect of Doping with Nitrogen and Boron on Cathodoluminescence of CVD-Diamond. Materials Research Society Symposia Proceedings, 1989, 162, 231.	0.1	10
57	Intrinsic and extrinsic cathodoluminescence from single-crystal diamonds grown by chemical vapour deposition. Journal of Physics Condensed Matter, 1989, 1, 4029-4033.	1.8	82
58	The Electronic and Optical Properties of Diamond; Do they Favour Device Applications?. Materials Research Society Symposia Proceedings, 1989, 162, 3.	0.1	39
59	Diamond electronic devices-a critical appraisal. Semiconductor Science and Technology, 1989, 4, 605-611.	2.0	103
60	The polarised adsorption and cathodoluminescence associated with the 1.40 eV centre in synthetic diamond. Journal of Physics Condensed Matter, 1989, 1, 439-450.	1.8	48
61	Thickness dependence of cathodoluminescence in thin films. Journal of Physics Condensed Matter, 1989, 1, 3253-3265.	1.8	11
62	Ultralow-load indentation hardness and modulus of diamond films deposited by hot-filament-assisted CVD. Journal of Materials Research, 1990, 5, 2555-2561.	2.6	35
63	Growth-sector dependence of optical features in large synthetic diamonds. Journal of Crystal Growth, 1990, 104, 257-279.	1.5	190
64	Orientation-dependent nitrogen incorporation on vicinals on synthetic diamond cube growth surfaces. Journal of Crystal Growth, 1990, 100, 354-376.	1.5	34
65	Cathodoluminescence imaging of semiconducting diamond formed by plasma CVD. Journal of Crystal Growth, 1990, 103, 65-70.	1.5	9
66	Luminescence and semiconducting properties of plasma CVD diamond. Vacuum, 1990, 41, 885-888.	3.5	5
67	Carrier density dependent photoconductivity in diamond. Applied Physics Letters, 1990, 57, 623-625.	3.3	75
68	Cathodoluminescence and electroluminescence of undoped and boronâ€doped diamond formed by plasma chemical vapor deposition. Journal of Applied Physics, 1990, 67, 983-989.	2.5	100
69	A spectroscopic study of optical centers in diamond grown by microwave-assisted chemical vapor deposition. Journal of Materials Research, 1990, 5, 2507-2514.	2.6	136
70	Cryogenic cathodoluminescence of plasmaâ€deposited polycrystalline diamond coatings. Journal of Applied Physics, 1990, 67, 7019-7025.	2.5	30
71	Optical studies of the 1.40-eV Ni center in diamond. Physical Review B, 1991, 43, 14196-14205.	3.2	97
72	The electrical properties and device applications of homoepitaxial and polycrystalline diamond films. Proceedings of the IEEE, 1991, 79, 647-668.	21.3	190

#	Article	IF	CITATIONS
73	On long-range lattice perfection in natural type 1a diamond. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 64, 543-560.	0.6	11
74	Cathodoluminescence properties of diamond films synthesized by microwave-plasma-assisted chemical vapour deposition. Thin Solid Films, 1991, 199, 299-311.	1.8	7
75	Complementary orientation-dependent distributions of 1.40 and 2.56 eV cathodoluminescence on vicinals on {111} in synthetic diamonds. Journal of Crystal Growth, 1991, 108, 53-62.	1.5	17
76	Electroluminescent Device Made of Diamond. Japanese Journal of Applied Physics, 1991, 30, 1728-1730.	1.5	11
77	Effects of Oxygen Addition on Diamond Film Growth by Electron-Cyclotron-Resonance Microwave Plasma CVD Apparatus. Japanese Journal of Applied Physics, 1991, 30, L1199-L1202.	1.5	30
78	Filamentâ€assisted diamond growth kinetics. Journal of Applied Physics, 1991, 70, 1385-1391.	2.5	55
79	Cathodoluminescence from diamond films grown by plasmaâ€enhanced chemical vapor deposition in dilute CO/H2, CF4/H2, and CH4/H2mixtures. Applied Physics Letters, 1991, 59, 2463-2465.	3.3	19
80	Effect of residence time on microwave plasma chemical vapor deposition of diamond. Journal of Applied Physics, 1991, 70, 5636-5646.	2.5	39
81	Characterization of diamond films synthesized in the microwave plasmas of CO/H2and CO/O2/H2systems at low temperatures (403–1023 K). Journal of Applied Physics, 1991, 69, 8145-8153.	2.5	79
82	Cathodoluminescence imaging of defects and impurities in diamond films grown by chemical vapor deposition. Journal of Applied Physics, 1991, 69, 3212-3218.	2.5	87
83	Isotopically pure diamond anvil for ultrahigh pressure research. Applied Physics Letters, 1992, 61, 2860-2862.	3.3	19
84	Cathodoluminescence investigation of impurities and defects in single crystal diamond grown by the combustionâ€flame method. Applied Physics Letters, 1992, 60, 1310-1312.	3.3	48
85	The Role of Atomic Hydrogen and Oxygen in Low Temperature Growth of Diamond by Microwave Plasma Assisted Cvd. Materials Research Society Symposia Proceedings, 1992, 270, 365.	0.1	1
86	The characterisation of point defects in diamond by luminescence spectroscopy. Diamond and Related Materials, 1992, 1, 457-469.	3.9	209
87	Selected area diamond deposition by control of the nucleation sites. Diamond and Related Materials, 1992, 1, 220-229.	3.9	36
88	Time resolved photoluminescence and cathodoluminescence of CVD diamond films. Diamond and Related Materials, 1992, 1, 901-905.	3.9	10
89	Ion-implanted structures and doped layers in diamond. Materials Science and Engineering Reports, 1992, 7, 275-364.	5.8	126
90	Optical characterization of diamond. Diamond and Related Materials, 1992, 1, 422-433.	3.9	114

C $^{-1}$	ON	ιD	FD	ORT

#	Article	IF	CITATIONS
91	On the â€~â€~bandâ€A'' emission and boron related luminescence in diamond. Applied Physics Letters, 1 3138-3140.	99 <u>2</u> ,60,	124
92	Diamond growth on carbon-implanted silicon. Applied Surface Science, 1992, 60-61, 291-295.	6.1	4
93	Characterization and morphological features of diamond films and particles affected by a diamond-like pre-coated layer. Surface and Coatings Technology, 1993, 58, 143-147.	4.8	6
94	Aerosol doping of flame-grown diamond films. Diamond and Related Materials, 1993, 2, 1078-1082.	3.9	8
95	Photoluminescence and cathodoluminescence studies of semiconducting diamond. Diamond and Related Materials, 1993, 2, 87-91.	3.9	34
96	Temporally resolved response of a natural type IIA diamond detector to single-particle excitation. Diamond and Related Materials, 1993, 2, 835-840.	3.9	5
97	The influence of oxygen, in gas mixtures and various substrate positions, on the broad cathodoluminescence bands of MPCVD diamond films. Diamond and Related Materials, 1993, 2, 737-741.	3.9	23
98	Radiation damage and electrical properties of ion-implanted chemically vapour deposited diamond. Diamond and Related Materials, 1993, 2, 634-639.	3.9	3
99	Cathodoluminescence of epitaxial diamond films. Diamond and Related Materials, 1993, 2, 762-767.	3.9	9
100	CVD diamond growth mechanisms as identified by surface topography. Diamond and Related Materials, 1993, 2, 997-1003.	3.9	89
101	Homoepitaxial growth of diamond thin films by electron cyclotronâ€resonance microwave plasma chemicalâ€vaporâ€deposition apparatus with CO/H2gaseous source. Applied Physics Letters, 1993, 62, 582-584.	3.3	15
102	Experimental Results in Picosecond and Subpicosecond Range of Ila Type Diamond Detector in X-UV, Visible and Ir Fields. Materials Research Society Symposia Proceedings, 1993, 302, 263.	0.1	2
103	Blue-Green Electroluminescence of Free-Standing Diamond Thin Films. Chinese Physics Letters, 1994, 11, 235-238.	3.3	10
104	Evidence of donor–acceptor pair recombination from a new emission band in semiconducting diamond. Applied Physics Letters, 1994, 64, 2136-2138.	3.3	42
105	Ion beam induced luminescence in natural diamond. Journal of Applied Physics, 1994, 76, 4847-4852.	2.5	14
106	Resolved donor-acceptor pair-recombination lines in diamond luminescence. Physical Review B, 1994, 49, 1685-1689.	3.2	61
107	Ion beam induced luminescence from diamond and other crystals from a nuclear microbeam. Nuclear Instruments & Methods in Physics Research B, 1994, 85, 775-779.	1.4	45
108	Chemical properties of Central African carbonado and its genetic implications. Geochimica Et Cosmochimica Acta, 1994, 58, 2629-2638.	3.9	48

#	Article	IF	CITATIONS
109	Diamond luminescence: resolved donor-acceptor pair recombination lines. Diamond and Related Materials, 1994, 3, 825-830.	3.9	31
110	Microcharacterization of CVD diamond films by scanning electron microscopy: morphology, structure and microdefects. Diamond and Related Materials, 1994, 3, 1337-1351.	3.9	15
111	Cathodoluminescence spectroscopy of diamond films and ceramics. Diamond and Related Materials, 1994, 3, 147-150.	3.9	0
112	Flame deposition and characterization of large type IIA diamond single crystals. Diamond and Related Materials, 1994, 3, 408-416.	3.9	40
113	Cathodoluminescence and electroluminescence in ion implanted type II diamonds. Diamond and Related Materials, 1994, 3, 922-925.	3.9	30
114	Cathodoluminescence of brown diamonds as observed by transmission electron microscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 1177-1185.	0.6	27
115	Intrinsic radiative lifetimes of donor-acceptor pair excitations in diamond. Physical Review B, 1995, 51, 16677-16680.	3.2	17
116	Donor-acceptor pair recombination in synthetic type-IIb semiconducting diamond. Physical Review B, 1995, 51, 9634-9642.	3.2	37
117	Optical detection of magnetic resonance of nitrogen and nickel in high-pressure synthetic diamond. Physical Review B, 1995, 51, 16741-16745.	3.2	32
118	Cathodoluminescence from highâ€pressure synthetic and chemicalâ€vaporâ€deposited diamond. Journal of Applied Physics, 1995, 77, 1729-1734.	2.5	66
119	The influence of differences in gas phase between turbulent and laminar acetylene-oxygen combustion flames on diamond growth. Diamond and Related Materials, 1995, 4, 1113-1125.	3.9	25
120	Electrical properties of boron-doped diamond films after annealing treatment. Diamond and Related Materials, 1995, 4, 451-455.	3.9	12
121	Increased band A cathodoluminescence after carbon ion implantation and annealing of diamond. Diamond and Related Materials, 1996, 5, 907-913.	3.9	15
122	Applications of a New 206.5-nm Continuous-Wave Laser Source: UV Raman Determination of Protein Secondary Structure and CVD Diamond Material Properties. Applied Spectroscopy, 1996, 50, 1459-1468.	2.2	40
123	Mosaic growth of diamond: a study of homoepitaxial flame deposition and etching of {001}-oriented diamond layers. Journal of Crystal Growth, 1996, 165, 387-401.	1.5	20
124	Dependence of Cathodoluminescence on Irradiation Time in Diamond. Physica Status Solidi A, 1996, 154, 321-326.	1.7	2
125	A Study of Polycrystalline CVD Diamond by Nuclear Techniques. Physica Status Solidi A, 1996, 154, 327-350.	1.7	25
126	New visible luminescence spectra from synthetic type IIa diamond. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 359-367.	0.6	2

	Сітатіо	n Report	
#	Article	IF	CITATIONS
127	Electroluminescence of Boron Doped Diamond Thin Films. Chinese Physics Letters, 1996, 13, 455-457.	3.3	4
128	Vibronic model for band A emission in diamond. Physical Review B, 1997, 55, 4093-4096.	3.2	6
129	Electrical properties of B-doped homoepitaxial diamond (001) film. Diamond and Related Materials, 1997, 6, 1753-1758.	3.9	31
130	Phosphorescence in high-pressure synthetic diamond. Diamond and Related Materials, 1997, 6, 99-106.	3.9	39
131	Effects of remote hydrogen plasma treatment (RHPT) on ion-implanted CVD diamond. Diamond and Related Materials, 1997, 6, 1041-1046.	3.9	2
132	Cathodoluminescence spectroscopy of synthetic diamond films. Diamond and Related Materials, 1997, 6, 717-720.	3.9	6
133	Red luminescence in phosphorous-doped chemically vapor deposited diamond. Journal of Applied Physics, 1997, 82, 419-422.	2.5	30
134	Incorporation of lithium in single crystal diamond: diffusion profiles and optical and electrical properties. Diamond and Related Materials, 1997, 6, 1726-1732.	3.9	24
135	Photoluminescence spectra of ultradisperse diamond. Physics of the Solid State, 1997, 39, 1928-1929.	0.6	18
136	Investigation of distribution of defects and impurities in boron-doped CVD diamond film by cathodoluminescence spectroscopy. Thin Solid Films, 1997, 308-309, 279-283.	1.8	14
137	Secondary emission in heat-treated CVD-diamonds. Applied Surface Science, 1997, 111, 151-156.	6.1	1
138	Remote hydrogen plasma treatment (RHPT) of ion implanted CVD diamond. Applied Surface Science, 1997, 113-114, 249-253.	6.1	0
139	Photoluminescence spectroscopic investigation on the quality of diamond films grown in oxy-acetylene combustion flame. Thin Solid Films, 1997, 298, 14-21.	1.8	1
140	A study of the phosphorescence mechanism of polycrystalline diamond films. Journal of Materials Science: Materials in Electronics, 1998, 9, 473-476.	2.2	5
141	Recombination luminescence from defects in boron-ion implantation-doped diamond using low fluences. Materials Research Innovations, 1998, 1, 243-253.	2.3	7
142	Nature of band-A cathodoluminescence inCVD diamond films. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1998, 20, 1193-1200.	0.4	1
143	Correlation between optical absorption and EPR in high-pressure diamond grown from a nickel solvent catalyst. Diamond and Related Materials, 1998, 7, 333-338.	3.9	57
144	CN distribution in flame deposition of diamond and its relation to the growth rate, morphology, and nitrogen incorporation of the diamond layer. Diamond and Related Materials, 1998, 7, 1118-1132.	3.9	12

ARTICLE IF CITATIONS # Doping of diamond by the diffusion of interstitial atoms into layers containing a low density of 145 3.9 15 vacancies. Diamond and Related Materials, 1998, 7, 545-549. Investigation on surface of boron-doped CVD diamond by cathodoluminescence spectroscopy. 146 Diamond and Related Materials, 1998, 7, 748-752. Ultraviolet cathodoluminescence from diamond layers after doping by means of boron-ion 147 3.3 4 implantation. Applied Physics Letters, 1998, 73, 2308-2310. Thermoluminescence of diamond films induced by beta irradiation. Radiation Physics and Chemistry, 148 1999, 54, 223-228. Growth, characterization and properties of CVD diamond films for applications as radiation 149 5.7 8 detectors. Rivista Del Nuovo Cimento, 1999, 22, 1-89. Photoluminescence in CVD Diamond Films. Physica Status Solidi A, 1999, 172, 123-129. 1.7 Cathodoluminescence of diamond films grown on pretreated Si (001) substrates by microwave plasma 151 3.9 11 chemical vapour deposition. Diamond and Related Materials, 1999, 8, 712-716. Characterisation of different habits in torch-flame-grown diamond and diamond-like films. Diamond 3.9 and Related Materials, 1999, 8, 1333-1341. Nitrogen addition during flame deposition of diamond: a study of nitrogen-enhanced growth, 153 3.9 23 texturing and luminescence. Diamond and Related Materials, 1999, 8, 2127-2139. The effects of nitrogen addition on flame deposition of diamond. Proceedings of the Combustion 154 Institute, 2000, 28, 1447-1454. Relation between gas phase CN radical distributions, nitrogen incorporation, and growth rate in 155 2.5 8 flame deposition of diamond. Journal of Applied Physics, 2000, 88, 3708-3716. Current Injection Free-Exciton Recombination Emission from Synthesized Diamond. Japanese Journal of 1.5 Applied Physics, 2000, 39, L604-L606. Spectroscopy of defects and transition metals in diamond. Diamond and Related Materials, 2000, 9, 157 3.9 85 417-423. Luminescence excitation spectra in diamond. Physical Review B, 2000, 61, 10174-10182. 3.2 Characterisation by thermoluminescence of boron doped polycrystalline diamond films. Diamond and 159 3.9 14 Related Materials, 2000, 9, 56-60. Characterization of the broad green band luminescence in CVD and synthetic Ib diamond. Diamond and 33 Related Materials, 2000, 9, 1017-1020. Thermally stimulated properties of CVD diamond films. Diamond and Related Materials, 2000, 9, 161 3.9 17 1245-1248. Thermoluminescence properties of nitrogen containing chemical vapour deposited diamond films. Diamond and Related Materials, 2001, 10, 2084-2091.

#	Article	IF	CITATIONS
163	Efficient Free-Exciton Recombination Emission from Diamond Diode at Room Temperature. Japanese Journal of Applied Physics, 2001, 40, L275-L278.	1.5	34
164	Irradiation effects in semiconducting diamonds. Physica B: Condensed Matter, 2001, 308-310, 612-615.	2.7	5
165	Origin of band-Aemission in diamond thin films. Physical Review B, 2001, 63, .	3.2	81
166	Chemical vapour deposition diamond studied by optical and electron spin resonance techniques. Journal of Physics Condensed Matter, 2002, 14, R467-R499.	1.8	28
167	GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition. Thin Solid Films, 2003, 443, 9-13.	1.8	49
168	Chapter 8 Luminescence from optical defects and impurities in CVD diamond. Semiconductors and Semimetals, 2003, , 379-452.	0.7	6
169	The boron acceptor in diamond. Semiconductor Science and Technology, 2003, 18, S20-S26.	2.0	143
170	Field emission electroluminescence on diamond and carbon nanotube films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1291.	1.6	6
171	Cathodoluminescence investigations on the Popigai, Ries, and Lappajävi impact diamonds. American Mineralogist, 2003, 88, 1778-1787.	1.9	16
172	Electroluminescence of diamond:Ce thin films. Semiconductor Science and Technology, 2003, 18, 144-146.	2.0	13
173	Is dispersed nickel in natural diamonds associated with cuboid growth sectors in diamonds that exhibit a history of mixed-habit growth?. Journal of Crystal Growth, 2004, 263, 575-589.	1.5	58
174	Electroluminescence of diamond films induced by a scanning tunneling microscope. Surface Science, 2004, 549, 203-210.	1.9	6
175	Morphologic and cathodoluminescence studies of diamond films by scanning electron microscopy. Scanning, 1995, 17, 337-347.	1.5	4
176	Afterglow, TL and IRSL in beta-irradiated HPHT type Ib synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3167-3172.	1.8	4
177	Photoluminescence study of ZnO nanotubes under hydrostatic pressure. Applied Physics Letters, 2006, 88, 133127.	3.3	34
178	An x-ray topographic study of diamond anvils: Correlation between defects and helium diffusion. Journal of Applied Physics, 2006, 99, 104906.	2.5	15
179	Thermoluminescence properties of CVD diamond for clinical dosimetry use. Radiation Protection Dosimetry, 2006, 120, 87-90.	0.8	16
180	n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. Journal Physics D: Applied Physics, 2007, 40, 6189-6200.	2.8	90

#	Article	IF	CITATIONS
181	Spectral and kinetic characteristics of the pulsed cathodoluminescence of a natural IIa-type diamond. Russian Physics Journal, 2007, 50, 52-57.	0.4	11
182	Ionoluminescence characterization of microwave and hotâ€filament CVD diamonds. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2221-2225.	1.8	3
183	The presence of defects and their influence on the performance of CVD diamond as an α-particle radiation sensing element. Applied Radiation and Isotopes, 2008, 66, 1128-1137.	1.5	3
184	The effect of HPHT treatment on the spectroscopic features of type IIb synthetic diamonds. Diamond and Related Materials, 2008, 17, 1203-1206.	3.9	5
185	Fluorescent emission characteristics of polycrystalline diamond film prepared by direct current jet CVD. Optoelectronics Letters, 2009, 5, 356-358.	0.8	1
186	Spectroscopic studies of triboluminescence from a sliding contact between diamond, SiO2, MgO, NaCl, and Al2O3 (0001). Vacuum, 2009, 84, 573-577.	3.5	13
187	Chemical vapour deposition synthetic diamond: materials, technology and applications. Journal of Physics Condensed Matter, 2009, 21, 364221.	1.8	310
188	Phosphorescence in type IIb diamonds. Diamond and Related Materials, 2011, 20, 983-989.	3.9	20
189	Local Stress-strain Structure in CVD Diamond Observed by Raman Peak-shift Mapping. Materials Research Society Symposia Proceedings, 2011, 1282, 61.	0.1	0
190	CVD Diamond Dislocations Observed by X-ray Topography, Birefrengence Image and Cathodoluminesence mapping. Materials Research Society Symposia Proceedings, 2011, 1282, 73.	0.1	0
191	Structural characterization of B-doped diamond nanoindentation tips. Journal of Materials Research, 2011, 26, 3051-3057.	2.6	7
192	Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory. Physical Review B, 2012, 86, .	3.2	74
193	Local stress distribution of dislocations in homoepitaxial chemical vapor deposite single-crystal diamond. Diamond and Related Materials, 2012, 23, 109-111.	3.9	27
194	Spectral Lines in Low Pressure Synthetic (CVD) Diamond. , 2012, , 93-126.		0
195	Spectral Lines in Modified Diamond (Irradiation, Heat, etc.). , 2012, , 127-232.		0
196	Donor–Acceptor Pair Transitions in Diamond. , 2012, , 369-405.		0
197	Vibrational Frequencies of Defect Centers in Diamond. , 2012, , 407-412.		0
198	Modification of Diamond by Irradiation and Heat. , 2012, , 413-414.		Ο

#	Article	IF	CITATIONS
199	Isotopic Line Shifts in Diamond. , 2012, , 415-417.		0
200	Spectroscopic Discrimination Between Natural and Nonnatural Diamond. , 2012, , 419-421.		Ο
202	Development of high-purity optical grade single-crystal CVD diamond for intracavity cooling. , 2014, , .		7
203	Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diamond and Related Materials, 2016, 66, 188-195.	3.9	14
204	Temperature effects on luminescence centers in natural type IIb diamonds. Diamond and Related Materials, 2016, 69, 86-95.	3.9	12
205	Growth of thick and heavily boron-doped (113)-oriented CVD diamond films. Diamond and Related Materials, 2016, 66, 61-66.	3.9	22
207	Thick heavily boron doped CVD diamond films homoepitaxially grown on (111)-oriented substrates. Diamond and Related Materials, 2017, 79, 108-111.	3.9	11
208	The luminescence emitted from the type Ib and IIa diamonds under the SiO2 polishing process. Diamond and Related Materials, 2018, 83, 104-108.	3.9	2
209	Efficient phosphorescence from synthetic diamonds. Carbon, 2018, 130, 384-389.	10.3	20
210	Chameleon diamonds: Thermal processes governing luminescence and a model for the color change. Diamond and Related Materials, 2018, 81, 45-53.	3.9	5
211	Crystalline quality distributions of the type IIa diamond substrate and the CVD diamond layer processed by chemical mechanical polishing using a SiO ₂ wheel. Japanese Journal of Applied Physics, 2018, 57, 105503.	1.5	4
212	Key technologies for device fabrications and materials characterizations. , 2018, , 219-294.		2
213	The Effect of Aggregation of Impurity Nitrogen on Diamond X-Ray Luminescence. Moscow University Geology Bulletin, 2018, 73, 161-165.	0.3	1
215	Dynamics of infrared excitations in boron doped diamond. Diamond and Related Materials, 2019, 92, 259-265.	3.9	4
216	The n–Si/p–CVD Diamond Heterojunction. Materials, 2020, 13, 3530.	2.9	6
217	Spatial distribution of defects in natural type IIb diamond after irradiation and annealing. Diamond and Related Materials, 2020, 109, 108034.	3.9	1
218	The role of isolated nitrogen in phosphorescence of high-temperature-high-pressure synthetic type IIb diamonds. Carbon, 2020, 167, 888-895.	10.3	14
219	Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 703-712.	4.9	6

#	ARTICLE	IF	CITATIONS
220	Photoluminescence investigations of ZnO micro/nanostructures. Materials Today Chemistry, 2020, 16, 100243.	3.5	17
221	Thermoluminescence response of detonation diamond microparticles exposed to beta and alpha radiation. Diamond and Related Materials, 2020, 106, 107823.	3.9	2
222	Recent Data on Diamond from the M. V. Lomonosov Deposit. Springer Mineralogy, 2021, , 115-163.	0.4	0
223	X-ray luminescence in diamonds and its application in industry. AIP Conference Proceedings, 2021, , .	0.4	7
224	Cathodoluminescence topography. , 1980, , 533-544.		1
225	Passive Diamond Electronic Devices. , 1995, , 371-442.		10
227	Characterization and Properties of Artificially Grown Diamond. NATO ASI Series Series B: Physics, 1991, , 677-713.	0.2	15
228	Characterisation of Diamond and Diamond-Like Films. NATO ASI Series Series B: Physics, 1991, , 127-150.	0.2	7
231	Spectral Lines in High Pressure Synthetic (HPHT) Diamond. , 2012, , 65-91.		0
232	Impurity Defects in Diamond. , 2012, , 303-367.		1
233	Spectral Lines in Diamond-Related Materials: DLC, Lonsdaleite, etc , 2012, , 233-245.		0
234	Spectral Lines in Natural Diamond. , 2012, , 13-64.		1
235	Spectral Line Shifts from Substituted and Natural Isotopes. , 2012, , 247-268.		0
236	Intrinsic Defects and Their Associates in Diamond. , 2012, , 269-302.		0
237	Cathode-ray Luminescence Caused by Frictional Static Electricity. Journal of the Vacuum Society of Japan, 2013, 56, 179-181.	0.3	1
238	Synthetic diamond lenses for multi-spectral imaging. , 2020, , .		0
239	Magneto-optical spectra of the split nickel-vacancy defect in diamond. Physical Review Research, 2021, 3, .	3.6	10
240	Diamond Spectroscopy, Defect Centers, Color, and Treatments. Reviews in Mineralogy and Geochemistry, 2022, 88, 637-688.	4.8	17

#	Article	IF	CITATIONS
241	Synthesis of Diamonds and Their Identification. Reviews in Mineralogy and Geochemistry, 2022, 88, 689-753.	4.8	11
242	Synthetic diamond identification under X-ray excitation. Cell Reports Physical Science, 2023, 4, 101208.	5.6	5
243	Spin–orbit coupling and Jahn–Teller effect in <i>T</i> _{<i>d</i>} symmetry: an <i>ab initio</i> study on the substitutional nickel defect in diamond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2024, 382, .	3.4	1
244	Spatial distribution of greenish blue phosporescence in HPHT synthetic diamond: The dual role of boron. Carbon, 2024, 218, 118730.	10.3	0
245	Donor-acceptor pairs in wide-bandgap semiconductors for quantum technology applications. Npj Computational Materials, 2024, 10, .	8.7	0