The plant defense and pathogen counterdefense mediat protease HbSPA and Phytophthora palmivora extracelly

PLoS ONE 12, e0175795 DOI: 10.1371/journal.pone.0175795

Citation Report

#	Article	IF	CITATIONS
1	A <i>Phytophthora palmivora</i> Extracellular Cystatin-Like Protease Inhibitor Targets Papain to Contribute to Virulence on Papaya. Molecular Plant-Microbe Interactions, 2018, 31, 363-373.	1.4	88
2	Semi-quantitative RT-PCR analysis of transcripts encoding protease inhibitor in <i>Hevea brasiliensis</i> Muell. Arg latex. IOP Conference Series: Earth and Environmental Science, 0, 183, 012004.	0.2	1
3	Infection mechanisms and putative effector repertoire of the mosquito pathogenic oomycete Pythium guiyangense uncovered by genomic analysis. PLoS Genetics, 2019, 15, e1008116.	1.5	38
4	Laticifers, Latex, and Their Role in Plant Defense. Trends in Plant Science, 2019, 24, 553-567.	4.3	89
5	Phenotypic Characterization of Genetically Distinct <i>Phytophthora cinnamomi</i> Isolates from Avocado. Phytopathology, 2019, 109, 384-394.	1.1	10
6	Exchanges at the Plant-Oomycete Interface That Influence Disease. Plant Physiology, 2019, 179, 1198-1211.	2.3	46
7	An insight into Hevea - Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology, 2019, 17, 33-41.	2.3	17
8	Structural and enzymatic characterization of Peruvianin‑l, the first germin-like protein with proteolytic activity. International Journal of Biological Macromolecules, 2019, 126, 1167-1176.	3.6	7
9	Plant latex proteins and their functions. Advances in Botanical Research, 2020, 93, 55-97.	0.5	5
10	Devastating intimacy: the cell biology of plant– <i>Phytophthora</i> interactions. New Phytologist, 2020, 228, 445-458.	3.5	48
11	Organize, Don't Agonize: Strategic Success of Phytophthora Species. Microorganisms, 2020, 8, 917.	1.6	29
12	Gene editing in filamentous fungi and oomycetes using CRISPR-Cas technology. , 2021, , 723-753.		1
13	The front line of defence: a meta-analysis of apoplastic proteases in plant immunity. Journal of Experimental Botany, 2021, 72, 3381-3394.	2.4	22
14	The expression of pathogenicity-related genes in Phytophthora palmivora causing black pod rot disease on cacao (Theobroma cacao L.) in Indonesia. Journal of Plant Interactions, 2021, 16, 284-295.	1.0	1
15	A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity. Scientific Reports, 2020, 10, 2319.	1.6	13
16	Recent insights on gene expression studies on Hevea Brasiliensis fatal leaf fall diseases. Physiology and Molecular Biology of Plants, 2022, 28, 471-484.	1.4	0
17	Trichoderma hamatum Strain Th23 Promotes Tomato Growth and Induces Systemic Resistance against Tobacco Mosaic Virus. Journal of Fungi (Basel, Switzerland), 2022, 8, 228.	1.5	27
18	New Aspects of Secretory Structures in Five Alismataceae Species: Laticifers or Ducts?. Plants, 2021, 10, 2694.	1.6	1

#	Article	IF	CITATIONS
19	Differing Responses to Phytophthora cinnamomi Infection in Susceptible and Partially Resistant Persea americana (Mill.) Rootstocks: A Case for the Role of Receptor-Like Kinases and Apoplastic Proteases. Frontiers in Plant Science, 0, 13, .	1.7	5

20 Potential of endophytic Trichoderma in controlling Phytophthora leaf fall disease in rubber (Hevea) Tj ETQq1 1 0.784314 rgBT/Overlo