A Large Scale Biorational Approach Using Bacillus thuri Transmission

PLoS ONE 12, e0170079 DOI: 10.1371/journal.pone.0170079

Citation Report

#	Article	IF	CITATIONS
1	Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS ONE, 2017, 12, e0187125.	2.5	34
2	Changes in Larval Mosquito Microbiota Reveal Non-target Effects of Insecticide Treatments in Hurricane-Created Habitats. Microbial Ecology, 2018, 76, 719-728.	2.8	13
3	<i>Aedes aegypti</i> Galectin Competes with Cry11Aa for Binding to ALP1 To Modulate Cry Toxicity. Journal of Agricultural and Food Chemistry, 2018, 66, 13435-13443.	5.2	17
4	Managing Aedes aegypti populations in the first Zika transmission zones in the continental United States. Acta Tropica, 2018, 187, 108-118.	2.0	28
5	Implementing a larviciding efficacy or effectiveness control intervention against malaria vectors: key parameters for success. Parasites and Vectors, 2018, 11, 57.	2.5	30
6	Transcriptomic Analysis of Aedes aegypti in Response to Mosquitocidal Bacillus thuringiensis LLP29 Toxin. Scientific Reports, 2018, 8, 12650.	3.3	10
8	CTLGA9 Interacts with ALP1 and APN Receptors To Modulate Cry11Aa Toxicity in <i>Aedes aegypti</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 8896-8904.	5.2	14
9	Large scale detailed mapping of dengue vector breeding sites using street view images. PLoS Neglected Tropical Diseases, 2019, 13, e0007555.	3.0	28
10	Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor. Structure, 2019, 27, 1094-1102.e4.	3.3	17
11	Human Reemerging Arboviral Diseases of the Late 21st Century: From Ecological-Epidemiology to Control Strategies. , 2020, , 9-33.		0
12	Long-lasting microbial larvicides for controlling insecticide resistant and outdoor transmitting vectors: a cost-effective supplement for malaria interventions. Infectious Diseases of Poverty, 2020, 9, 162.	3.7	8
13	Malaria vector control strategies. What is appropriate towards sustainable global eradication?. Sustainable Chemistry and Pharmacy, 2020, 18, 100339.	3.3	9
14	A Review of the Control of Aedes aegypti (Diptera: Culicidae) in the Continental United States. Journal of Medical Entomology, 2021, 58, 10-25.	1.8	26
15	Susceptibility of mosquito vectors of the city of Praia, Cabo Verde, to Temephos and Bacillus thuringiensis var israelensis. PLoS ONE, 2020, 15, e0234242.	2.5	9
16	Wide area spray of bacterial larvicide,ÂBacillus thuringiensis israelensisÂstrain AM65-52, integrated in the national vector control program impacts dengue transmission in an urban township in Sibu district, Sarawak, Malaysia. PLoS ONE, 2020, 15, e0230910.	2.5	8
17	An evaluation of Bacillus thuringiensis israelensis (AM65 â€52) treatment for the control of Aedes aegypti using vehicleâ€mounted WALS ® application in a densely populated urban area of Puerto Rico. Pest Management Science, 2021, 77, 1981-1989.	3.4	8
18	Cry toxins of Bacillus thuringiensis: a glimpse into the Pandora's box for the strategic control of vector borne diseases. Environmental Sustainability, 2021, 4, 23-37.	2.8	11
19	Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates. Scientific Reports, 2021, 11, 14119.	3.3	1

	Сітатіої	ITATION REPORT	
#	Article	IF	CITATIONS
20	Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins, 2021, 13, 523.	3.4	46
21	TRUCK-MOUNTED NATULAR 2EC (SPINOSAD) ULV RESIDUAL TREATMENT IN A SIMULATED URBAN ENVIRONMENT TO CONTROL AEDES AEGYPTI AND AEDES ALBOPICTUS IN NORTH FLORIDA. Journal of the American Mosquito Control Association, 2018, 34, 53-57.	0.7	7
22	From Surveillance To Control: Evaluation of A Larvicide Intervention Against Aedes aegypti In Brownsville, Texas. Journal of the American Mosquito Control Association, 2019, 35, 233-237.	0.7	6
23	Biological Control. Fascinating Life Sciences, 2020, , 409-444.	0.9	Ο
24	Ground Applications of Vectobac® WDG with A1 Super-Duty Mist Sprayer® and Micronair® AU5000 Atomizer for Suppression of <i>Aedes aegypti</i> Populations in the Florida Keys. Journal of the American Mosquito Control Association, 2021, 37, 271-279.	0.7	4
25	Field evaluation of WALS truck-mounted A1 super duty mist sprayer® with VectoBac® WDG against Aedes aegypti (Diptera:Culicidae) populations in Manatee County, Florida. SN Applied Sciences, 2022, 4, 50.	2.9	1
26	Integrated control of Aedes albopictus in Southwest Germany supported by the Sterile Insect Technique. Parasites and Vectors, 2022, 15, 9.	2.5	14
27	Dataset for aedes aegypti (diptera: Culicidae) and culex quinquefasciatus (diptera: Culicidae) collections from key West, Florida, USA, 2010–2020. Data in Brief, 2022, 41, 107907.	1.0	1
28	Mosquito Surveillance and Insecticide Resistance Monitoring Conducted by the Florida Keys Mosquito Control District, Monroe County, Florida, USA. Insects, 2022, 13, 927.	2.2	6
29	Linking mathematical models and trap data to infer the proliferation, abundance, and control of Aedes aegypti. Acta Tropica, 2023, 239, 106837.	2.0	1
30	Wide-Area Larviciding with a Buffalo Turbine® Mist Sprayer and Vectolex® WDG. Journal of the American Mosquito Control Association, 2022, 38, 290-295.	0.7	0
31	Community perceptions on challenges and solutions to implement an Aedes aegypti control project in Ponce, Puerto Rico (USA). PLoS ONE, 2023, 18, e0284430.	2.5	0
32	New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. International Journal of Pharmaceutics, 2023, 643, 123221.	5.2	2
33	Distribution of chlorpyrifos residue in maize (Zea mays). IOP Conference Series: Earth and Environmental Science, 2023, 1230, 012075.	0.3	1
35	Response to An Outbreak of Locally Transmitted Dengue in Key Largo, FL, by The Florida Keys Mosquito Control District. Journal of the American Mosquito Control Association, 2023, 39, 251-257.	0.7	0