A Mass Spectrometric-Derived Cell Surface Protein Atla

PLoS ONE 10, e0121314 DOI: 10.1371/journal.pone.0121314

Citation Report

#	Article	IF	CITATIONS
1	A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation. Molecular and Cellular Proteomics, 2015, 14, 2085-2102.	2.5	40
2	Bioinformatics Analysis of the Human Surfaceome Reveals New Targets for a Variety of Tumor Types. International Journal of Genomics, 2016, 2016, 1-7.	0.8	13
3	Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics. Proteomics, 2016, 16, 1872-1880.	1.3	10
4	N-glycosylation proteome enrichment analysis in kidney reveals differences between diabetic mouse models. Clinical Proteomics, 2016, 13, 22.	1.1	13
5	Mapping the Cell-Surface N-Glycoproteome of Human Hepatocytes Reveals Markers for Selecting a Homogeneous Population of iPSC-Derived Hepatocytes. Stem Cell Reports, 2016, 7, 543-556.	2.3	44
6	Highlights of the Biology and Disease-driven Human Proteome Project, 2015–2016. Journal of Proteome Research, 2016, 15, 3979-3987.	1.8	21
7	Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies. Nature Communications, 2016, 7, 11945.	5.8	46
8	Chemical Glycoproteomics. Chemical Reviews, 2016, 116, 14277-14306.	23.0	218
9	A draft map of the mouse pluripotent stem cell spatial proteome. Nature Communications, 2016, 7, 8992.	5.8	197
10	Clinical implications of recent advances in proteogenomics. Expert Review of Proteomics, 2016, 13, 185-199.	1.3	12
11	Immunocapture strategies in translational proteomics. Expert Review of Proteomics, 2016, 13, 83-98.	1.3	37
12	The Proteome of Native Adult MÃ1⁄4ller Glial Cells From Murine Retina. Molecular and Cellular Proteomics, 2016, 15, 462-480.	2.5	136
13	Proteomics and drug discovery in cancer. Drug Discovery Today, 2016, 21, 264-277.	3.2	25
14	An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways. Molecular and Cellular Proteomics, 2017, 16, 581-593.	2.5	51
15	Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins. Scientific Reports, 2017, 7, 42610.	1.6	15
16	Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science, 2017, 356, .	6.0	1,846
17	Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNF1± expression. Scientific Reports, 2017, 7, 838.	1.6	39
18	Quantitative Assessment of Sialoâ€Clycoproteins and Nâ€Clycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. ChemBioChem, 2017, 18, 1317-1331.	1.3	44

ARTICLE IF CITATIONS # Using hyperLOPIT to perform high-resolution mapping of the spatial proteome. Nature Protocols, 2017, 19 5.5 113 12, 1110-1135. Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Virus Research, 2017, 1.1 74 235, 6-13. Monitoring Cell-surface N-Glycoproteome Dynamics by Quantitative Proteomics Reveals Mechanistic 21 2.5 41 Insights into Macrophage Differentiation. Molecular and Cellular Proteomics, 2017, 16, 770-785. $\langle i > N < |i > \hat{a} \in g$ lycoprotein surfaceome of human induced pluripotent stem cell derived hepatic endoderm. Proteomics, 2017, 17, 1600397. Monitoring Dynamic Changes of the Cell Surface Glycoproteome by Quantitative Proteomics. Methods 23 0.4 0 in Molecular Éiology, 2017, 1647, 47-59. Cell Surface Proteomics of N-Linked Glycoproteins for Typing of Human Lymphocytes. Proteomics, 1.3 2017, 17, 1700156. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function. 25 1.8 57 Journal of Proteome Research, 2017, 16, 238-246. Integral membrane proteins in proteomics. How to break open the black box?. Journal of Proteomics, 1.2 26 2017, 153, 8-20. Quantitative investigation of human cell surface N-glycoprotein dynamics. Chemical Science, 2017, 8, 27 3.7 55 268-277. Concise Review: Cell Surface <i>N</i>-Linked Glycoproteins as Potential Stem Cell Markers and Drug 1.6 Targets. Stem Cells Translational Medicine, 2017, 6, 131-138. Mass spectrometry-assisted gel-based proteomics in cancer biomarker discovery: approaches and 29 4.6 60 application. Theranostics, 2017, 7, 3559-3572. VHH-Based Bispecific Antibodies Targeting Cytokine Production. Frontiers in Immunology, 2017, 8, 1073. 2.2 30 Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human $\mathbf{31}$ 4.6 46 Pluripotent Stem Cells. Theranostics, 2017, 7, 2067-2077. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of 6.5 58 phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Research, 2018, 46, 3579-3594. HATRIC-based identification of receptors for orphan ligands. Nature Communications, 2018, 9, 1519. 33 5.8 55 Micro-pharmacokinetics: Quantifying local drug concentration at live cell membranes. Scientific 34 38 Reports, 2018, 8, 3479. Cell-surface proteomics for the identification of novel therapeutic targets in cancer. Expert Review 35 1.351 of Proteomics, 2018, 15, 259-275. Discovery of Surface Target Proteins Linking Drugs, Molecular Markers, Gene Regulation, Protein Networks, and Disease by Using a Web-Based Platform Targets-search. Methods in Molecular Biology, 0.4 2018, 1722, 331-344.

#	Article	IF	CITATIONS
37	FZD4 Marks Lateral Plate Mesoderm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell-Derived Cardiac Progenitors. Stem Cell Reports, 2018, 10, 87-100.	2.3	32
38	Mass Spectrometry-Based Identification of Extracellular Domains of Cell Surface N-Glycoproteins: Defining the Accessible Surfaceome for Immunophenotyping Stem Cells and Their Derivatives. Methods in Molecular Biology, 2018, 1722, 57-78.	0.4	10
39	Click Chemistry-mediated Biotinylation Reveals a Function for the Protease BACE1 in Modulating the Neuronal Surface Glycoproteome. Molecular and Cellular Proteomics, 2018, 17, 1487-1501.	2.5	33
40	Pooled extracellular receptor-ligand interaction screening using CRISPR activation. Genome Biology, 2018, 19, 205.	3.8	44
41	Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6+ cancer cell and macrophage polarization. Nature Communications, 2018, 9, 5108.	5.8	74
42	Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Review of Proteomics, 2018, 15, 911-922.	1.3	8
43	Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology. Frontiers in Immunology, 2018, 9, 2582.	2.2	47
44	The in silico human surfaceome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10988-E10997.	3.3	250
45	Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5135-E5143.	3.3	192
46	Employing proteomics to understand the effects of nutritional intervention in cancer treatment. Analytical and Bioanalytical Chemistry, 2018, 410, 6371-6386.	1.9	6
47	Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis. Journal of Experimental Medicine, 2018, 215, 1947-1963.	4.2	20
48	Chemoproteomics and Chemical Probes for Target Discovery. Trends in Biotechnology, 2018, 36, 1275-1286.	4.9	86
49	A Universal Live Cell Barcoding-Platform for Multiplexed Human Single Cell Analysis. Scientific Reports, 2018, 8, 10770.	1.6	75
50	FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. Journal of Molecular Biology, 2018, 430, 3353-3411.	2.0	13
51	Developing RNA aptamers for potential treatment of neurological diseases. Future Medicinal Chemistry, 2019, 11, 551-565.	1.1	8
52	Identification and Validation of a Novel Biologics Target in Triple Negative Breast Cancer. Scientific Reports, 2019, 9, 14934.	1.6	19
53	High-Content Imaging for Large-Scale Detection of Low-Affinity Extracellular Protein Interactions. SLAS Discovery, 2019, 24, 987-999.	1.4	12
54	Analysis of gear surface morphology based on gray level co-occurrence matrix and fractal dimension. PLoS ONE, 2019, 14, e0223825.	1.1	8

#	Article	IF	CITATIONS
55	Systematic and site-specific analysis of N-glycoproteins on the cell surface by integrating bioorthogonal chemistry and MS-based proteomics. Methods in Enzymology, 2019, 626, 223-247.	0.4	6
56	Covalently modified carboxyl side chains on cell surface leads to a novel method toward topology analysis of transmembrane proteins. Scientific Reports, 2019, 9, 15729.	1.6	13
57	CD Maps—Dynamic Profiling of CD1–CD100 Surface Expression on Human Leukocyte and Lymphocyte Subsets. Frontiers in Immunology, 2019, 10, 2434.	2.2	39
58	Single-cell transcriptomics reveals multi-step adaptations to endocrine therapy. Nature Communications, 2019, 10, 3840.	5.8	93
59	N-GlycositeAtlas: a database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clinical Proteomics, 2019, 16, 35.	1.1	56
60	Targeting of host cell receptor tyrosine kinases by intracellular pathogens. Science Signaling, 2019, 12, .	1.6	31
61	Transformation of mature mouse B cells into malignant plasma cells in vitro via introduction of defined genetic elements. European Journal of Immunology, 2019, 49, 454-461.	1.6	2
62	Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nature Communications, 2019, 10, 500.	5.8	91
63	Histoepigenetic analysis of HPV- and tobacco-associated head and neck cancer identifies both subtype-specific and common therapeutic targets despite divergent microenvironments. Oncogene, 2019, 38, 3551-3568.	2.6	20
64	Novel TCR-based biologics: mobilising T cells to warm â€~cold' tumours. Cancer Treatment Reviews, 2019, 77, 35-43.	3.4	57
65	Quantitative proteomics of MDCK cells identify unrecognized roles of clathrin adaptor AP-1 in polarized distribution of surface proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11796-11805.	3.3	35
66	Surface Glycoproteomic Analysis Reveals That Both Unique and Differential Expression of Surface Glycoproteins Determine the Cell Type. Analytical Chemistry, 2019, 91, 6934-6942.	3.2	18
67	Surfaceome of Exosomes Secreted from the Colorectal Cancer Cell Line SW480: Peripheral and Integral Membrane Proteins Analyzed by Proteolysis and TX114. Proteomics, 2019, 19, e1700453.	1.3	30
68	Hemap: An Interactive Online Resource for Characterizing Molecular Phenotypes across Hematologic Malignancies. Cancer Research, 2019, 79, 2466-2479.	0.4	23
69	A Proteomic Screen of Neuronal Cell-Surface Molecules Reveals IgLONs as Structurally Conserved Interaction Modules at the Synapse. Structure, 2019, 27, 893-906.e9.	1.6	44
70	Enzymatic Tagging of Glycoproteins on the Cell Surface for Their Global and Site-Specific Analysis with Mass Spectrometry. Analytical Chemistry, 2019, 91, 4195-4203.	3.2	26
71	Sensitive profiling of cell surface proteome by using an optimized biotinylation method. Journal of Proteomics, 2019, 196, 33-41.	1.2	28
72	Classification of mouse B cell types using surfaceome proteotype maps. Nature Communications, 2019, 10, 5734.	5.8	31

#	Article	IF	CITATIONS
73	Gjb4 serves as a novel biomarker for lung cancer and promotes metastasis and chemoresistance via Src activation. Oncogene, 2019, 38, 822-837.	2.6	24
74	Structural deciphering of the NG2/CSPG4 proteoglycan multifunctionality. FASEB Journal, 2019, 33, 3112-3128.	0.2	31
75	Global and siteâ€specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. Mass Spectrometry Reviews, 2019, 38, 356-379.	2.8	75
77	Approaches to identify extracellular receptor–ligand interactions. Current Opinion in Structural Biology, 2019, 56, 28-36.	2.6	16
78	Anthrax toxin requires ZDHHC5-mediated palmitoylation of its surface-processing host enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1279-1288.	3.3	26
79	An ELISA-Based Screening Platform for Ligand–Receptor Discovery. Methods in Enzymology, 2019, 615, 453-475.	0.4	18
80	Surfaceome nanoscale organization and extracellular interaction networks. Current Opinion in Chemical Biology, 2019, 48, 26-33.	2.8	32
81	The chondrocyte channelome: A narrative review. Joint Bone Spine, 2019, 86, 29-35.	0.8	60
82	Recent Advances in Glycoproteomic Analysis by Mass Spectrometry. Analytical Chemistry, 2020, 92, 267-291.	3.2	96
83	CD49fhigh Defines a Distinct Skin Mesenchymal Stem Cell Population Capable of Hair Follicle Epithelial Cell Maintenance. Journal of Investigative Dermatology, 2020, 140, 544-555.e9.	0.3	11
84	Cell surface protein enrichment for biomarker and drug target discovery using mass spectrometry-based proteomics. , 2020, , 409-420.		4
85	Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. Cancer Discovery, 2020, 10, 232-253.	7.7	466
86	An overview on enrichment methods for cell surface proteome profiling. Journal of Separation Science, 2020, 43, 292-312.	1.3	31
87	CD34 cells in somatic, regenerative and cancer stem cells: Developmental biology, cell therapy, and omics big data perspective. Journal of Cellular Biochemistry, 2020, 121, 3058-3069.	1.2	12
88	Plasma membrane proteome of adhesionâ€competent endometrial epithelial cells and its modulation by Rab11a. Molecular Reproduction and Development, 2020, 87, 17-29.	1.0	1
89	Flexible, Functional, and Familiar: Characteristics of SARS-CoV-2 Spike Protein Evolution. Frontiers in Microbiology, 2020, 11, 2112.	1.5	35
90	Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell, 2020, 183, 126-142.e17.	13.5	269
91	Discovery and validation of surface <i>N</i> -glycoproteins in MM cell lines and patient samples uncovers immunotherapy targets. , 2020, 8, e000915.		13

#	Article	IF	CITATIONS
92	Addressing Cellular Heterogeneity in Cancer through Precision Proteomics. Journal of Proteome Research, 2020, 19, 3607-3619.	1.8	8
93	Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chemical Biology, 2020, 1, 42-55.	2.0	12
94	Verification of a Blood-Based Targeted Proteomics Signature for Malignant Pleural Mesothelioma. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1973-1982.	1.1	6
95	Proteomic Evaluation of Plasma Membrane Fraction Prepared from a Mouse Liver and Kidney Using a Bead Homogenizer: Enrichment of Drug-Related Transporter Proteins. Molecular Pharmaceutics, 2020, 17, 4101-4113.	2.3	5
96	Improving the Identification and Coverage of Plant Transmembrane Proteins in Medicago Using Bottom–Up Proteomics. Frontiers in Plant Science, 2020, 11, 595726.	1.7	2
97	A Review of Integrative Imputation for Multi-Omics Datasets. Frontiers in Genetics, 2020, 11, 570255.	1.1	57
98	Epitope prediction and identification- adaptive T cell responses in humans. Seminars in Immunology, 2020, 50, 101418.	2.7	36
99	The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Review of Proteomics, 2020, 17, 297-308.	1.3	40
100	Chemically Programmable and Switchable CARâ€T Therapy. Angewandte Chemie, 2020, 132, 12276-12283.	1.6	4
101	MIPPIE: the mouse integrated protein–protein interaction reference. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	14
102	The cell surface marker CD36 selectively identifies matured, mitochondria-rich hPSC-cardiomyocytes. Cell Research, 2020, 30, 626-629.	5.7	36
103	Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Research, 2020, 30, 376-392.	5.7	89
104	A novel antibody-cell conjugation method to enhance and characterize cytokine-induced killer cells. Cytotherapy, 2020, 22, 135-143.	0.3	14
105	CIRFESS: An Interactive Resource for Querying the Set of Theoretically Detectable Peptides for Cell Surface and Extracellular Enrichment Proteomic Studies. Journal of the American Society for Mass Spectrometry, 2020, 31, 1389-1397.	1.2	13
106	Comprehensive cell surface proteomics defines markers of classical, intermediate and non-classical monocytes. Scientific Reports, 2020, 10, 4560.	1.6	28
107	Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opinion on Biological Therapy, 2020, 20, 503-516.	1.4	37
108	SurfaceGenie: a web-based application for prioritizing cell-type-specific marker candidates. Bioinformatics, 2020, 36, 3447-3456.	1.8	37
109	Nanocarriers as Magic Bullets in the Treatment of Leukemia. Nanomaterials, 2020, 10, 276.	1.9	38

#	Article	IF	CITATIONS
110	Dissecting intercellular signaling with mass spectrometry–based proteomics. Current Opinion in Cell Biology, 2020, 63, 20-30.	2.6	13
111	Pooled Screens Identify GPR108 and TM9SF2 as Host Cell Factors Critical for AAV Transduction. Molecular Therapy - Methods and Clinical Development, 2020, 17, 601-611.	1.8	31
112	Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7764-7775.	3.3	54
113	Chemically Programmable and Switchable CARâ€T Therapy. Angewandte Chemie - International Edition, 2020, 59, 12178-12185.	7.2	30
114	Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nature Immunology, 2020, 21, 555-566.	7.0	147
115	Insights into the role of sialylation in cancer progression and metastasis. British Journal of Cancer, 2021, 124, 76-90.	2.9	127
116	The quest of cell surface markers for stem cell therapy. Cellular and Molecular Life Sciences, 2021, 78, 469-495.	2.4	12
117	Inhibition of clathrinâ€mediated endocytosis by knockdown of <scp>AP</scp> â€2 leads to alterations in the plasma membrane proteome. Traffic, 2021, 22, 6-22.	1.3	16
118	A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry–Based Glycoproteomics. Molecular and Cellular Proteomics, 2021, 20, 100029.	2.5	121
121	Potentiation of B2 receptor signaling by AltB2R, a newly identified alternative protein encoded in the human bradykinin B2 receptor gene. Journal of Biological Chemistry, 2021, 296, 100329.	1.6	9
123	SP3â€FAIMS Chemoproteomics for Highâ€Coverage Profiling of the Human Cysteinome**. ChemBioChem, 2021, 22, 1841-1851.	1.3	45
124	Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. Cell Reports, 2021, 34, 108735.	2.9	43
125	Spatially Resolved Tagging of Proteolytic Neo-N termini with Subtiligase-TM. Journal of Membrane Biology, 2021, 254, 119-125.	1.0	1
126	Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans. Cell Discovery, 2021, 7, 8.	3.1	33
127	Molecular Features of Cancer-associated Fibroblast Subtypes and their Implication on Cancer Pathogenesis, Prognosis, and Immunotherapy Resistance. Clinical Cancer Research, 2021, 27, 2636-2647.	3.2	140
128	Mapping proteolytic neo-N termini at the surface of living cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
129	Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs. Genome Research, 2021, 31, 461-471.	2.4	9
130	Comparative Cell Surface Proteomic Analysis of the Primary Human T Cell and Monocyte Responses to Type I Interferon. Frontiers in Immunology, 2021, 12, 600056.	2.2	7

#	Article	IF	CITATIONS
131	Sca1+ Progenitor Cells (Ex vivo) Exhibits Differential Proteomic Signatures From the Culture Adapted Sca1+ Cells (In vitro), Both Isolated From Murine Skeletal Muscle Tissue. Stem Cell Reviews and Reports, 2021, 17, 1754-1767.	1.7	0
132	The Difference Between High Density Lipoprotein Subfractions and Subspecies: an Evolving Model in Cardiovascular Disease and Diabetes. Current Atherosclerosis Reports, 2021, 23, 23.	2.0	21
133	Mass spectrometry and the cellular surfaceome. Mass Spectrometry Reviews, 2022, 41, 804-841.	2.8	19
134	Integrated intra―and intercellular signaling knowledge for multicellular omics analysis. Molecular Systems Biology, 2021, 17, e9923.	3.2	152
135	Fast searches of large collections of single-cell data using scfind. Nature Methods, 2021, 18, 262-271.	9.0	10
136	Rapid Enzyme-Mediated Biotinylation for Cell Surface Proteome Profiling. Analytical Chemistry, 2021, 93, 4542-4551.	3.2	11
137	Timeâ€Resolved and Comprehensive Analysis of Surface Glycoproteins Reveals Distinct Responses of Monocytes and Macrophages to Bacterial Infection. Angewandte Chemie - International Edition, 2021, 60, 11494-11503.	7.2	9
138	Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2021, 473, 1023-1039.	1.3	6
139	A global live cell barcoding approach for multiplexed mass cytometry profiling of mouse tumors. JCI Insight, 2021, 6, .	2.3	8
140	Timeâ€Resolved and Comprehensive Analysis of Surface Glycoproteins Reveals Distinct Responses of Monocytes and Macrophages to Bacterial Infection. Angewandte Chemie, 2021, 133, 11595-11604.	1.6	1
141	Systematic characterization of extracellular glycoproteins using mass spectrometry. Mass Spectrometry Reviews, 2023, 42, 519-545.	2.8	10
142	Unveiling the CHO surfaceome: Identification of cell surface proteins reveals cell aggregationâ€relevant mechanisms. Biotechnology and Bioengineering, 2021, 118, 3015-3028.	1.7	6
145	Nanoscape, a data-driven 3D real-time interactive virtual cell environment. ELife, 2021, 10, .	2.8	5
146	Advances in sample preparation for membrane proteome quantification. Drug Discovery Today: Technologies, 2021, 39, 23-29.	4.0	5
147	Dissecting the common and compartment-specific features of COVID-19 severity in the lung and periphery with single-cell resolution. IScience, 2021, 24, 102738.	1.9	6
148	The endogenous cellular protease inhibitor SPINT2 controls SARS-CoV-2 viral infection and is associated to disease severity. PLoS Pathogens, 2021, 17, e1009687.	2.1	4
149	Using Cell Type–Specific Genes to Identify Cell-Type Transitions Between Different in vitro Culture Conditions. Frontiers in Cell and Developmental Biology, 2021, 9, 644261.	1.8	1
150	Serial single-cell genomics reveals convergent subclonal evolution of resistance as patients with early-stage breast cancer progress on endocrine plus CDK4/6 therapy. Nature Cancer, 2021, 2, 658-671.	5.7	34

#	Article	IF	CITATIONS
151	Unbiased Identification of Extracellular Protein–Protein Interactions for Drug Target and Biologic Drug Discovery. , 0, , .		1
152	Pancreatic Ppy-expressing \hat{I}^3 -cells display mixed phenotypic traits and the adaptive plasticity to engage insulin production. Nature Communications, 2021, 12, 4458.	5.8	34
153	Soluble Expression of Fc-Fused T Cell Receptors Allows Yielding Novel Bispecific T Cell Engagers. Biomedicines, 2021, 9, 790.	1.4	2
154	Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature. BMC Cancer, 2021, 21, 850.	1.1	18
155	Targeted Mass Spectrometry-Based Approach for the Determination of Intrinsic Internalization Kinetics of Cell-Surface Membrane Protein Targets. Analytical Chemistry, 2021, 93, 10005-10012.	3.2	2
156	Mast cell surfaceome characterization reveals CD98 heavy chain is critical for optimal cell function. Journal of Allergy and Clinical Immunology, 2021, , .	1.5	2
159	Characterization of human FDCs reveals regulation of T cells and antigen presentation to B cells. Journal of Experimental Medicine, 2021, 218, .	4.2	30
160	Pathogenic T Cells in Celiac Disease Change Phenotype on Gluten Challenge: Implications for Tâ€Cellâ€Directed Therapies. Advanced Science, 2021, 8, e2102778.	5.6	10
161	Surfaceome Proteomic of Glioblastoma Revealed Potential Targets for Immunotherapy. Frontiers in Immunology, 2021, 12, 746168.	2.2	20
163	Spatiotemporal proteomic profiling of the pro-inflammatory response to lipopolysaccharide in the THP-1 human leukaemia cell line. Nature Communications, 2021, 12, 5773.	5.8	29
164	RNA aptamers for AMPA receptors. Neuropharmacology, 2021, 199, 108761.	2.0	5
166	Single-cell resolution landscape of equine peripheral blood mononuclear cells reveals diverse cell types including T-bet+ B cells. BMC Biology, 2021, 19, 13.	1.7	25
178	Single-cell RNA sequencing identifies TGF-β as a key regenerative cue following LPS-induced lung injury. JCI Insight, 2019, 4, .	2.3	111
179	Induced pluripotent stem cell-derived vascular smooth muscle cells. Vascular Biology (Bristol,) Tj ETQq1 1 0.7843	814.rgBT /0	Ovgrlock 10
180	Comparative proteomics of a model MCF10A-KRasG12V cell line reveals a distinct molecular signature of the KRasG12V cell surface. Oncotarget, 2016, 7, 86948-86971.	0.8	23
181	Direct molecular dissection of tumor parenchyma from tumor stroma in tumor xenograft using mass spectrometry-based glycoproteomics. Oncotarget, 2018, 9, 26431-26452.	0.8	7
182	Developments in Cardiovascular Proteomics. Journal of Proteomics and Bioinformatics, 2016, 09, .	0.4	3
183	Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation. ELife, 2020, 9, .	2.8	209

#	Article	IF	CITATIONS
184	Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist. Genome Biology, 2021, 22, 297.	3.8	7
185	A global cancer data integrator reveals principles of synthetic lethality, sex disparity and immunotherapy. Genome Medicine, 2021, 13, 167.	3.6	0
189	Identification of Cell Surface Targets for CAR T Cell Immunotherapy. Methods in Molecular Biology, 2020, 2097, 45-54.	0.4	3
195	Lack of GABARAP-Type Proteins Is Accompanied by Altered Golgi Morphology and Surfaceome Composition. International Journal of Molecular Sciences, 2021, 22, 85.	1.8	7
199	Longitudinal Large-Scale Semiquantitative Proteomic Data Stability Across Multiple Instrument Platforms. Journal of Proteome Research, 2021, 20, 5203-5211.	1.8	1
202	<scp>MLLT</scp> 6 maintains <i><scp>PD</scp>‣1</i> expression and mediates tumor immune resistance. EMBO Reports, 2020, 21, e50155.	2.0	13
204	Show your true color: Mammalian cell surface staining for tracking cellular identity in multiplexing and beyond. Current Opinion in Chemical Biology, 2022, 66, 102102.	2.8	4
205	Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. Journal of Extracellular Vesicles, 2021, 10, e12164.	5.5	40
207	Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Communications Biology, 2021, 4, 1280.	2.0	83
208	A multitask transfer learning framework for the prediction of virus-human protein–protein interactions. BMC Bioinformatics, 2021, 22, 572.	1.2	16
209	Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nature Communications, 2021, 12, 7036.	5.8	33
210	Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Blood, 2022, 139, 2471-2482.	0.6	12
211	VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature, 2022, 602, 475-480.	13.7	49
212	Enlightenment From Biology of Postnatal Limb Development on Pathology of Osteoarthritis. SSRN Electronic Journal, 0, , .	0.4	0
213	Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. Npj Parkinson's Disease, 2022, 8, 30.	2.5	20
215	Biological Characterization and Clinical Relevance of Circulating Tumor Cells: Opening the Pandora's Box of Multiple Myeloma. Cancers, 2022, 14, 1430.	1.7	9
216	High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development. Cell Reports, 2022, 38, 110604.	2.9	8
217	Highly selective enrichment of surface proteins from living cells by photo-crosslinking probe enabled in-depth analysis of surfaceome. Analytica Chimica Acta, 2022, 1203, 339694.	2.6	2

	CHATION	LPORT	
#	Article	IF	Citations
218	Tebentafusp for the treatment of metastatic uveal melanoma. Future Oncology, 2022, 18, 1303-1311.	1.1	1
219	Wanted: An Endothelial Cell Targeting Atlas for Nanotherapeutic Delivery in Allograft Organs. American Journal of Transplantation, 2022, , .	2.6	2
220	The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets. Nature Cancer, 2021, 2, 1406-1422.	5.7	33
221	Membrane marker selection for segmenting single cell spatial proteomics data. Nature Communications, 2022, 13, 1999.	5.8	11
222	Generation of human islet cell type-specific identity genesets. Nature Communications, 2022, 13, 2020.	5.8	25
254	Mapping Cell Surface Proteolysis with Plasma Membrane-Targeted Subtiligase. Methods in Molecular Biology, 2022, , 71-83.	0.4	1
259	Integrated multiomic approach for identification of novel immunotherapeutic targets in AML. Biomarker Research, 2022, 10, .	2.8	8
260	Integrated screens uncover a cell surface tumor suppressor gene <i>KIRREL</i> involved in Hippo pathway. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
261	The SKBR3 cell-membrane proteome reveals telltales of aberrant cancer cell proliferation and targets for precision medicine applications. Scientific Reports, 2022, 12, .	1.6	8
262	Detection of cell markers from single cell RNA-seq with sc2marker. BMC Bioinformatics, 2022, 23, .	1.2	7
263	The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nature Communications, 2022, 13, .	5.8	26
264	CRISPR-surfaceome: An online tool for designing highly efficient sgRNAs targeting cell surface proteins. Computational and Structural Biotechnology Journal, 2022, 20, 3833-3838.	1.9	0
265	A computational approach to rapidly design peptides that detect SARS-CoV-2 surface protein S. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	3
266	Glycoproteomics Identifies Plexin-B3 as a Targetable Cell Surface Protein Required for the Growth and Invasion of Triple-Negative Breast Cancer Cells. Journal of Proteome Research, 2022, 21, 2224-2236.	1.8	4
267	Life at the periphery: what makes CHO cells survival talents. Applied Microbiology and Biotechnology, 2022, 106, 6157-6167.	1.7	2
268	The UIP/IPF fibroblastic focus is a collagen biosynthesis factory embedded in a distinct extracellular matrix. JCI Insight, 2022, 7, .	2.3	13
269	Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell, 2022, 40, 920-938.	7.7	40
270	ER-Golgi-localized proteins TMED2 and TMED10 control the formation of plasma membrane lipid nanodomains. Developmental Cell, 2022, 57, 2334-2346.e8.	3.1	15

ARTICLE IF CITATIONS # Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nature Reviews Cancer, 272 12.8 21 2022, 22, 693-702. Quality assurance of hematopoietic stem cells by macrophages determines stem cell clonality. Science, 273 6.0 28 2022, 377, 1413-1419. Tetraplex Immunophenotyping of Cell Surface Proteomes via Synthesized Plasmonic Nanotags and 275 3.2 8 Portable Raman Spectroscopy. Analytical Chemistry, 2022, 94, 14906-14916. Direct Identification of Proteolytic Cleavages on Living Cells Using a Glycan-Tethered Peptide Ligase. ACS Central Science, 2022, 8, 1447-1456. In situ cell-type-specific cell-surface proteomic profiling in mice. Neuron, 2022, 110, 3882-3896.e9. 277 3.8 17 278 LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLoS Biology, 2022, 20, e3001805. 2.6 Redirecting Polyclonal T Cells against Cancer with Soluble T-Cell Receptors. Clinical Cancer 279 3.2 5 Research, 2023, 29, 697-704. Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization. Cell Reports, 2022, 41, 111580. 2.9 Single-Cell RNA Sequencing Reveals Distinct Cardiac-Derived Stromal Cell Subpopulations. Journal of 282 0.8 0 Cardiovascular Development and Disease, 2022, 9, 374. Isolating and targeting a highly active, stochastic dendritic cell subpopulation for improved immune responses. Cell Reports, 2022, 41, 111563. Proteomic analysis of antiviral innate immunity. Current Opinion in Virology, 2023, 58, 101291. 285 2.6 1 Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by 1.8 reprogramming the phosphoproteome landscape. Frontiers in Cell and Developmental Biology, 0, 10, . Surface protein profiling of prostate-derived extracellular vesicles by mass spectrometry and 287 2.0 1 proximity assays. Communications Biology, 2022, 5, . <scp>EGFR</scp> inhibition in <scp>EGFR</scp>â€mutant lung cancer cells perturbs innate immune 1.7 signaling pathways in the tumor microenvironment. Cancer Science, 2023, 114, 1270-1283. Deciphering postnatal limb development at single-cell resolution. IScience, 2023, 26, 105808. 289 1.9 1 Surfaceome mapping of primary human heart cells with CellSurfer uncovers cardiomyocyte surface protein LSMEM2 and proteome dynamics in failing hearts. , 2023, 2, 76-95. Comprehensive Discovery of the Accessible Primary Amino Group-Containing Segments from Cell 291 Surface Proteins by Fine-Tuning a High-Throughput Biotinylation Method. International Journal of 1.8 4 Molecular Sciences, 2023, 24, 273. Data-Driven Identification of Targets for Fluorescence-Guided Surgery in Non-Small Cell Lung Cancer. 1.3 Molecular Imaging and Biology, Ö, , .

#	Article	IF	CITATIONS
293	Current Methods for Identifying Plasma Membrane Proteins as Cancer Biomarkers. Membranes, 2023, 13, 409.	1.4	2
294	LRRC15 mediates an accessory interaction with the SARS-CoV-2 spike protein. PLoS Biology, 2023, 21, e3001959.	2.6	8
295	Single-Cell Discovery and Multiomic Characterization of Therapeutic Targets in Multiple Myeloma. Cancer Research, 2023, 83, 1214-1233.	0.4	5
296	Dipeptidylpeptidase 4 promotes survival and stemness of acute myeloid leukemia stem cells. Cell Reports, 2023, 42, 112105.	2.9	1
297	A genome–wide CRISPR activation screen identifies SCREEM a novel SNAI1 super-enhancer demarcated by eRNAs. Frontiers in Molecular Biosciences, 0, 10, .	1.6	0
299	Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nature Biotechnology, 2023, 41, 1618-1632.	9.4	15
300	Multiscale network analysis identifies potential receptors for <scp>SARSâ€CoV</scp> â€2 and reveals their tissueâ€specific and ageâ€dependent expression. FEBS Letters, 2023, 597, 1384-1402.	1.3	0
302	Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma. Nature Communications, 2023, 14, .	5.8	11
303	Staphylococcus aureus induces tolerance in human monocytes accompanied with expression changes of cell surface markers. Frontiers in Immunology, 0, 14, .	2.2	1
304	Macrophage-Induced Exacerbation of Nasopharyngeal Inflammatory Lymphocytes in COVID-19 Disease. Covid, 2023, 3, 567-591.	0.7	0
305	ALAN is a computational approach that interprets genomic findings in the context of tumor ecosystems. Communications Biology, 2023, 6, .	2.0	2
319	Cell surface glycoproteomics: deciphering glycoproteins through a unique analytical capture approach. Analytical Methods, 2023, 15, 3295-3309.	1.3	0