A Review of Shamosuchus and Paralligator (Crocodylife Cretaceous of Asia

PLoS ONE 10, e0118116 DOI: 10.1371/journal.pone.0118116

Citation Report

#	Article	IF	CITATIONS
1	New Crocodyliforms from Southwestern Europe and Definition of a Diverse Clade of European Late Cretaceous Basal Eusuchians. PLoS ONE, 2015, 10, e0140679.	1.1	46
2	The evolution of the meatal chamber in crocodyliforms. Journal of Anatomy, 2016, 228, 838-863.	0.9	46
3	Suchian Feeding Success at the Interface of Ontogeny and Macroevolution. Integrative and Comparative Biology, 2016, 56, 449-458.	0.9	42
4	New Spanish Late Cretaceous eusuchian reveals the synchronic andÂsympatric presence of two allodaposuchids. Cretaceous Research, 2016, 65, 112-125.	0.6	43
5	Osteology and affinities of Dollo's goniopholidid (Mesoeucrocodylia) from the Early Cretaceous of Bernissart, Belgium. Journal of Vertebrate Paleontology, 2016, 36, e1222534.	0.4	35
6	Evolutionary relationships and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia. Zoological Journal of the Linnean Society, 2016, 177, 854-936.	1.0	41
7	Revision of the enigmatic crocodyliform <i>Elosuchus felixi</i> de Lapparent de Broin, 2002 from the Lower-Upper Cretaceous boundary of Niger: potential evidence for an early origin of the clade Dyrosauridae. Zoological Journal of the Linnean Society, 2016, , .	1.0	11
8	An unusual small-bodied crocodyliform from the Middle Jurassic of Scotland, UK, and potential evidence for an early diversification of advanced neosuchians. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2016, 107, 1-12.	0.3	11
9	Cranial anatomy of Pholidosaurus purbeckensis from the Lower Cretaceous of France and its bearing on pholidosaurid affinities. Cretaceous Research, 2016, 66, 43-59.	0.6	28
10	Review of the Late Cretaceous-early Paleogene crocodylomorphs of Europe: Extinction patterns across the K-PG boundary. Cretaceous Research, 2016, 57, 565-590.	0.6	38
11	The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia), and a discussion on the genus <i>Theriosuchus</i> . Zoological Journal of the Linnean Society, 2016, 176, 443-462.	1.0	28
12	A large neosuchian crocodyliform from the Upper Cretaceous (Cenomanian) Woodbine Formation of North Texas. Journal of Vertebrate Paleontology, 2017, 37, e1349776.	0.4	21
13	Evidence for heterochrony in the cranial evolution of fossil crocodyliforms. Palaeontology, 2018, 61, 543-558.	1.0	27
14	Taphonomy of <i>Isisfordia duncani</i> specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland. Royal Society Open Science, 2018, 5, 171651.	1.1	10
15	The earliest record of Asian Eusuchia from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand. Cretaceous Research, 2018, 82, 21-28.	0.6	12
16	A new specimen of the alligatoroid Bottosaurus harlani and the early history of character evolution in alligatorids. Journal of Vertebrate Paleontology, 2018, 38, (1)-(22).	0.4	18
17	Reassessment of the enigmatic crocodyliform "Goniopholis" paulistanus Roxo, 1936: Historical approach, systematic, and description by new materials. PLoS ONE, 2018, 13, e0199984.	1.1	18
18	Revision of the large crocodyliform <i>Kansajsuchus</i> (Neosuchia) from the Late Cretaceous of Central Asia. Zoological Journal of the Linnean Society, 2019, 185, 335-387.	1.0	11

#	Article	IF	Citations
19	The multi-peak adaptive landscape of crocodylomorph body size evolution. BMC Evolutionary Biology, 2019, 19, 167.	3.2	46
20	The phylogenetic relationships of neosuchian crocodiles and their implications for the convergent evolution of the longirostrine condition. Zoological Journal of the Linnean Society, 0, , .	1.0	8
21	The evolution and role of the hyposphene-hypantrum articulation in Archosauria: phylogeny, size and/or mechanics?. Royal Society Open Science, 2019, 6, 190258.	1.1	14
22	Unusual locomotion behaviour preserved within a crocodyliform trackway from the Upper Cretaceous Bayanshiree Formation of Mongolia and its palaeobiological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109239.	1.0	11
23	Feeding in Crocodylians and Their Relatives: Functional Insights from Ontogeny and Evolution. Fascinating Life Sciences, 2019, , 575-610.	0.5	9
24	Vertebrate remains from the Turonian (Upper Cretaceous) Gosau Group of Gams, Austria. Cretaceous Research, 2019, 99, 190-208.	0.6	11
25	A new Theriosuchus-like crocodyliform from the Maastrichtian of Romania. Cretaceous Research, 2019, 100, 24-38.	0.6	11
26	New Crocodylomorph Material from the Fayum Depression, Egypt, Including the First Occurrence of a Sebecosuchian in African Late Eocene Deposits. Journal of Vertebrate Paleontology, 2019, 39, e1729781.	0.4	6
27	A new specimen of <i>Susisuchus anatoceps</i> (Crocodyliformes, Neosuchia) with a non-eusuchian-type palate. Journal of Vertebrate Paleontology, 2019, 39, e1716240.	0.4	2
28	Inner skull cavities of the basal eusuchian Lohuecosuchus megadontos (Upper Cretaceous, Spain) and neurosensorial implications. Cretaceous Research, 2019, 93, 66-77.	0.6	15
29	A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia. Zoological Journal of the Linnean Society, 2019, 186, 501-528.	1.0	22
30	New diagnosis for Allodaposuchus precedens, the type species of the European Upper Cretaceous clade Allodaposuchidae. Zoological Journal of the Linnean Society, 2020, 189, 618-634.	1.0	6
31	An Enigmatic Small Neosuchian Crocodyliform from the Woodbine Formation of Texas. Anatomical Record, 2020, 303, 801-812.	0.8	10
32	Spatiotemporal palaeodiversity patterns of modern crocodiles (Crocodyliformes: Eusuchia). Zoological Journal of the Linnean Society, 2020, 189, 635-656.	1.0	20
33	Crocodylomorph cranial shape evolution and its relationship with body size and ecology. Journal of Evolutionary Biology, 2020, 33, 4-21.	0.8	23
34	Additional skulls of Talarurus plicatospineus (Dinosauria: Ankylosauridae) and implications for paleobiogeography and paleoecology of armored dinosaurs. Cretaceous Research, 2020, 108, 104340.	0.6	3
35	Vertebrae-Based Body Length Estimation in Crocodylians and Its Implication for Sexual Maturity and the Maximum Sizes. Integrative Organismal Biology, 2020, 2, obaa042.	0.9	8
36	New anatomical information on Araripesuchus buitreraensis with implications for the systematics of Uruguaysuchidae (Crocodyliforms, Notosuchia). Cretaceous Research, 2020, 113, 104494.	0.6	13

CITATION REPORT

#	Article	IF	CITATIONS
37	Virtual reconstruction of the skull ofBernissartia fagesiiand current understanding of the neosuchian–eusuchian transition. Journal of Systematic Palaeontology, 2020, 18, 1079-1101.	0.6	12
38	Crocodylian assemblage from the middle Eocene Ikovo locality (Lugansk Province, Ukraine), with a discussion of the fossil record and geographic origins of crocodyliform fauna in the Paleogene of Europe. Geobios, 2021, 65, 7-27.	0.7	10
40	Lithobiotopes of the Nemegt Gobi Basin ¹ . Canadian Journal of Earth Sciences, 2021, 58, 829-851.	0.6	14
41	Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem. PeerJ, 2021, 9, e12094.	0.9	34
42	A new paralligatorid (Crocodyliformes, Neosuchia) from the mid-Cretaceous of Jilin Province, northeastern China. Cretaceous Research, 2022, 129, 105018.	0.6	3
43	Knoetschkesuchus langenbergensis gen. nov. sp. nov., a new atoposaurid crocodyliform from the Upper Jurassic Langenberg Quarry (Lower Saxony, northwestern Germany), and its relationships to Theriosuchus. PLoS ONE, 2017, 12, e0160617.	1.1	31
44	Empirical and Bayesian approaches to fossil-only divergence times: A study across three reptile clades. PLoS ONE, 2017, 12, e0169885.	1.1	45
45	An enigmatic crocodyliform tooth from the bauxites of western Hungary suggests hidden mesoeucrocodylian diversity in the Early Cretaceous European archipelago. PeerJ, 2015, 3, e1160.	0.9	5
46	The palate and choanae structure of the <i>Susisuchusanatoceps</i> (Crocodyliformes, Eusuchia): phylogenetic implications. PeerJ, 2018, 6, e5372.	0.9	12
47	The monophyly of Susisuchidae (Crocodyliformes) and its phylogenetic placement in Neosuchia. PeerJ, 2015, 3, e759.	0.9	49
50	How to Live with Dinosaurs: Ecosystems Across the Mesozoic. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 209-229.	0.1	4
52	Abdominal contents reveal Cretaceous crocodyliforms ate dinosaurs. Gondwana Research, 2022, 106, 281-302.	3.0	6
53	The impact of molecular data on the phylogenetic position of the putative oldest crown crocodilian and the age of the clade. Biology Letters, 2022, 18, 20210603.	1.0	16
54	On the homology of crocodylian postâ€dentary bones and their macroevolution throughout Pseudosuchia. Anatomical Record, 2022, 305, 2980-3001.	0.8	3
55	How to date a crocodile: estimation of neosuchian clade ages and a comparison of four timeâ€scaling methods. Palaeontology, 2022, 65, .	1.0	4
56	A new goniopholidid from the Upper Jurassic Morrison Formation, USA: novel insight into aquatic adaptation toward modern crocodylians. Royal Society Open Science, 2021, 8, 210320.	1.1	5
57	The effects of skull flattening on suchian jaw muscle evolution. Anatomical Record, 2022, 305, 2791-2822.	0.8	6
58	Crocodyliform remains from the Upper Cretaceous of Central Asia – evidence for one of the oldest Crocodylia?. Cretaceous Research, 2022, , 105266.	0.6	Ο

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
59	Palate evolution in earlyâ€branching crocodylomorphs: Implications for homology, systematics, and ecomorphology. Anatomical Record, 2022, 305, 2766-2790.	0.8	8
60	Anatomy and relationships of the early diverging Crocodylomorphs <scp><i>Junggarsuchus sloani</i></scp> and <scp><i>Dibothrosuchus elaphros</i></scp> . Anatomical Record, 2022, 305, 2463-2556.	0.8	10
61	A large-sized mesoeucrocodylian from the Late Cretaceous of Brazil with possible neosuchian affinities. Historical Biology, 2023, 35, 1817-1830.	0.7	0
62	Discovery of the teleosauroid crocodylomorph from the early Jurassic of Chaara cave, Middle Atlas of Morocco. Journal of African Earth Sciences, 2023, 198, 104804.	0.9	3
63	An Overview on the Crocodylomorpha Cranial Neuroanatomy: Variability, Morphological Patterns and Paleobiological Implications. , 2023, , 213-266.		1
64	A new early diverging thalattosuchian (Crocodylomorpha) from the Early Jurassic (Pliensbachian) of Dorset, U.K. and implications for the origin and evolution of the group. Journal of Vertebrate Paleontology, 2022, 42, .	0.4	7