Lack of Protection following Passive Transfer of Polycle Non-Neutralizing Antibodies

PLoS ONE 9, e97229

DOI: 10.1371/journal.pone.0097229

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Broadly Neutralizing Anti-HIV-1 Antibodies Require Fc Effector Functions for InÂVivo Activity. Cell, 2014, 158, 1243-1253.	13.5	419
2	The role of Fc receptors in <scp>HIV</scp> prevention and therapy. Immunological Reviews, 2015, 268, 296-310.	2.8	41
3	Prospects for engineering HIV-specific antibodies for enhanced effector function and half-life. Current Opinion in HIV and AIDS, 2015, 10, 160-169.	1.5	21
4	Animal models in HIV-1 protection and therapy. Current Opinion in HIV and AIDS, 2015, 10, 170-176.	1.5	49
5	Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses, 2015, 7, 5115-5132.	1.5	42
6	Heterosexual Transmission of Subtype C HIV-1 Selects Consensus-Like Variants without Increased Replicative Capacity or Interferon-α Resistance. PLoS Pathogens, 2015, 11, e1005154.	2.1	76
7	Mucosal Immunity and Vaccines Against Simian Immunodeficiency Virus and Human Immunodeficiency Virus. , 2015, , 1171-1182.		1
8	HIV-specific CD4-induced Antibodies Mediate Broad and Potent Antibody-dependent Cellular Cytotoxicity Activity and are Commonly Detected in Plasma from HIV-infected Humans. EBioMedicine, 2015, 2, 1464-1477.	2.7	60
9	What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?. Journal of Virology, 2015, 89, 5981-5995.	1.5	25
10	Antibody responses to envelope glycoproteins in HIV-1 infection. Nature Immunology, 2015, 16, 571-576.	7.0	364
11	The role of HIV-specific antibody-dependent cellular cytotoxicity in HIV prevention and the influence of the HIV-1 Vpu protein. Aids, 2015, 29, 137-144.	1.0	32
12	Patterns of HIV/SIV Prevention and Control by Passive Antibody Immunization. Frontiers in Microbiology, 2016, 7, 1739.	1.5	6
13	Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.	2.1	51
14	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	2.7	47
15	New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Review of Vaccines, 2016, 15, 1015-1027.	2.0	9
16	Exploring the benefits of antibody immune response in HIV-1 infection using a discrete model. Mathematical Medicine and Biology, 2016, 33, 189-210.	0.8	1
17	<scp>HIV</scp> antibodies for treatment of <scp>HIV</scp> infection. Immunological Reviews, 2017, 275, 313-323.	2.8	59
18	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	2.8	131

#	Article	IF	CITATIONS
19	Lack of ADCC Breadth of Human Nonneutralizing Anti-HIV-1 Antibodies. Journal of Virology, 2017, 91, .	1.5	63
20	Survivors Remorse: antibodyâ€mediated protection against <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 271-284.	2.8	25
21	Monoclonal Antibodies Specific for the V2, V3, CD4-Binding Site, and gp41 of HIV-1 Mediate Phagocytosis in a Dose-Dependent Manner. Journal of Virology, 2017, 91, .	1.5	48
22	Low doses of IgG from atopic individuals can modulate <i>in vitro</i> IFN-γ production by human intra-thymic TCD4 and TCD8 cells: An IVIg comparative approach. Human Vaccines and Immunotherapeutics, 2017, 13, 1563-1572.	1.4	19
23	Broadly Neutralizing Antibodies Display Potential for Prevention of HIV-1 Infection of Mucosal Tissue Superior to That of Nonneutralizing Antibodies. Journal of Virology, 2017, 91, .	1.5	29
24	NK cell degranulation as a marker for measuring antibody-dependent cytotoxicity in neutralizing and non-neutralizing human sera from dengue patients. Journal of Immunological Methods, 2017, 441, 24-30.	0.6	22
25	Natural Killer (NK) Cell Education Differentially Influences HIV Antibody-Dependent NK Cell Activation and Antibody-Dependent Cellular Cytotoxicity. Frontiers in Immunology, 2017, 8, 1033.	2.2	17
26	First-in-Human Randomized, Controlled Trial of Mosaic HIV-1 Immunogens Delivered via a Modified Vaccinia Ankara Vector. Journal of Infectious Diseases, 2018, 218, 633-644.	1.9	35
27	Reduced Cell-Associated DNA and Improved Viral Control in Macaques following Passive Transfer of a Single Anti-V2 Monoclonal Antibody and Repeated Simian/Human Immunodeficiency Virus Challenges. Journal of Virology, 2018, 92, .	1.5	51
28	Neutralization Sensitivity of a Novel HIV-1 CRF01_AE Panel of Infectious Molecular Clones. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 78, 348-355.	0.9	7
29	What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028902.	2.3	31
30	Impact of HIV-1 Envelope Conformation on ADCC Responses. Trends in Microbiology, 2018, 26, 253-265.	3.5	64
31	Antibody-dependent cellular cytotoxicity in HIV infection. Aids, 2018, 32, 2439-2451.	1.0	67
32	Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. Retrovirology, 2018, 15, 61.	0.9	90
33	Virus-Like-Vaccines against HIV. Vaccines, 2018, 6, 10.	2.1	19
34	Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. MBio, 2018, 9, .	1.8	82
35	HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1006987.	2.1	71
36	Human Immunodeficiency Virus Vaccines. , 2018, , 400-429.e25.		0

CITATION REPORT

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Com Human and Non-human Primate Effector Function. Frontiers in Immunology, 2019, 10, 6		2.2	55
38	IgG from Non-atopic Individuals Induces In Vitro IFN-Î ³ and IL-10 Production by Human In Cells: A Comparison with Atopic IgG and IVIg. Archivum Immunologiae Et Therapiae Expe 67, 263-270.	tra-thymic Î ³ ÎT rimentalis, 2019,	1.0	13
39	Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Aga Frontiers in Immunology, 2019, 10, 1025.	inst HIV-1.	2.2	37
40	The Antibodiome—Mapping the Humoral Immune Response to HIV. Current HIV/AIDS № 169-179.	eports, 2019, 16,	1.1	13
41	HIV-1 antibodies in prevention of transmission. Current Opinion in HIV and AIDS, 2019, 1	.4, 273-278.	1.5	12
42	Neutralizing antibodies for HIV-1 prevention. Current Opinion in HIV and AIDS, 2019, 14	318-324.	1.5	34
43	Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques. 183, 185-196.e14.	Cell, 2020,	13.5	25
44	Myeloid Cell-Mediated Trained Innate Immunity in Mucosal AIDS Vaccine Development. F Immunology, 2020, 11, 315.	rontiers in	2.2	14
45	Comparison of shortened mosaic HIV-1 vaccine schedules: a randomised, double-blind, placebo-controlled phase 1 trial (IPCAVD010/HPX1002) and a preclinical study in rhesus	monkeys (NHP) Tj ETQq	0 @.0 rgBT	/@gerlock 10
46	Serum IgG1 and IgG4 could contribute to partial control of viral rebound in chronically H subjects. Aids, 2021, Publish Ahead of Print, 1549-1559.	IV-1 infected	1.0	1
47	Incorporating the Cluster A and V1V2 Targets into a Minimal Structural Unit of the HIV-1 Elicit a Cross-Clade Response with Potent Fc-Effector Functions. Vaccines, 2021, 9, 975.		2.1	5
48	Contribution to HIV Prevention and Treatment by Antibody-Mediated Effector Function a in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Frontiers in Ir 2021, 12, 734304.		2.2	9
49	Mucosal vaccine efficacy against intrarectal SHIV is independent of anti-Env antibody res Journal of Clinical Investigation, 2019, 129, 1314-1328.	ponse.	3.9	28
50	Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichion parameters. PLoS Pathogens, 2017, 13, e1006313.	letric	2.1	23
51	Un barrio marginado no es un barrio marginal. A propósito de Nazaret (Valencia). Revist Dialectologia Y Tradiciones Populares, 2016, 71, 151-171.	a De	0.3	5
53	Neutralization and beyond: Antibodies and HIV-1 acquisition. Current Topics in Virology,	2018, 15, 73-86.	0.0	1

54	Vaccine-Induced, High-Magnitude HIV Env-Specific Antibodies with Fc-Mediated Effector Functions Are Insufficient to Protect Infant Rhesus Macaques against Oral SHIV Infection. MSphere, 2022, 7, e0083921.	1.3	2
55	Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. Journal of Virology, 2022, , e0003422.	1.5	7

#	Article	IF	CITATIONS
56	IgG from Adult Atopic Dermatitis (AD) Patients Induces Nonatopic Neonatal Thymic Gamma–Delta T Cells (γÎT) to Acquire IL-22/IL-17 Secretion Profile with Skin-Homing Properties and Epigenetic Implications Mediated by miRNA. International Journal of Molecular Sciences, 2022, 23, 6872.	1.8	7
57	Antiviral neutralizing antibodies: from in vitro to in vivo activity. Nature Reviews Immunology, 2023, 23, 720-734.	10.6	8
58	Effect of Passive Administration of Monoclonal Antibodies Recognizing Simian Immunodeficiency Virus (SIV) V2 in CH59-Like Coil/Helical or β-Sheet Conformations on Time of SIV _{mac251} Acquisition. Journal of Virology, 0, , .	1.5	2