Role of the Lower and Upper Intestine in the Production Microbiota-Derived PUFA Metabolites

PLoS ONE

9, e87560

DOI: 10.1371/journal.pone.0087560

Citation Report

#	Article	IF	CITATIONS
1	Diet, the Gut Microbiome, and Epigenetics. Cancer Journal (Sudbury, Mass), 2014, 20, 170-175.	1.0	158
2	Dynamics of Gut Microbiota in Autoimmune Lupus. Applied and Environmental Microbiology, 2014, 80, 7551-7560.	1.4	250
3	Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture, 2014, 434, 449-455.	1.7	163
4	Role of the Gut in Modulating Lipoprotein Metabolism. Current Cardiology Reports, 2014, 16, 515.	1.3	13
5	Effects of microcystin-LR on gut microflora in different gut regions of mice. Journal of Toxicological Sciences, 2015, 40, 485-494.	0.7	28
6	Deep Metabotyping of the Murine Gastrointestinal Tract for the Visualization of Digestion and Microbial Metabolism. Journal of Proteome Research, 2015, 14, 2267-2277.	1.8	8
7	Ability of the gut microbiota to produce PUFAâ€derived bacterial metabolites: Proof of concept in germâ€free versus conventionalized mice. Molecular Nutrition and Food Research, 2015, 59, 1603-1613.	1.5	48
8	Chlorella sorokiniana Extract Improves Short-Term Memory in Rats. Molecules, 2016, 21, 1311.	1.7	18
9	A novel anti-inflammatory role of GPR120 in intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2016, 310, C612-C621.	2.1	54
10	Foodomics as part of the host-microbiota-exposome interplay. Journal of Proteomics, 2016, 147, 3-20.	1.2	46
11	Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Medicine, 2016, 8, 46.	3.6	402
12	Linseed as a Functional Food for the Management of Obesity. , 2016, , 173-187.		2
13	Sources and Bioactive Properties of Conjugated Dietary Fatty Acids. Lipids, 2016, 51, 377-397.	0.7	49
14	Adipose tissue adaptive response to <i>trans</i> â€10, <i>cisâ€</i> 12â€conjugated linoleic acid engages alternatively activated M2 macrophages. FASEB Journal, 2016, 30, 241-251.	0.2	12
15	Marine ï‰-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut, 2017, 66, 1790-1796.	6.1	89
16	Chemical signaling between gut microbiota and host chromatin: What is your gut really saying?. Journal of Biological Chemistry, 2017, 292, 8582-8593.	1.6	41
17	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research, 2017, 189, 30-50.	2.2	34
18	Diet, Gut Microbiota, and Colorectal Cancer Prevention: a Review of Potential Mechanisms and Promising Targets for Future Research. Current Colorectal Cancer Reports, 2017, 13, 429-439.	1.0	32

#	ARTICLE	IF	CITATIONS
19	Mucosaâ€associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of polyâ€unsaturated fat. Environmental Microbiology, 2017, 19, 722-739.	1.8	18
20	Challenges in oral drug delivery: a nano-based strategy to overcome. , 2017, , 173-201.		53
21	A taxonomic signature of obesity in a large study of American adults. Scientific Reports, 2018, 8, 9749.	1.6	192
22	Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiological Genomics, 2018, 50, 117-126.	1.0	84
23	Aflatoxin B1 Disrupts Gut-Microbial Metabolisms of Short-Chain Fatty Acids, Long-Chain Fatty Acids, and Bile Acids in Male F344 Rats. Toxicological Sciences, 2018, 164, 453-464.	1.4	36
24	The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. Journal of Ethnopharmacology, 2019, 245, 112153.	2.0	60
25	Milk Polar Lipids in a Highâ€Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Molecular Nutrition and Food Research, 2019, 63, e1801078.	1.5	35
26	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	1.5	35
27	Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients, 2019, 11, 370.	1.7	207
28	Environmental Factors, Gut Microbiota, and Colorectal Cancer Prevention. Clinical Gastroenterology and Hepatology, 2019, 17, 275-289.	2.4	194
29	Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health., 2019, , 1-19.		1
30	Regulation of gut microbiota substantially contributes to the induction of intestinal Treg cells and consequent anti-arthritis effect of madecassoside. International Immunopharmacology, 2020, 89, 107047.	1.7	15
31	Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Critical Reviews in Food Science and Nutrition, 2021, 61, 2399-2410.	5.4	15
32	Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients, 2020, 12, 3451.	1.7	5
33	EGCG regulates fatty acid metabolism of high-fat diet-fed mice in association with enrichment of gut Akkermansia muciniphila. Journal of Functional Foods, 2020, 75, 104261.	1.6	14
34	The role of the microbiota in human genetic adaptation. Science, 2020, 370, .	6.0	61
35	Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells. ACS Chemical Biology, 2020, 15, 2324-2330.	1.6	5
36	Infant gut microbiota characteristics generally do not modify effects of lipid-based nutrient supplementation on growth or inflammation: secondary analysis of a randomized controlled trial in Malawi. Scientific Reports, 2020, 10, 14861.	1.6	8

#	ARTICLE	IF	CITATIONS
37	α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients, 2020, 12, 732.	1.7	21
38	Orlistat-Induced Gut Microbiota Modification in Obese Mice. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-9.	0.5	27
39	Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 7-23.	8.2	28
40	Implication of the Gut Microbiota in Metabolic Inflammation Associated with Nutritional Disorders and Obesity. Molecular Nutrition and Food Research, 2021, 65, e1900481.	1.5	8
41	Dietary Eicosapentaenoic Acid and Docosahexaenoic Acid Ethyl Esters Influence the Gut Microbiota and Bacterial Metabolites in Rats. Journal of Oleo Science, 2021, 70, 1469-1480.	0.6	9
42	Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators of Inflammation, 2021, 2021, 1-11.	1.4	122
43	Circulating fatty acids and endocannabinoidome-related mediator profiles associated to human longevity. GeroScience, 2021, 43, 1783-1798.	2.1	9
44	Impact of gut microbiota on plasma oxylipins profile under healthy and obesogenic conditions. Clinical Nutrition, 2021, 40, 1475-1486.	2.3	15
45	A Crosstalk between Diet, Microbiome and microRNA in Epigenetic Regulation of Colorectal Cancer. Nutrients, 2021, 13, 2428.	1.7	18
46	Effect of CLA supplementation on factors related to vascular dysfunction in arteries of orchidectomized rats. Prostaglandins and Other Lipid Mediators, 2021, 157, 106586.	1.0	2
47	Role of the Matrix on the Digestibility of Dairy Fat and Health Consequences. , 2020, , 153-202.		2
48	Experimental Chagas disease-induced perturbations of the fecal microbiome and metabolome. PLoS Neglected Tropical Diseases, 2018, 12, e0006344.	1.3	39
49	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	1.1	109
50	Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS ONE, 2018, 13, e0192447.	1.1	8
52	Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health., 2020,, 369-387.		0
53	Non-alcoholic fatty liver disease, diet and gut microbiota. EXCLI Journal, 2014, 13, 461-90.	0.5	16
54	Nutraceuticals and Herbal Food Supplements for Weight Loss: Is There a Prebiotic Role in the Mechanism of Action?. Microorganisms, 2021, 9, 2427.	1.6	6
55	Biochemical and Metabolical Pathways Associated with Microbiota-Derived Butyrate in Colorectal Cancer and Omega-3 Fatty Acids Implications: A Narrative Review. Nutrients, 2022, 14, 1152.	1.7	21

#	Article	IF	CITATIONS
59	Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nature Reviews Urology, 2022, 19, 695-707.	1.9	14
60	Gut microbiota is a potential goalkeeper of dyslipidemia. Frontiers in Endocrinology, 0, 13 , .	1.5	5
61	Mechanism of Guilu Erxian ointment based on targeted metabolomics in intervening in vitro fertilization and embryo transfer outcome in older patients with poor ovarian response of kidney-qi deficiency type. Frontiers in Endocrinology, 0, 14, .	1.5	1