The Mitochondrial Ca2+ Uniporter MCU Is Essential for Pancreatic \hat{I}^2 -Cells

PLoS ONE 7, e39722

DOI: 10.1371/journal.pone.0039722

Citation Report

#	Article	IF	CITATIONS
1	Mitochondrial Ca2+ Uptake 1 (MICU1) and Mitochondrial Ca2+ Uniporter (MCU) Contribute to Metabolism-Secretion Coupling in Clonal Pancreatic Î ² -Cells. Journal of Biological Chemistry, 2012, 287, 34445-34454.	1.6	120
2	The Mitochondrial Na+/Ca2+ Exchanger Upregulates Glucose Dependent Ca2+ Signalling Linked to Insulin Secretion. PLoS ONE, 2012, 7, e46649.	1.1	64
3	Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca2+. Diabetologia, 2013, 56, 1577-1586.	2.9	80
4	Mitochondrial function and insulin secretion. Molecular and Cellular Endocrinology, 2013, 379, 12-18.	1.6	98
5	KATP channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology, 2013, 9, 660-669.	4.3	221
6	Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes. Cell Metabolism, 2013, 18, 871-882.	7.2	179
7	Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic β cells. Pflugers Archiv European Journal of Physiology, 2013, 465, 543-554.	1.3	73
8	Minireview: Intraislet Regulation of Insulin Secretion in Humans. Molecular Endocrinology, 2013, 27, 1984-1995.	3.7	66
9	Mitochondrial Calcium Uniporter MCU Supports Cytoplasmic Ca2+ Oscillations, Store-Operated Ca2+ Entry and Ca2+-Dependent Gene Expression in Response to Receptor Stimulation. PLoS ONE, 2014, 9, e101188.	1.1	85
10	Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Reports, 2014, 9, 1202-1208.	2.9	368
11	Glucose-stimulated Single Pancreatic Islets Sustain Increased Cytosolic ATP Levels during Initial Ca2+ Influx and Subsequent Ca2+ Oscillations. Journal of Biological Chemistry, 2014, 289, 2205-2216.	1.6	43
12	Rfx6 Maintains the Functional Identity of Adult Pancreatic \hat{I}^2 Cells. Cell Reports, 2014, 9, 2219-2232.	2.9	114
13	Single-cell imaging tools for brain energy metabolism: a review. Neurophotonics, 2014, 1, 011004.	1.7	52
14	Incretin-Modulated Beta Cell Energetics in Intact Islets of Langerhans. Molecular Endocrinology, 2014, 28, 860-871.	3.7	66
15	Metabolism–Secretion Coupling and Mitochondrial Calcium Activities in Clonal Pancreatic β-Cells. Vitamins and Hormones, 2014, 95, 63-86.	0.7	4
16	Purinergic signalling in endocrine organs. Purinergic Signalling, 2014, 10, 189-231.	1.1	65
17	Molecular control of mitochondrial calcium uptake. Biochemical and Biophysical Research Communications, 2014, 449, 373-376.	1.0	27
18	Mathematical models of electrical activity of the pancreatic Î ² -cell: A physiological review. Islets, 2014, 6, e949195.	0.9	47

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Calcium signaling in pancreatic \hat{I}^2 -cells in health and in Type 2 diabetes. Cell Calcium, 20)14, 56, 340-361.	1.1	158
20	Mitochondrial Na+/Ca2+Exchange Assays. Cold Spring Harbor Protocols, 2014, 2014, p	db.prot073171.	0.2	2
21	LKB1 and AMPK differentially regulate pancreatic βâ€cell identity. FASEB Journal, 2014	, 28, 4972-4985.	0.2	71
22	Glucoseâ€induced inhibition of insulin secretion. Acta Physiologica, 2014, 210, 479-48	8.	1.8	13
23	Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Cells. Journal of Biological Chemistry, 2014, 289, 9182-9194.	1 Pancreatic Beta	1.6	62
24	ADCY5 Couples Glucose to Insulin Secretion in Human Islets. Diabetes, 2014, 63, 3009	-3021.	0.3	124
25	The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. Journal of Physiology, 2014, 592, 829-839.		1.3	232
26	Pancreatic βâ€cell Na ⁺ channels control global Ca ²⁺ signalin metabolism by inducing Na ⁺ and Ca ²⁺ responses that are pro mitochondria. FASEB Journal, 2014, 28, 3301-3312.	g and oxidative pagated into	0.2	49
27	ERp57 modulates mitochondrial calcium uptake through the MCU. FEBS Letters, 2014,	588, 2087-2094.	1.3	17
28	Use of Genetically Encoded Sensors to Monitor Cytosolic ATP/ADP Ratio in Living Cells. Enzymology, 2014, 542, 289-311.	Methods in	0.4	19
29	Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secret Profound Mitochondrial Defects. Journal of Biological Chemistry, 2015, 290, 20934-209		1.6	36
30	Essential Role of Mitochondrial Ca2+ Uniporter in the Generation of Mitochondrial pH (Metabolism-Secretion Coupling in Insulin-releasing Cells. Journal of Biological Chemistry 4086-4096.	Gradient and v, 2015, 290,	1.6	60
31	Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem 2015, 466, 203-218.	iical Journal,	1.7	299
32	The destiny of Ca2+ released by mitochondria. Journal of Physiological Sciences, 2015,	65, 11-24.	0.9	69
33	Structure and function of the mitochondrial calcium uniporter complex. Biochimica Et E Acta - Molecular Cell Research, 2015, 1853, 2006-2011.	3iophysica	1.9	154
34	The Mitochondrial Calcium Uniporter Controls Skeletal Muscle Trophism InÂVivo. Cell R 10, 1269-1279.	eports, 2015,	2.9	170
35	Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancrea Diabetologia, 2015, 58, 324-333.	tic beta cells.	2.9	40
36	Beta cell connectivity in pancreatic islets: a type 2 diabetes target?. Cellular and Molecu Sciences, 2015, 72, 453-467.	ılar Life	2.4	64

#	Article	IF	CITATIONS
37	A new split-GFP-based probe reveals DJ-1 translocation into the mitochondrial matrix to sustain ATP synthesis upon nutrient deprivation. Human Molecular Genetics, 2015, 24, 1045-1060.	1.4	38
38	Intracellular zinc in insulin secretion and action: a determinant of diabetes risk?. Proceedings of the Nutrition Society, 2016, 75, 61-72.	0.4	61
39	The two pore channel TPC2 is dispensable in pancreatic β-cells for normal Ca2+ dynamics and insulin secretion. Cell Calcium, 2016, 59, 32-40.	1.1	26
40	Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annual Review of Biochemistry, 2016, 85, 161-192.	5.0	348
41	Beta Cell Hubs Dictate Pancreatic Islet Responses toÂGlucose. Cell Metabolism, 2016, 24, 389-401.	7.2	370
42	The Pancreatic Î ² -Cell: A Bioenergetic Perspective. Physiological Reviews, 2016, 96, 1385-1447.	13.1	86
43	The mitochondrial Ca2+ uniporter: regulation by auxiliary subunits and signal transduction pathways. American Journal of Physiology - Cell Physiology, 2016, 311, C67-C80.	2.1	24
44	Genetically Encoded Fluorescent Biosensors to Explore AMPK Signaling and Energy Metabolism. Exs, 2016, 107, 491-523.	1.4	9
45	Beta-cell mitochondrial carriers and the diabetogenic stress response. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2540-2549.	1.9	33
46	Disallowance of <i>Acot7</i> in β-Cells Is Required for Normal Glucose Tolerance and Insulin Secretion. Diabetes, 2016, 65, 1268-1282.	0.3	23
47	Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2457-2464.	1.9	62
48	Metabolism Regulates Exposure of Pancreatic Islets to Circulating Molecules In Vivo. Diabetes, 2016, 65, 463-475.	0.3	41
49	The NCLX-type Na+/Ca2+ Exchanger NCX-9 Is Required for Patterning of Neural Circuits in Caenorhabditis elegans. Journal of Biological Chemistry, 2017, 292, 5364-5377.	1.6	17
50	The Mitochondrial Ca2+ Uniporter: Structure, Function, and Pharmacology. Handbook of Experimental Pharmacology, 2017, 240, 129-156.	0.9	36
51	The transcription factor Pax6 is required for pancreatic \hat{l}^2 cell identity, glucose-regulated ATP synthesis, and Ca2+ dynamics in adult mice. Journal of Biological Chemistry, 2017, 292, 8892-8906.	1.6	48
52	Novel ATP-synthase independent mechanism coupling mitochondrial activation to exocytosis in insulin-secreting cells. Journal of Cell Science, 2017, 130, 1929-1939.	1.2	9
53	Local and regional control of calcium dynamics in the pancreatic islet. Diabetes, Obesity and Metabolism, 2017, 19, 30-41.	2.2	49
54	Mitochondrial Calcium Handling in Physiology and Disease. Advances in Experimental Medicine and Biology, 2017, 982, 25-47.	0.8	61

#	Article	IF	CITATIONS
55	Phosphorylation of dynamin-related protein 1 at Ser616 regulates mitochondrial fission and is involved in mitochondrial calcium uniporter-mediated neutrophil polarization and chemotaxis. Molecular Immunology, 2017, 87, 23-32.	1.0	28
56	Fumarate Hydratase Deletion in Pancreatic Î ² Cells Leads to Progressive Diabetes. Cell Reports, 2017, 20, 3135-3148.	2.9	57
57	Cell cycle–related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line. Cell Cycle, 2017, 16, 2086-2099.	1.3	27
58	Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. Journal of Biological Chemistry, 2017, 292, 14473-14485.	1.6	39
59	Importance of mitochondrial calcium uniporter in high glucose–induced endothelial cell dysfunction. Diabetes and Vascular Disease Research, 2017, 14, 494-501.	0.9	17
60	The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets, 2017, 9, 109-139.	0.9	89
61	Structure, Activity Regulation, and Role of the Mitochondrial Calcium Uniporter in Health and Disease. Frontiers in Oncology, 2017, 7, 139.	1.3	80
62	ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. ELife, 2017, 6, .	2.8	125
63	Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Archiv European Journal of Physiology, 2018, 470, 1165-1179.	1.3	119
64	New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochemical and Biophysical Research Communications, 2018, 500, 75-86.	1.0	100
65	The MCU complex in cell death. Cell Calcium, 2018, 69, 73-80.	1.1	62
66	Crosslink between calcium and sodium signalling. Experimental Physiology, 2018, 103, 157-169.	0.9	70
67	Ca2+–mitochondria axis drives cell division in hematopoietic stem cells. Journal of Experimental Medicine, 2018, 215, 2097-2113.	4.2	99
68	Mitochondrial Ca2+ signaling. , 2018, 192, 112-123.		125
69	Chronic d-serine supplementation impairs insulin secretion. Molecular Metabolism, 2018, 16, 191-202.	3.0	29
70	The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology, 2018, 19, 713-730.	16.1	516
71	Monitoring real-time hormone release kinetics <i>via</i> high-content 3-D imaging of compensatory endocytosis. Lab on A Chip, 2018, 18, 2838-2848.	3.1	17
72	Mitochondrial calcium regulation during and following contractions in skeletal muscle. The Journal of Physical Fitness and Sports Medicine, 2018, 7, 205-211	0.2	1

#	Article	IF	CITATIONS
73	Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis. Redox Biology, 2019, 26, 101307.	3.9	56
74	Differential Effect of Glucose on ER-Mitochondria Ca2+ Exchange Participates in Insulin Secretion and Glucotoxicity-Mediated Dysfunction of β-Cells. Diabetes, 2019, 68, 1778-1794.	0.3	45
75	Leader β-cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nature Metabolism, 2019, 1, 615-629.	5.1	128
76	Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. Journal of Diabetes Research, 2019, 2019, 1-17.	1.0	32
77	Contributions of Mitochondrial Dysfunction to \hat{I}^2 Cell Failure in Diabetes Mellitus. , 2019, , 217-243.		2
78	Cortical mitochondria regulate insulin secretion by local Ca2+ buffering. Journal of Cell Science, 2019, 132, .	1.2	12
79	Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production. Cell Metabolism, 2019, 29, 430-442.e4.	7.2	57
80	Friend and foe: β-cell Ca2+ signaling and the development of diabetes. Molecular Metabolism, 2019, 21, 1-12.	3.0	57
81	Non-Canonical Control of Neuronal Energy Status by the Na+ Pump. Cell Metabolism, 2019, 29, 668-680.e4.	7.2	79
82	Why don't mice lacking the mitochondrial Ca 2+ uniporter experience an energy crisis?. Journal of Physiology, 2020, 598, 1307-1326.	1.3	25
83	Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars in Cell and Developmental Biology, 2020, 98, 167-180.	2.3	35
84	Wolfram syndrome: a monogenic model for diabetes mellitus and neurodegeneration. Current Opinion in Physiology, 2020, 17, 115-123.	0.9	19
85	Control by Ca2+ of mitochondrial structure and function in pancreatic β-cells. Cell Calcium, 2020, 91, 102282.	1.1	14
86	Mitochondrial Carriers Regulating Insulin Secretion Profiled in Human Islets upon Metabolic Stress. Biomolecules, 2020, 10, 1543.	1.8	9
87	†Resistance is futile?' – paradoxical inhibitory effects of K ATP channel closure in glucagonâ€secreting αâ€cells. Journal of Physiology, 2020, 598, 4765-4780.	1.3	16
88	Targeting mitochondrial ion channels in Type 2 diabetes. Future Medicinal Chemistry, 2020, 12, 1525-1527.	1.1	2
89	Calcium regulation of T cell metabolism. Current Opinion in Physiology, 2020, 17, 207-223.	0.9	29
90	Diabetes Mellitus, Mitochondrial Dysfunction and Ca2+-Dependent Permeability Transition Pore. International Journal of Molecular Sciences, 2020, 21, 6559.	1.8	58

#	Article	IF	CITATIONS
91	The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis. Molecular Metabolism, 2020, 40, 101015.	3.0	22
92	Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. International Journal of Molecular Sciences, 2020, 21, 3642.	1.8	5
93	Targeting Mitochondrial Calcium Uptake with the Natural Flavonol Kaempferol, to Promote Metabolism/Secretion Coupling in Pancreatic β-cells. Nutrients, 2020, 12, 538.	1.7	29
94	Metabolic regulation of calcium signaling in beta cells. Seminars in Cell and Developmental Biology, 2020, 103, 20-30.	2.3	50
95	The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice. Diabetologia, 2020, 63, 1368-1381.	2.9	37
96	Mitochondrial ion channels in pancreatic β ells: Novel pharmacological targets for the treatment of Type 2 diabetes. British Journal of Pharmacology, 2021, 178, 2077-2095.	2.7	15
97	Changes in Gene Expression of the MCU Complex Are Induced by Electrical Stimulation in Adult Skeletal Muscle. Frontiers in Physiology, 2020, 11, 601313.	1.3	1
98	The yin and yang of mitochondrial Ca2+ signaling in cell physiology and pathology. Cell Calcium, 2021, 93, 102321.	1.1	14
99	Molecular machinery regulating mitochondrial calcium levels: The nuts and bolts of mitochondrial calcium dynamics. Mitochondrion, 2021, 57, 9-22.	1.6	25
100	Molecular nature and physiological role of the mitochondrial calcium uniporter channel. American Journal of Physiology - Cell Physiology, 2021, 320, C465-C482.	2.1	54
101	Importance of Both Imprinted Genes and Functional Heterogeneity in Pancreatic Beta Cells: Is There a Link?. International Journal of Molecular Sciences, 2021, 22, 1000.	1.8	10
102	Role of mitochondria-associated endoplasmic reticulum membrane (MAMs) interactions and calcium exchange in the development of type 2 diabetes. International Review of Cell and Molecular Biology, 2021, 363, 169-202.	1.6	15
103	Genome-wide association study between copy number variation regions and carcass- and meat-quality traits in Nellore cattle. Animal Production Science, 2021, 61, 731.	0.6	2
104	Mitochondrial Calcium Signaling in Pancreatic β-Cell. International Journal of Molecular Sciences, 2021, 22, 2515.	1.8	11
105	A Selective Look at Autophagy in Pancreatic \hat{l}^2 -Cells. Diabetes, 2021, 70, 1229-1241.	0.3	21
106	Pyk2/MCU Pathway as a New Target for Reversing Atherosclerosis. Frontiers in Cell and Developmental Biology, 2021, 9, 651579.	1.8	8
107	Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxidants and Redox Signaling, 2022, 36, 920-952.	2.5	10
108	Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacological Research, 2021, 171, 105783.	3.1	32

#	Article	IF	CITATIONS
109	Mitochondrial Heterogeneity in Metabolic Diseases. Biology, 2021, 10, 927.	1.3	14
110	Mitochondrial clearance of calcium facilitated by MICU2 controls insulin secretion. Molecular Metabolism, 2021, 51, 101239.	3.0	15
111	The ER-mitochondria Ca2+ signaling in cancer progression: Fueling the monster. International Review of Cell and Molecular Biology, 2021, 363, 49-121.	1.6	15
112	The Pancreatic Î ² -Cell: The Perfect Redox System. Antioxidants, 2021, 10, 197.	2.2	16
113	PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice. Molecular Metabolism, 2020, 39, 101024.	3.0	20
115	Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiological Reviews, 2018, 98, 117-214.	13.1	497
116	Lipotoxicity disrupts incretin-regulated human \hat{l}^2 cell connectivity. Journal of Clinical Investigation, 2013, 123, 4182-4194.	3.9	203
117	Mitochondrial Ca Uptake Relieves Palmitate-Induced Cytosolic Ca Overload in MIN6 Cells. Molecules and Cells, 2020, 43, 66-75.	1.0	15
118	Mitochondrial calcium exchange in physiology and disease. Physiological Reviews, 2022, 102, 893-992.	13.1	115
124	Sensing Intra―and Extra ellular Ca ²⁺ in the Islet of Langerhans. Advanced Functional Materials, 2022, 32, 2106020.	7.8	0
126	Metabolic adaptation to the chronic loss of Ca2+ signaling induced by KO of IP3 receptors or the mitochondrial Ca2+Âuniporter. Journal of Biological Chemistry, 2022, 298, 101436.	1.6	11
127	Classical and non-classical islet peptides in the control of \hat{I}^2 -cell function. Peptides, 2022, 150, 170715.	1.2	3
128	Mitochondria modulate ameloblast Ca 2+ signaling. FASEB Journal, 2022, 36, e22169.	0.2	5
129	Opposing effects on regulated insulin secretion of acute vs chronic stimulation of AMP-activated protein kinase. Diabetologia, 2022, 65, 997-1011.	2.9	4
130	Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells. Biophysical Journal, 2022, 121, 1449-1464.	0.2	16
131	Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radical Biology and Medicine, 2022, 182, 34-58.	1.3	14
132	Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death and Disease, 2022, 13, 419.	2.7	8
133	Ca2+ Sensors Assemble: Function of the MCU Complex in the Pancreatic Beta Cell. Cells, 2022, 11, 1993.	1.8	2

		(
#	Article	IF	CITATIONS
134	Islet-on-a-chip device reveals first phase glucose-stimulated respiration is substrate limited by glycolysis independent of Ca2+ activity Biosensors and Bioelectronics: X, 2023, 13, 100285.	0.9	2
135	NKCC transport mediates the insulinotropic effects of taurine and other small neutral amino acids. Life Sciences, 2023, 316, 121402.	2.0	3
136	Knowledge mapping of mitochondrial calcium uniporter from 2011 to 2022: A bibliometric analysis. Frontiers in Physiology, 0, 14, .	1.3	1
137	Taurine rescues pancreatic βâ€cell stress by stimulating αâ€cell transdifferentiation. BioFactors, 2023, 49, 646-662.	2.6	5
138	Simultaneous Measurement of Changes in Mitochondrial and Endoplasmic Reticulum Free Calcium in Pancreatic Beta Cells. Biosensors, 2023, 13, 382.	2.3	2