Media Ion Composition Controls Regulatory and Virule Spaceflight

PLoS ONE

3, e3923

DOI: 10.1371/journal.pone.0003923

Citation Report

#	Article	IF	CITATIONS
1	The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek, 2009, 96, 227-245.	0.7	44
2	Experimental design and environmental parameters affect <i>Rhodospirillum rubrum</i> S1H response to space flight. ISME Journal, 2009, 3, 1402-1419.	4.4	52
3	Spaceflight and modeled microgravity effects on microbial growth and virulence. Applied Microbiology and Biotechnology, 2010, 85, 885-891.	1.7	118
4	Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts. Advances in Space Research, 2010, 46, 701-706.	1.2	5
5	International utilization at the threshold of "assembly completeâ€â€"science returns from the International Space Station. Acta Astronautica, 2010, 67, 513-519.	1.7	5
6	Differential proteomic analysis using isotopeâ€coded proteinâ€labeling strategies: Comparison, improvements and application to simulated microgravity effect on <i>Cupriavidus metallidurans</i> CH34. Proteomics, 2010, 10, 2281-2291.	1.3	54
7	Response of <i>Pseudomonas aeruginosa</i> PAO1 to low shear modelled microgravity involves AlgU regulation. Environmental Microbiology, 2010, 12, 1545-1564.	1.8	95
8	Space, Gravity and the Physiology of Aging: Parallel or Convergent Disciplines? A Mini-Review. Gerontology, 2010, 56, 157-166.	1.4	157
9	Space Microbiology. Microbiology and Molecular Biology Reviews, 2010, 74, 121-156.	2.9	535
10	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27.	1.3	59
10	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27. Host Stress and Virulence Expression in Intestinal Pathogens: Development of Therapeutic Strategies Using Mice and C. elegans. Current Pharmaceutical Design, 2011, 17, 1254-1260.	1.3 0.9	59 30
10 11 12	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27. Host Stress and Virulence Expression in Intestinal Pathogens: Development of Therapeutic Strategies Using Mice and C. elegans. Current Pharmaceutical Design, 2011, 17, 1254-1260. Microbiological Lessons Learned From the Space Shuttle. , 2011, , .	1.3 0.9	59 30 7
10 11 12 13	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27. Host Stress and Virulence Expression in Intestinal Pathogens: Development of Therapeutic Strategies Using Mice and C. elegans. Current Pharmaceutical Design, 2011, 17, 1254-1260. Microbiological Lessons Learned From the Space Shuttle., 2011, ,. The challenge of relating gene expression to the virulence of Salmonella enterica serovar Typhimurium. Current Opinion in Biotechnology, 2011, 22, 200-210.	1.3 0.9 3.3	59 30 7 24
10 11 12 13 14	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27. Host Stress and Virulence Expression in Intestinal Pathogens: Development of Therapeutic Strategies Using Mice and C. elegans. Current Pharmaceutical Design, 2011, 17, 1254-1260. Microbiological Lessons Learned From the Space Shuttle. , 2011, , . The challenge of relating gene expression to the virulence of Salmonella enterica serovar Typhimurium. Current Opinion in Biotechnology, 2011, 22, 200-210. Transcriptional and Proteomic Responses of <i>Pseudomonas aeruginosa </i> PAO1 to Spaceflight Conditions Involve Hfq Regulation and Reveal a Role for Oxygen. Applied and Environmental Microbiology, 2011, 77, 1221-1230.	1.3 0.9 3.3 1.4	 59 30 7 24 157
10 11 12 13 14 15	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27. Host Stress and Virulence Expression in Intestinal Pathogens: Development of Therapeutic Strategies Using Mice and C. elegans. Current Pharmaceutical Design, 2011, 17, 1254-1260. Microbiological Lessons Learned From the Space Shuttle. , 2011, , . The challenge of relating gene expression to the virulence of Salmonella enterica serovar Typhimurium. Current Opinion in Biotechnology, 2011, 22, 200-210. Transcriptional and Proteomic Responses of <1> Pseudomonas aeruginosa PAO1 to Spaceflight Conditions Involve Hfq Regulation and Reveal a Role for Oxygen. Applied and Environmental Microbiology, 2011, 77, 1221-1230. Characterization of the Salmonella enterica Serovar Typhimurium <1>>ydcl > Gene, Which Encodes a Conserved DNA Binding Protein Required for Full Acid Stress Resistance. Journal of Bacteriology, 2011, 193, 2208-2217.	1.3 0.9 3.3 1.4	 59 30 7 24 157 26
10 11 12 13 14 15 16	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27. Host Stress and Virulence Expression in Intestinal Pathogens: Development of Therapeutic Strategies Using Mice and C. elegans. Current Pharmaceutical Design, 2011, 17, 1254-1260. Microbiological Lessons Learned From the Space Shuttle., 2011,,. The challenge of relating gene expression to the virulence of Salmonella enterica serovar Typhimurium. Current Opinion in Biotechnology, 2011, 22, 200-210. Transcriptional and Proteomic Responses of <\>Pseudomonas aeruginosa <\>PAO1 to Spaceflight Conditions Involve Hfq Regulation and Reveal a Role for Oxygen. Applied and Environmental Microbiology, 2011, 77, 1221-1230. Characterization of the Salmonella enterica Serovar Typhimurium <i>ydcl<\i>Gene, Which Encodes a Conserved DNA Binding Protein Required for Full Acid Stress Resistance. Journal of Bacteriology, 2011, 193, 2208-2217. Modeled Microgravity Increases Filamentation, Biofilm Formation, Phenotypic Switching, and Antimicrobial Resistance in <i>Candida albicans</i></i>	1.3 0.9 3.3 1.4 1.0	 59 30 7 24 157 26 42
 10 11 12 13 14 15 16 17 	How and why does the proteome respond to microgravity?. Expert Review of Proteomics, 2011, 8, 13-27. Host Stress and Virulence Expression in Intestinal Pathogens: Development of Therapeutic Strategies Using Mice and C. elegans. Current Pharmaceutical Design, 2011, 17, 1254-1260. Microbiological Lessons Learned From the Space Shuttle., 2011, , . The challenge of relating gene expression to the virulence of Salmonella enterica serovar Typhimurium. Current Opinion in Biotechnology, 2011, 22, 200-210. Transcriptional and Proteomic Responses of <i>> Pseudomonas aeruginosa Microbiology, 2011, 77, 1221-1230. Characterization of the Salmonella enterica Serovar Typhimurium <i>>ydcl</i>> Gene, Which Encodes a Conserved DNA Binding Protein Required for Full Acid Stress Resistance. Journal of Bacteriology, 2011, 193, 2208-2217. Modeled Microgravity Increases Filamentation, Biofilm Formation, Phenotypic Switching, and Antimicrobial Resistance in <i>> Candida albicans </i>> Astrobiology, 2011, 11, 825-836. Rotating wall vessel exposure alters protein secretion and global gene expression in </i>	1.3 0.9 3.3 1.4 1.0 1.5 0.9	 59 30 7 24 157 26 42 9

#	Article	IF	CITATIONS
19	The microbiome: the forgotten organ of the astronaut's body – probiotics beyond terrestrial limits. Future Microbiology, 2012, 7, 1037-1046.	1.0	53
20	Expression of Multiple Stress Response Genes by Escherichia Coli Under Modeled Reduced Gravity. Microgravity Science and Technology, 2012, 24, 267-279.	0.7	6
21	The effect of low shear force on the virulence potential of Yersinia pestis: new aspects that space-like growth conditions and the final frontier can teach us about a formidable pathogen. Frontiers in Cellular and Infection Microbiology, 2012, 2, 107.	1.8	9
22	Modelled microgravity cultivation modulates N-acylhomoserine lactone production in Rhodospirillum rubrum S1H independently of cell density. Microbiology (United Kingdom), 2013, 159, 2456-2466.	0.7	26
23	The Effects of Modeled Microgravity on Growth Kinetics, Antibiotic Susceptibility, Cold Growth, and the Virulence Potential of a <i>Yersinia pestis ymoA</i> -Deficient Mutant and Its Isogenic Parental Strain. Astrobiology, 2013, 13, 821-832.	1.5	24
24	Draft Genome Sequences and Annotation of Enterococcus faecium Strain LCT-EF20. Genome Announcements, 2013, 1, .	0.8	0
25	Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Scientific Reports, 2013, 3, 1340.	1.6	29
26	The development of space microbiology in the future: the value and significance of space microbiology research. Future Microbiology, 2013, 8, 5-8.	1.0	29
27	Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiology, 2013, 13, 241.	1.3	59
28	Effect of Simulated Microgravity on E. coli K12 MG1655 Growth and Gene Expression. PLoS ONE, 2013, 8, e57860.	1.1	60
29	Spaceflight Promotes Biofilm Formation by Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e62437.	1.1	153
30	Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans. PLoS ONE, 2013, 8, e80677.	1.1	80
31	Role of Hfq in an animal–microbe symbiosis under simulated microgravity conditions. International Journal of Astrobiology, 2014, 13, 53-61.	0.9	12
32	Host-Microbe Interactions in Microgravity: Assessment and Implications. Life, 2014, 4, 250-266.	1.1	27
33	Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Applied Microbiology and Biotechnology, 2014, 98, 8797-8807.	1.7	46
34	Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives. Microbes and Environments, 2014, 29, 250-260.	0.7	89
35	The influence of simulated microgravity on the proteome of Daphnia magna. Npj Microgravity, 2015, 1, 15016.	1.9	14
36	Dysbiosis and Immune Dysregulation in Outer Space. International Reviews of Immunology, 2016, 35, 1-16.	1.5	62

#	Article	IF	CITATIONS
37	Effects of Space Environment on Genome, Transcriptome, and Proteome of Klebsiella pneumoniae. Archives of Medical Research, 2015, 46, 609-618.	1.5	9
38	The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions. Frontiers in Astronomy and Space Sciences, 2016, 3, .	1.1	48
39	Microbiota and Neurological Disorders: A Gut Feeling. BioResearch Open Access, 2016, 5, 137-145.	2.6	108
40	Using Spaceflight and Spaceflight Analogue Culture for Novel Mechanistic Insight into Salmonella Pathogenesis. , 2016, , 209-235.		4
41	Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung. MBio, 2016, 7, .	1.8	23
42	The International Space Station: an Extreme Environment for Key Host-Microbe Discoveries. Microbe Magazine, 2016, 11, 253-261.	0.4	2
45	Spaceflight and Spaceflight Analogue Induced Responses in Gram Positive Bacteria. , 2016, , 283-296.		0
46	Overview and Translational Impact of Space Cell Biology Research. , 2016, , 3-37.		0
47	Microgravity as a biological tool to examine host–pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathogens and Disease, 2016, 74, ftw095.	0.8	25
48	Elucidating the "Gravome― Quantitative Proteomic Profiling of the Response to Chronic Hypergravity in <i>Drosophila</i> . Journal of Proteome Research, 2016, 15, 4165-4175.	1.8	8
49	A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions. Astrobiology, 2016, 16, 677-689.	1.5	10
50	Towards human exploration of space: The THESEUS review series on immunology research priorities. Npj Microgravity, 2016, 2, 16040.	1.9	72
51	The Bacterial iprA Gene Is Conserved across Enterobacteriaceae, Is Involved in Oxidative Stress Resistance, and Influences Gene Expression in Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2016, 198, 2166-2179.	1.0	14
52	Microbial succession in an inflated lunar/Mars analog habitat during a 30-day human occupation. Microbiome, 2016, 4, 22.	4.9	31
53	Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. Journal of Proteomics, 2016, 137, 3-18.	1.2	40
54	Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight. FASEB Journal, 2016, 30, 2211-2224.	0.2	29
55	Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnology Advances, 2017, 35, 905-932.	6.0	48
56	Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. FASEB Journal, 2017, 31, 3695-3709.	0.2	43

#	Article	IF	CITATIONS
57	Investigation of simulated microgravity effects on Streptococcus mutans physiology and global gene expression. Npj Microgravity, 2017, 3, 4.	1.9	30
58	Preventing Infectious Diseases in Spacecraft and Space Habitats. Advances in Environmental Microbiology, 2017, , 3-17.	0.1	2
59	From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. Npj Microgravity, 2017, 3, 5.	1.9	23
60	The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic. Npj Microgravity, 2017, 3, 15.	1.9	48
61	The theory and application of space microbiology: China's experiences in space experiments and beyond. Environmental Microbiology, 2017, 19, 426-433.	1.8	23
62	Knowing What We Are Getting: Evaluating Scientific Research on the International Space Station*. Social Science Quarterly, 2017, 98, 1151-1159.	0.9	2
63	Phenotypic Changes Exhibited by E. coli Cultured in Space. Frontiers in Microbiology, 2017, 8, 1598.	1.5	84
64	Transfer and analysis of <i>Salmonella pdu</i> genes in a range of Gramâ€negative bacteria demonstrate exogenous microcompartment expression across a variety of species. Microbial Biotechnology, 2018, 11, 199-210.	2.0	23
65	Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity. Npj Microgravity, 2018, 4, 25.	1.9	16
66	Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial "spaceflight response― Scientific Reports, 2018, 8, 14403.	1.6	17
67	Characterization of Aspergillus niger Isolated from the International Space Station. MSystems, 2018, 3,	1.7	42
68	Microbiology of the Built Environment in Spacecraft Used for Human Flight. Methods in Microbiology, 2018, , 3-26.	0.4	9
69	Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response. Frontiers in Microbiology, 2018, 9, 310.	1.5	77
70	Probiotics into outer space: feasibility assessments of encapsulated freeze-dried probiotics during 1 month's storage on the International Space Station. Scientific Reports, 2018, 8, 10687.	1.6	19
71	Remote Controlled Autonomous Microgravity Lab Platforms for Drug Research in Space. Pharmaceutical Research, 2019, 36, 183.	1.7	32
72	Vaccines in Space. , 2019, , 1-17.		0
73	International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2019, 103, 1363-1377.	1.7	32
74	Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Frontiers in Physiology, 2020, 11, 553929.	1.3	56

#	Article	IF	CITATIONS
75	Space food and bacterial infections: Realities of the risk and role of science. Trends in Food Science and Technology, 2020, 106, 275-287.	7.8	10
76	Towards a passive limitation of particle surface contamination in the Columbus module (ISS) during the MATISS experiment of the Proxima Mission. Npj Microgravity, 2020, 6, 29.	1.9	3
77	Molecular Mechanisms of Microbial Survivability in Outer Space: A Systems Biology Approach. Frontiers in Microbiology, 2020, 11, 923.	1.5	32
78	Exploration of space to achieve scientific breakthroughs. Biotechnology Advances, 2020, 43, 107572.	6.0	21
79	Spaceflight and simulated microgravity conditions increase virulence of Serratia marcescens in the Drosophila melanogaster infection model. Npj Microgravity, 2020, 6, 4.	1.9	43
80	Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS ONE, 2020, 15, e0231838.	1.1	54
81	Measurement and Simulation of Biocontamination in an Enclosed Habitat. Aerosol Science and Engineering, 2020, 4, 101-110.	1.1	7
82	Metabolomic Analysis of Aspergillus niger Isolated From the International Space Station Reveals Enhanced Production Levels of the Antioxidant Pyranonigrin A. Frontiers in Microbiology, 2020, 11, 931.	1.5	16
83	Transcriptional Profiling of the Probiotic Escherichia coli Nissle 1917 Strain under Simulated Microgravity. International Journal of Molecular Sciences, 2020, 21, 2666.	1.8	22
84	Gut microbiome and human health under the space environment. Journal of Applied Microbiology, 2021, 130, 14-24.	1.4	49
85	The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. Npj Microgravity, 2021, 7, 7.	1.9	34
86	How the space environment influences organisms: an astrobiological perspective and review. International Journal of Astrobiology, 2021, 20, 159-177.	0.9	11
87	Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. Npj Microgravity, 2021, 7, 9.	1.9	10
88	Investigation of Spaceflight Induced Changes to Astronaut Microbiomes. Frontiers in Microbiology, 2021, 12, 659179.	1.5	28
89	Human immune system adaptations to simulated microgravity revealed by single-cell mass cytometry. Scientific Reports, 2021, 11, 11872.	1.6	15
90	Aging-like metabolic and adrenal changes in microgravity: State of the art in preparation for Mars. Neuroscience and Biobehavioral Reviews, 2021, 126, 236-242.	2.9	8
91	Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. Npj Biofilms and Microbiomes, 2021, 7, 70.	2.9	9
92	Mechanotransduction in Prokaryotes: A Possible Mechanism of Spaceflight Adaptation. Life, 2021, 11, 33.	1.1	14

#	Article	IF	CITATIONS
93	Microbial Stress: Spaceflight-Induced Alterations in Microbial Virulence and Infectious Disease Risks for theÂCrew. , 2020, , 327-355.		4
94	Laboratory Science with Space Data. , 2011, , .		6
95	Microbial Stress: Spaceflight-induced Alterations in Microbial Virulence and Infectious Disease Risks for the Crew. , 2012, , 203-225.		9
96	Mice in Bion-M 1 Space Mission: Training and Selection. PLoS ONE, 2014, 9, e104830.	1.1	88
97	Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. PLoS ONE, 2015, 10, e0125792.	1.1	73
98	Conservation of the Low-shear Modeled Microgravity Response in Enterobacteriaceae and Analysis of the trp Genes in this Response. Open Microbiology Journal, 2014, 8, 51-58.	0.2	30
99	Establishing Standard Protocols for Bacterial Culture in Biological Research in Canisters (BRIC) Hardware. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2016, 4, 58-69.	0.3	10
100	Space Microbiology: Modern Research and Advantages for Human Colonization on Mars. International Journal for Research in Applied Sciences and Biotechnology, 2019, 6, 4-10.	0.2	2
101	Areas of Research. , 2011, , 55-170.		0
102	Multiple Systems Spaceflight Effects. SpringerBriefs in Space Development, 2012, , 71-82.	0.1	Ο
103	Microbial Observatory Research in the International Space Station and Japanese Experiment Module "Kibo― Journal of Disaster Research, 2015, 10, 1025-1030.	0.4	2
104	Microbial Investigations: Overview. , 2016, , 199-208.		0
105	Medications in Microgravity: History, Facts, and Future Trends. , 2019, , 1-14.		0
106	Spaceflight Pharmacology. , 2019, , 815-840.		4
107	Microbiome and Immunity: A Critical Link for Long-Duration Space Exploration Missions. , 2020, , 617-635.		0
110	Materials, assemblies and reaction systems under rotation. Nature Reviews Materials, 2022, 7, 338-354.	23.3	13
111	Medications in Microgravity: History, Facts, and Future Trends. , 2022, , 165-178.		0
112	Vaccines in Space. , 2022, , 805-821.		0

#	Article	IF	CITATIONS
113	Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life, 2022, 12, 495.	1.1	18
114	A vision for spaceflight microbiology to enable human health and habitat sustainability. Nature Microbiology, 2022, 7, 471-474.	5.9	3
119	Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs, 2022, 20, 299.	2.2	29
120	Asparagine biosynthesis as a mechanism of increased host lethality induced by Serratia marcescens in simulated microgravity environments. Heliyon, 2022, 8, e09379.	1.4	2
121	Spaceflight Analogue Culture Enhances the Host-Pathogen Interaction Between Salmonella and a 3-D Biomimetic Intestinal Co-Culture Model. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
122	Adaptation to simulated microgravity in Streptococcus mutans. Npj Microgravity, 2022, 8, .	1.9	2
123	Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life, 2022, 12, 1163.	1.1	2
124	Passive limitation of surface contamination by perFluoroDecylTrichloroSilane coatings in the ISS during the MATISS experiments. Npj Microgravity, 2022, 8, .	1.9	1
125	Role of RpoS in Regulating Stationary Phase Salmonella Typhimurium Pathogenesis-Related Stress Responses under Physiological Low Fluid Shear Force Conditions. MSphere, 2022, 7, .	1.3	1
126	Database of space life investigations and bioinformatics of microbiology in extreme environments. Frontiers in Microbiology, 0, 13, .	1.5	4
127	Migration of surface-associated microbial communities in spaceflight habitats. Biofilm, 2023, 5, 100109.	1.5	8
128	Biofilm formation is correlated with low nutrient and simulated microgravity conditions in a Burkholderia isolate from the ISS water processor assembly. Biofilm, 2023, 5, 100110.	1.5	5
129	Bacterial Virulence and Prevention for Human Spaceflight. Life, 2023, 13, 656.	1.1	0
130	Microgravity and evasion of plant innate immunity by human bacterial pathogens. Npj Microgravity, 2023, 9, .	1.9	2
131	Space Radiobiology. , 2023, , 503-569.		0