Inferring the risk factors behind the geographical sprea Americas

PLoS Neglected Tropical Diseases 12, e0006194 DOI: 10.1371/journal.pntd.0006194

Citation Report

#	Article	IF	CITATIONS
1	Research progress of the causal link between Zika virus and microcephaly. Global Health Journal (Amsterdam, Netherlands), 2018, 2, 11-18.	1.9	3
2	"Zika is everywhere†A qualitative exploration of knowledge, attitudes and practices towards Zika virus among women of reproductive age in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2018, 12, e0006708.	1.3	19
3	Zika might not be acting alone: Using an ecological study approach to investigate potential co-acting risk factors for an unusual pattern of microcephaly in Brazil. PLoS ONE, 2018, 13, e0201452.	1.1	45
4	Spatial diffusion of the 2015–2016 Zika, dengue and chikungunya epidemics in Rio de Janeiro Municipality, Brazil. Epidemiology and Infection, 2019, 147, e237.	1.0	6
5	Comparison of general and cardiac care-specific indices of spatial access in Australia. PLoS ONE, 2019, 14, e0219959.	1.1	8
6	Inactivation of Zika Virus by Photoactive Iodonaphthyl Azide Preserves Immunogenic Potential of the Virus. Pathogens, 2019, 8, 188.	1.2	3
7	Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell, 2019, 178, 1057-1071.e11.	13.5	68
8	Climate drives spatial variation in Zika epidemics in Latin America. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191578.	1.2	20
9	A dynamic neural network model for predicting risk of Zika in real time. BMC Medicine, 2019, 17, 171.	2.3	75
10	Arbovirus coinfection and co-transmission: A neglected public health concern?. PLoS Biology, 2019, 17, e3000130.	2.6	106
11	<scp>MVSE</scp> : An Râ€package that estimates a climateâ€driven mosquitoâ€borne viral suitability index. Methods in Ecology and Evolution, 2019, 10, 1357-1370.	2.2	35
12	A consensus statement on birth defects surveillance, prevention, and care in Latin America and the Caribbean. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2019, 43, 1.	0.6	9
13	Health Education for Awareness and Behavioral Change and Influence. Encyclopedia of the UN Sustainable Development Goals, 2019, , 1-12.	0.0	0
14	Phylogenetic surveillance of travel-related Zika virus infections through whole-genome sequencing methods. Scientific Reports, 2019, 9, 16433.	1.6	4
15	Zika circulation, congenital syndrome, and current guidelines. Current Opinion in Infectious Diseases, 2019, 32, 381-389.	1.3	2
16	Islands as Hotspots for Emerging Mosquito-Borne Viruses: A One-Health Perspective. Viruses, 2019, 11, 11.	1.5	35
17	Genomic Epidemiology as a Public Health Tool to Combat Mosquito-Borne Virus Outbreaks. Journal of Infectious Diseases, 2020, 221, S308-S318.	1.9	15
18	In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Research, 2020, 173, 104668.	1.9	19

#	Article	IF	CITATIONS
19	Epidemiologic and spatiotemporal trends of Zika Virus disease during the 2016 epidemic in Puerto Rico. PLoS Neglected Tropical Diseases, 2020, 14, e0008532.	1.3	12
20	The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year. Environment and Planning B: Urban Analytics and City Science, 2021, 48, 1955-1971.	1.0	26
21	Predicting dengue importation into Europe, using machine learning and model-agnostic methods. Scientific Reports, 2020, 10, 9689.	1.6	18
22	Dengue importation into Europe: A network connectivity-based approach. PLoS ONE, 2020, 15, e0230274.	1.1	12
23	Navigating women's reproductive health and childbearing during public health crises: Covid-19 and Zika in Brazil. World Development, 2021, 139, 105305.	2.6	5
24	COVID-19: effectiveness of socioeconomic factors in containing the spread and mortality. International Review of Applied Economics, 2021, 35, 164-187.	1.3	8
25	Causes of Microcephaly in the Zika Era in Argentina: A Retrospective Study. Global Pediatric Health, 2021, 8, 2333794X2110409.	0.3	0
26	Research on Font Design and Communication Based on Computer Technology. Advances in Intelligent Systems and Computing, 2021, , 746-753.	0.5	0
27	Population mobility, demographic, and environmental characteristics of dengue fever epidemics in a major city in Southeastern Brazil, 2007-2015. Cadernos De Saude Publica, 2021, 37, e00079620.	0.4	5
28	A review of models applied to the geographic spread of Zika virus. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 956-964.	0.7	4
29	Spatiotemporal heterogeneity and its determinants of COVID-19 transmission in typical labor export provinces of China. BMC Infectious Diseases, 2021, 21, 242.	1.3	26
30	Spatial connectivity in mosquito-borne disease models: a systematic review of methods and assumptions. Journal of the Royal Society Interface, 2021, 18, 20210096.	1.5	12
31	Identifying regions most likely to contribute to an epidemic outbreak in a human mobility network. , 2021, , .		1
33	Spatial and temporal invasion dynamics of the 2014–2017 Zika and chikungunya epidemics in Colombia. PLoS Computational Biology, 2021, 17, e1009174.	1.5	5
34	Airport pandemic response: An assessment of impacts and strategies after one year with COVID-19. Transportation Research Interdisciplinary Perspectives, 2021, 11, 100449.	1.6	24
35	Health Education for Awareness and Behavioral Change and Influence. Encyclopedia of the UN Sustainable Development Goals, 2020, , 304-316.	0.0	2
39	Measuring Mosquito-borne Viral Suitability in Myanmar and Implications for Local Zika Virus Transmission. PLOS Currents, 2018, 10, .	1.4	10
40	Emerging arboviruses (dengue, chikungunya, and Zika) in Southeastern Mexico: influence of socio-environmental determinants on knowledge and practices. Cadernos De Saude Publica, 2020, 36, e00110519.	0.4	13

#	Article	IF	CITATIONS
41	Vector distribution and transmission risk of the Zika virus in South and Central America. PeerJ, 2019, 7, e7920.	0.9	6
42	Zika virus infection and microcephaly: spatial analysis and socio-environmental determinants in a region of high Aedes aegypti infestation in the Central-West Region of Brazil. BMC Infectious Diseases, 2021, 21, 1107.	1.3	2
43	Evaluating the role of community detection in improving influence maximization heuristics. Social Network Analysis and Mining, 2021, 11, 1.	1.9	2
52	Socioeconomic and environmental patterns behind H1N1 spreading in Sweden. Scientific Reports, 2021, 11, 22512.	1.6	2
54	Understanding the spatial diffusion dynamics of the COVID-19 pandemic in the city system in China. Social Science and Medicine, 2022, 302, 114988.	1.8	1
55	Socioeconomic disparities associated with symptomatic Zika virus infections in pregnancy and congenital microcephaly: A spatiotemporal analysis from Goiânia, Brazil (2016 to 2020). PLoS Neglected Tropical Diseases, 2022, 16, e0010457.	1.3	2
56	Climate-driven mosquito-borne viral suitability index: measuring risk transmission of dengue, chikungunya and Zika in Mexico. International Journal of Health Geographics, 2022, 21, .	1.2	7
57	Modeling the spread of the Zika virus by sexual and mosquito transmission. PLoS ONE, 2022, 17, e0270127.	1.1	1
58	Surveillance of communicable diseases using social media: A systematic review. PLoS ONE, 2023, 18, e0282101.	1.1	8
59	Is the presence of mosquitoes an indicator of poor environmental sanitation?. Journal of Water and Health, 2023, 21, 385-401.	1.1	0
60	Analysis of Country-Level Risk Factors of COVID-19 Mortality Across Countries of Asia: A Generalised Estimating Equation Approach. Journal of Health Management, 2023, 25, 1018-1028.	0.4	0
61	Sociodemographic and environmental factors associated with dengue, Zika, and chikungunya among adolescents from two Brazilian capitals. PLoS Neglected Tropical Diseases, 2023, 17, e0011197.	1.3	1
62	Antibody seropositivity and endemicity of chikungunya and Zika viruses in Nigeria. Animal Diseases, 2023, 3, .	0.6	2

CITATION REPORT