Using Phenomenological Models to Characterize Transp and Final Burden of Zika Epidemics

PLOS Currents

8,

DOI: 10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583

Citation Report

#	Article	IF	CITATIONS
1	ls it growing exponentially fast? – Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics. Infectious Disease Modelling, 2016, 1, 71-78.	1.2	29
2	Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 2016, 18, 66-97.	1.5	297
3	Implication of vaccination against dengue for Zika outbreak. Scientific Reports, 2016, 6, 35623.	1.6	36
4	Characterizing the reproduction number of epidemics with early subexponential growth dynamics. Journal of the Royal Society Interface, 2016, 13, 20160659.	1.5	101
5	Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016. Theoretical Biology and Medical Modelling, 2016, 13, 20.	2.1	36
6	A comparative analysis of Chikungunya and Zika transmission. Epidemics, 2017, 19, 43-52.	1.5	34
7	Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward. BMC Medicine, 2017, 15, 42.	2.3	63
8	Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4334-E4343.	3.3	249
9	Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2017, 2, 379-398.	1.2	273
10	A primer on stable parameter estimation and forecasting in epidemiology by a problem-oriented regularized least squares algorithm. Infectious Disease Modelling, 2017, 2, 268-275.	1.2	18
11	Asymptomatic Transmission and the Dynamics of Zika Infection. Scientific Reports, 2017, 7, 5829.	1.6	47
12	Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2017, 2, 288-303.	1.2	421
13	An outbreak vector-host epidemic model with spatial structure: the 2015–2016 Zika outbreak in Rio De Janeiro. Theoretical Biology and Medical Modelling, 2017, 14, 7.	2.1	42
14	Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Neglected Tropical Diseases, 2017, 11, e0005851.	1.3	34
15	Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Neglected Tropical Diseases, 2017, 11, e0005255.	1.3	54
16	Forecasting the 2001 Foot-and-Mouth Disease Epidemic in the UK. EcoHealth, 2018, 15, 338-347.	0.9	46
17	Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 2018, 22, 62-70.	1.5	129
18	Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data. PLoS Neglected Tropical Diseases, 2018, 12, e0006526.	1.3	4

CITATION REPORT

#	Article	IF	CITATIONS
19	Cost-effectiveness of a potential Zika vaccine candidate: a case study for Colombia. BMC Medicine, 2018, 16, 100.	2.3	10
20	The Zika epidemic and abortion in Latin America: a scoping review. Global Health Research and Policy, 2018, 3, 15.	1.4	19
21	Assessing the Use of Influenza Forecasts and Epidemiological Modeling in Public Health Decision Making in the United States. Scientific Reports, 2018, 8, 12406.	1.6	23
22	Structural and Practical Identifiability Analysis of Zika Epidemiological Models. Bulletin of Mathematical Biology, 2018, 80, 2209-2241.	0.9	20
23	A novel sub-epidemic modeling framework for short-term forecasting epidemic waves. BMC Medicine, 2019, 17, 164.	2.3	110
24	A systematic review and evaluation of Zika virus forecasting and prediction research during a public health emergency of international concern. PLoS Neglected Tropical Diseases, 2019, 13, e0007451.	1.3	31
25	Development and validation of influenza forecasting for 64 temperate and tropical countries. PLoS Computational Biology, 2019, 15, e1006742.	1.5	23
26	On the predictability of infectious disease outbreaks. Nature Communications, 2019, 10, 898.	5.8	155
27	Inference of the generalized-growth model via maximum likelihood estimation: A reflection on the impact of overdispersion. Journal of Theoretical Biology, 2020, 484, 110029.	0.8	10
28	Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. Nature Microbiology, 2020, 5, 239-247.	5.9	77
29	Generalized logistic growth modeling of the COVID-19 pandemic in Asia. Infectious Disease Modelling, 2020, 5, 502-509.	1.2	42
30	A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function. Mathematics, 2020, 8, 2000.	1.1	3
31	The behaviour of infection, survival and testing effort variables of SARS-CoV-2: A theoretical modelling based on optimization technique. Results in Physics, 2020, 19, 103568.	2.0	3
32	Validating a Phenomenological Mathematical Model for Public Health and Safety Interventions Influencing the Evolutionary Stages of Recent Outbreak for Long-Term and Short-Term Domains in Pakistan. Complexity, 2020, 2020, 1-9.	0.9	16
33	Kinetic Monte Carlo model for the COVID-19 epidemic: Impact of mobility restriction on a COVID-19 outbreak. Physical Review E, 2020, 102, 032133.	0.8	15
34	Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world. Nonlinear Dynamics, 2020, 101, 1561-1581.	2.7	149
35	Mapping the cryptic spread of the 2015–2016 global Zika virus epidemic. BMC Medicine, 2020, 18, 399.	2.3	3
36	Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation. Chaos, 2020, 30, 051107.	1.0	32

#	Article	IF	CITATIONS
37	Early transmission dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th–March 30th, 2020. Infectious Disease Modelling, 2020, 5, 338-345.	1.2	55
38	A novel IDEA: The impact of serial interval on a modified-Incidence Decay and Exponential Adjustment (m-IDEA) model for projections of daily COVID-19 cases. Infectious Disease Modelling, 2020, 5, 346-356.	1.2	6
39	Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Medicine, 2020, 18, 166.	2.3	82
40	Discrete time forecasting of epidemics. Infectious Disease Modelling, 2020, 5, 189-196.	1.2	7
41	Approaches to Daily Monitoring of the SARS-CoV-2 Outbreak in Northern Italy. Frontiers in Public Health, 2020, 8, 222.	1.3	6
42	Short-term Forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine, 2020, 9, 596.	1.0	174
43	Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infectious Disease Modelling, 2020, 5, 256-263.	1.2	534
44	Evaluation of the effect of different policies in the containment of epidemic spreads for the COVID-19 case. Biomedical Signal Processing and Control, 2021, 65, 102325.	3.5	19
45	Modeling the coronavirus disease 2019 pandemic: A comprehensive guide of infectious disease and decision-analytic models. Journal of Clinical Epidemiology, 2021, 132, 133-141.	2.4	12
46	Systematic comparison of epidemic growth patterns using two different estimation approaches. Infectious Disease Modelling, 2021, 6, 5-14.	1.2	1
47	Presentation of a developed sub-epidemic model for estimation of the COVID-19 pandemic and assessment of travel-related risks in Iran. Environmental Science and Pollution Research, 2021, 28, 14521-14529.	2.7	23
48	Transmission dynamics and control of COVID-19 in Chile, March-October, 2020. PLoS Neglected Tropical Diseases, 2021, 15, e0009070.	1.3	35
50	Evaluating short-term forecasting of COVID-19 cases among different epidemiological models under a Bayesian framework. GigaScience, 2021, 10, .	3.3	8
52	Power law behaviour in the saturation regime of fatality curves of the COVID-19 pandemic. Scientific Reports, 2021, 11, 4619.	1.6	35
53	Ensemble bootstrap methodology for forecasting dynamic growth processes using differential equations: application to epidemic outbreaks. BMC Medical Research Methodology, 2021, 21, 34.	1.4	16
54	Mid-Epidemic Forecasts of COVID-19 Cases and Deaths: A Bivariate Model Applied to the UK. Interdisciplinary Perspectives on Infectious Diseases, 2021, 2021, 1-15.	0.6	4
55	COVID-19 outbreak in Wuhan demonstrates the limitations of publicly available case numbers for epidemiological modeling. Epidemics, 2021, 34, 100439.	1.5	16
56	Mathematical and Statistical Analysis of Doubling Times to Investigate the Early Spread of Epidemics: Application to the COVID-19 Pandemic. Mathematics, 2021, 9, 625.	1.1	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
57	Sprawl of the COVID-19 in changing scenario: a methodology based on social interaction. Library Hi Tech, 2021, 39, 903-911.	3.7	8
58	Social distancing mediated generalized model to predict epidemic spread of COVID-19. Nonlinear Dynamics, 2021, 106, 1187-1195.	2.7	5
59	Forecasting the 2020 COVID-19 Epidemic: A Multivariate Quasi-Poisson Regression to Model the Evolution of New Cases in Chile. Frontiers in Public Health, 2021, 9, 610479.	1.3	9
60	Measuring differences between phenomenological growth models applied to epidemiology. Mathematical Biosciences, 2021, 334, 108558.	0.9	8
61	Forecasting COVID-19 Epidemic in Spain and Italy Using A Generalized Richards Model with Quantified Uncertainty. Communication in Biomathematical Sciences, 2021, 3, 90-100.	0.1	4
62	Nowcasting COVIDâ€19 incidence indicators during the Italian first outbreak. Statistics in Medicine, 2021, 40, 3843-3864.	0.8	27
63	Gaussian Parameters Correlate with the Spread of COVID-19 Pandemic: The Italian Case. Applied Sciences (Switzerland), 2021, 11, 6119.	1.3	5
64	A comprehensive estimation of country-level basic reproduction numbers R0 for COVID-19: Regime regression can automatically estimate the end of the exponential phase in epidemic data. PLoS ONE, 2021, 16, e0254145.	1.1	12
65	Transmission dynamics and forecasts of the COVID-19 pandemic in Mexico, March-December 2020. PLoS ONE, 2021, 16, e0254826.	1.1	11
77	The local stability of a modified multi-strain SIR model for emerging viral strains. PLoS ONE, 2020, 15, e0243408.	1.1	50
79	Comparative analysis of phenomenological growth models applied to epidemic outbreaks. Mathematical Biosciences and Engineering, 2019, 16, 4250-4273.	1.0	39
80	Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and Engineering, 2019, 16, 4299-4313.	1.0	22
81	Epidemiological and ecological determinants of Zika virus transmission in an urban setting. ELife, 2017, 6, .	2.8	80
82	Temporal patterns and geographic heterogeneity of Zika virus (ZIKV) outbreaks in French Polynesia and Central America. PeerJ, 2017, 5, e3015.	0.9	11
83	Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies. PeerJ, 2020, 8, e9421.	0.9	49
84	Standard and Anomalous Waves of COVID-19: A Multiple-Wave Growth Model for Epidemics. Brazilian Journal of Physics, 2021, 51, 1867-1883.	0.7	18
88	Behaviors of a Disease Outbreak During the Initial Phase and the Branching Process Approximation. Texts in Applied Mathematics, 2019, , 79-133.	0.4	0
90	Mechanistic Models with Spatial Structures and Reactive Behavior Change. Texts in Applied Mathematics, 2019, , 317-334.	0.4	1

		CITATION REPORT	
#	Article	IF	CITATIONS
91	A new logistic growth model applied to COVID-19 fatality data. Epidemics, 2021, 37, 100515.	1.5	15
92	Using Simple Dynamic Analytic Framework To Characterize And Forecast Epidemics. , 2020, , .		1
96	Phenomenological and mechanistic models for predicting early transmission data of COVID-19. Mathematical Biosciences and Engineering, 2021, 19, 2043-2055.	1.0	1
97	A Method for Estimating the Number of Infections From the Reported Number of Deaths. Frontiers in Public Health, 2021, 9, 648545.	1.3	3
98	A stochastic Bayesian bootstrapping model for COVID-19 data. Stochastic Environmental Research and Risk Assessment, 2022, , 1-11.	1.9	6
100	An investigation of spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia, 2020–2021. PLoS Neglected Tropical Diseases, 2022, 16, e0010228.	1.3	8
101	An Easy-to-Use Public Health-Driven Method (the Generalized Logistic Differential Equation Model) Accurately Simulated COVID-19 Epidemic in Wuhan and Correctly Determined the Early Warning Time. Frontiers in Public Health, 2022, 10, 813860.	1.3	6
102	Determining an effective short term COVID-19 prediction model in ASEAN countries. Scientific Reports, 2022, 12, 5083.	1.6	14
103	Transmission Dynamics and Short-Term Forecasts of COVID-19: Nepal 2020/2021. Epidemiologia, 2021, 2, 639-659.	1.1	8
106	Time series forecasting for tuberculosis incidence employing neural network models. Heliyon, 2022, 8, e09897.	1.4	1
107	Machine Learning Approach for Forecast Analysis of Novel COVID-19 Scenarios in India. IEEE Access, 2022, 10, 95106-95124.	2.6	3
108	Shortâ€ŧerm forecasts of Monkeypox cases in multiple countries: keep calm and don't panic. Journal of Medical Virology, 2023, 95, .	2.5	6
109	A phenomenological model for COVIDâ€19 data taking into account neighboringâ€provinces effect and random noise. Statistica Neerlandica, 0, , .	0.9	1
110	Two years of COVIDâ€19 pandemic: The Italian experience ofÂStatgroupâ€19. Environmetrics, 0, , .	0.6	1
111	An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA. PLoS Computational Biology, 2022, 18, e1010602.	1.5	9
112	Nonlinear timeâ€series forecasts for decision support: shortâ€term demand for ICU beds in Santiago, Chile, during the 2021 COVIDâ€19 pandemic. International Transactions in Operational Research, 2023, 30, 3400-3428.	1.8	4
113	Modeling noisy time-series data of crime with stochastic differential equations. Stochastic Environmental Research and Risk Assessment, 2023, 37, 1053-1066.	1.9	2
115	Mathematical Models Supporting Control of COVID-19. China CDC Weekly, 2022, 4, 895-901.	1.0	3

#	Article	IF	CITATIONS
116	Real-time forecasting the trajectory of monkeypox outbreaks at the national and global levels, July–October 2022. BMC Medicine, 2023, 21, .	2.3	7
117	Evaluating undercounts in epidemics: Response to Maruotti et al. (2022). Journal of Medical Virology, 2023, 95, .	2.5	0
118	ModInterv COVID-19: An online platform to monitor the evolution of epidemic curves. Applied Soft Computing Journal, 2023, 137, 110159.	4.1	3