Establishment of wMel Wolbachia in Aedes aegypti mos dengue transmission in Cairns and surrounding location Australia

Gates Open Research 3, 1547 DOI: 10.12688/gatesopenres.13061.2

Citation Report

#	Article	IF	CITATIONS
1	Climate Change, Health and Mosquito-Borne Diseases: Trends and Implications to the Pacific Region. International Journal of Environmental Research and Public Health, 2019, 16, 5114.	1.2	33
2	A Low-Powered and Highly Selective Trap for Male Aedes (Diptera: Culicidae) Surveillance: The Male Aedes Sound Trap. Journal of Medical Entomology, 2021, 58, 408-415.	0.9	13
3	Resistance to natural and synthetic gene drive systems. Journal of Evolutionary Biology, 2020, 33, 1345-1360.	0.8	43
4	Wolbachia and Sirtuin-4 interaction is associated with alterations in host glucose metabolism and bacterial titer. PLoS Pathogens, 2020, 16, e1008996.	2.1	6
5	Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and postâ€market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA Journal, 2020, 18, e06297.	0.9	23
6	Wolbachia Genome Stability and mtDNA Variants in Aedes aegypti Field Populations Eight Years after Release. IScience, 2020, 23, 101572.	1.9	23
7	Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLoS Pathogens, 2020, 16, e1008410.	2.1	36
8	Next-generation gene drive for population modification of the malaria vector mosquito, <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22805-22814.	3.3	157
9	Phylogeny and Density Dynamics of Wolbachia Infection of the Health Pest Paederus fuscipes Curtis (Coleoptera: Staphylinidae). Insects, 2020, 11, 625.	1.0	7
10	The RNAi Pathway Is Important to Control Mayaro Virus Infection in Aedes aegypti but not for Wolbachia-Mediated Protection. Viruses, 2020, 12, 871.	1.5	11
11	Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported. Nature Communications, 2020, 11, 6111.	5.8	2
12	Wolbachia's Deleterious Impact on Aedes aegypti Egg Development: The Potential Role of Nutritional Parasitism. Insects, 2020, 11, 735.	1.0	32
13	Wolbachia in Native Populations of Aedes albopictus (Diptera: Culicidae) From Yucatan Peninsula, Mexico. Journal of Insect Science, 2020, 20, .	0.6	8
14	Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	30
15	Historical Perspective and Biotechnological Trends to Block Arboviruses Transmission by Controlling Aedes aegypti Mosquitos Using Different Approaches. Frontiers in Medicine, 2020, 7, 275.	1.2	6
16	The cost-effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: a modelling study. BMC Medicine, 2020, 18, 186.	2.3	24
17	An elusive endosymbiont: Does <i>Wolbachia</i> occur naturally in <i>Aedes aegypti</i> ?. Ecology and Evolution, 2020, 10, 1581-1591.	0.8	63
18	Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti. PLoS Neglected Tropical Diseases, 2020, 14, e0007958.	1.3	70

#	Article	IF	CITATIONS
19	Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti. PLoS Pathogens, 2020, 16, e1008433.	2.1	57
21	The Antiviral Effects of the Symbiont Bacteria Wolbachia in Insects. Frontiers in Immunology, 2020, 11, 626329.	2.2	42
22	Intracellular Density of <i>Wolbachia</i> Is Mediated by Host Autophagy and the Bacterial Cytoplasmic Incompatibility Gene <i>cifB</i> in a Cell Type-Dependent Manner in Drosophila melanogaster. MBio, 2021, 12, .	1.8	101
23	Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics. PLoS Neglected Tropical Diseases, 2021, 15, e0009179.	1.3	41
24	Comprehensive Quantitative Proteome Analysis of Aedes aegypti Identifies Proteins and Pathways Involved in Wolbachia pipientis and Zika Virus Interference Phenomenon. Frontiers in Physiology, 2021, 12, 642237.	1.3	17
25	Prophylactic strategies to control chikungunya virus infection. Virus Genes, 2021, 57, 133-150.	0.7	6
26	Evidence for natural hybridization and novel <i>Wolbachia</i> strain superinfections in the <i>Anopheles gambiae</i> complex from Guinea. Royal Society Open Science, 2021, 8, 202032.	1.1	11
27	Designing Aedes (Diptera: Culicidae) Mosquito Traps: The Evolution of the Male Aedes Sound Trap by Iterative Evaluation. Insects, 2021, 12, 388.	1.0	3
29	Mosquito Control Based on Pesticides and Endosymbiotic Bacterium Wolbachia. Bulletin of Mathematical Biology, 2021, 83, 58.	0.9	14
30	Microbial Diversity of Adult Aedes aegypti and Water Collected from Different Mosquito Aquatic Habitats in Puerto Rico. Microbial Ecology, 2021, , 1.	1.4	14
31	Reduced competence to arboviruses following the sustainable invasion of Wolbachia into native Aedes aegypti from Southeastern Brazil. Scientific Reports, 2021, 11, 10039.	1.6	31
32	Comprehensive Ecological and Geographic Characterization of Eukaryotic and Prokaryotic Microbiomes in African Anopheles. Frontiers in Microbiology, 2021, 12, 635772.	1.5	5
33	Re-emergence of dengue virus in regional Queensland: 2019 dengue virus outbreak in Rockhampton, Central Queensland, Australia. Communicable Diseases Intelligence (2018), 2021, 45, .	0.3	4
34	Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue. New England Journal of Medicine, 2021, 384, 2177-2186.	13.9	289
36	Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host and Microbe, 2021, 29, 879-893.	5.1	162
37	Using <i>Wolbachia</i> to Eliminate Dengue: Will the Virus Fight Back?. Journal of Virology, 2021, 95, e0220320.	1.5	19
38	The Effect of Radiation on the Gut Bacteriome of Aedes albopictus. Frontiers in Microbiology, 2021, 12, 671699.	1.5	1
39	Voltage-sensitive sodium channel (Vssc) mutations associated with pyrethroid insecticide resistance in Aedes aegypti (L.) from two districts of Jeddah, Kingdom of Saudi Arabia: baseline information for a Wolbachia release program. Parasites and Vectors, 2021, 14, 361.	1.0	6

щ.		IF	CITATIONS
#	ARTICLE Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change	IF	CITATIONS
40	disease distributions. PLoS Neglected Tropical Diseases, 2021, 15, e0009548.	1.3	16
41	The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO. PLoS Neglected Tropical Diseases, 2021, 15, e0009637.	1.3	6
42	Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. PLoS Neglected Tropical Diseases, 2021, 15, e0009556.	1.3	93
43	Combating mosquito-borne diseases using genetic control technologies. Nature Communications, 2021, 12, 4388.	5.8	76
44	Large-Scale Deployment and Establishment of Wolbachia Into the Aedes aegypti Population in Rio de Janeiro, Brazil. Frontiers in Microbiology, 2021, 12, 711107.	1.5	30
45	Wolbachia as translational science: controlling mosquito-borne pathogens. Trends in Parasitology, 2021, 37, 1050-1067.	1.5	44
46	Effect of BG-Lures on the Male <i>Aedes</i> (Diptera: Culicidae) Sound Trap Capture Rates. Journal of Medical Entomology, 2021, 58, 2425-2431.	0.9	3
48	wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations. Microbial Genomics, 2021, 7, .	1.0	9
49	Assessment of fitness and vector competence of a New Caledonia wMel Aedes aegypti strain before field-release. PLoS Neglected Tropical Diseases, 2021, 15, e0009752.	1.3	10
50	Dengue models based on machine learning techniques: A systematic literature review. Artificial Intelligence in Medicine, 2021, 119, 102157.	3.8	31
51	A <i>w</i> AlbB <i>Wolbachia</i> Transinfection Displays Stable Phenotypic Effects across Divergent Aedes aegypti Mosquito Backgrounds. Applied and Environmental Microbiology, 2021, 87, e0126421.	1.4	20
52	Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam. Gates Open Research, 0, 5, 147.	2.0	26
53	Improving mosquito control strategies with population genomics. Trends in Parasitology, 2021, 37, 907-921.	1.5	11
54	Host-shift as the cause of emerging infectious diseases: Experimental approaches using Drosophila-virus interactions. Genetics and Molecular Biology, 2021, 44, e20200197.	0.6	5
55	Molecular tool for monitoring the safety of Aedes (Stegomyia) aegypti Rockefeller rearing in arthropod containment facilities. Revista Brasileira De Entomologia, 2021, 65, .	0.1	0
56	Novel control strategies for mosquito-borne diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190802.	1.8	49
57	<i>Wolbachia</i> strain <i>w</i> AlbB maintains high density and dengue inhibition following introduction into a field population of <i>Aedes aegypti</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190809.	1.8	48
58	Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: a quasi-experimental trial using controlled interrupted time series analysis. Gates Open Research, 2020, 4, 50.	2.0	104

#	Article	IF	CITATIONS
59	Releasing incompatible males drives strong suppression across populations of wild and <i>Wolbachia</i> -carrying <i>Aedes aegypti</i> in Australia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	71
60	Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms, 2021, 9, 2209.	1.6	20
62	The Wolbachia Symbiont: Here, There and Everywhere. Results and Problems in Cell Differentiation, 2020, 69, 423-451.	0.2	3
64	High Temperature Cycles Result in Maternal Transmission and Dengue Infection Differences Between <i>Wolbachia</i> Strains in Aedes aegypti. MBio, 2021, 12, e0025021.	1.8	20
65	Virological and Immunological Outcomes in Rhesus Monkeys after Exposure to Dengue Virus–Infected Aedes aegypti Mosquitoes. American Journal of Tropical Medicine and Hygiene, 2020, 103, 112-119.	0.6	1
66	Molecular Rationale of Insect-Microbes Symbiosis—From Insect Behaviour to Mechanism. Microorganisms, 2021, 9, 2422.	1.6	11
67	Wolbachia reduces virus infection in a natural population of Drosophila. Communications Biology, 2021, 4, 1327.	2.0	26
68	Past and future epidemic potential of chikungunya virus in Australia. PLoS Neglected Tropical Diseases, 2021, 15, e0009963.	1.3	1
69	Why did theÂ <i>Wolbachia</i> Âtransinfection cross the road? drift, deterministic dynamics, and disease control. Evolution Letters, 2022, 6, 92-105.	1.6	6
71	Recently introduced <i>Wolbachia</i> reduces bacterial species richness and reshapes bacterial community structure in <i>Nilaparvata lugens</i> . Pest Management Science, 2022, 78, 1881-1894.	1.7	3
72	Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity, 2022, , .	1.2	4
73	A decade of stability for wMel Wolbachia in natural Aedes aegypti populations. PLoS Pathogens, 2022, 18, e1010256.	2.1	40
74	Transmission-Blocking Strategies Against Malaria Parasites During Their Mosquito Stages. Frontiers in Cellular and Infection Microbiology, 2022, 12, 820650.	1.8	11
75	Trash to Treasure: How Insect Protein and Waste Containers Can Improve the Environmental Footprint of Mosquito Egg Releases. Pathogens, 2022, 11, 373.	1.2	1
77	A <i>w</i> Mel <i>Wolbachia</i> variant in <i>Aedes aegypti</i> from fieldâ€collected <i>Drosophila melanogaster</i> with increased phenotypic stability under heat stress. Environmental Microbiology, 2022, 24, 2119-2135.	1.8	11
79	Environmental factors influence the local establishment of Wolbachia in Aedes aegypti mosquitoes in two small communities in central Vietnam. Gates Open Research, 0, 5, 147.	2.0	9
82	Mathematical modelling to assess the feasibility of Wolbachia in malaria vector biocontrol. Journal of Theoretical Biology, 2022, 542, 111110.	0.8	5
83	Determinants of stakeholders' attitudes and intentions toward supporting the use of Wolbachia-infected Aedes mosquitoes for dengue control. BMC Public Health, 2021, 21, 2314.	1.2	5

#	Article	IF	CITATIONS
84	Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia. BMC Genomics, 2021, 22, 894.	1.2	11
85	Microbial Composition in Larval Water Enhances Aedes aegypti Development but Reduces Transmissibility of Zika Virus. MSphere, 2021, 6, e0068721.	1.3	5
86	Aedes aegypti abundance and insecticide resistance profiles in the Applying Wolbachia to Eliminate Dengue trial. PLoS Neglected Tropical Diseases, 2022, 16, e0010284.	1.3	6
88	Extensive public health initiatives drive the elimination of Aedes aegypti (Diptera, Culicidae) from a town in regional Queensland: A case study from Gin Gin, Australia. PLoS Neglected Tropical Diseases, 2022, 16, e0010243.	1.3	1
89	Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Neglected Tropical Diseases, 2022, 16, e0010324.	1.3	29
90	Transient Introgression of Wolbachia into Aedes aegypti Populations Does Not Elicit an Antibody Response to Wolbachia Surface Protein in Community Members. Pathogens, 2022, 11, 535.	1.2	2
91	Modifying mosquitoes to suppress disease transmission: Is the long wait over?. Genetics, 2022, 221, .	1.2	6
93	Management of avian malaria in populations of high conservation concern. Parasites and Vectors, 2022, 15, .	1.0	2
94	Sensitivity of wMel and wAlbB Wolbachia infections in Aedes aegypti Puducherry (Indian) strains to heat stress during larval development. Parasites and Vectors, 2022, 15, .	1.0	7
95	Disruption of spatiotemporal clustering in dengue cases by wMel Wolbachia in Yogyakarta, Indonesia. Scientific Reports, 2022, 12, .	1.6	3
96	Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
97	Limited Awareness of Melioidosis in High-risk Populations Despite an Increasing Incidence of the Disease in Far North Queensland, Australia. American Journal of Tropical Medicine and Hygiene, 2022, ,	0.6	0
98	Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities. Heredity, 0, , .	1.2	0
99	Human IgG responses to the Aedes albopictus 34k2 salivary protein: analyses in Réunion Island and Bolivia confirm its suitability as marker of host exposure to the tiger mosquito. Parasites and Vectors, 2022, 15, .	1.0	3
100	Modified Mosquitoes for the Prevention and Control of Vector-Borne Diseases. Biology Bulletin Reviews, 2022, 12, 377-391.	0.3	0
101	Studies on the fitness characteristics of wMel- and wAlbB-introgressed Aedes aegypti (Pud) lines in comparison with wMel- and wAlbB-transinfected Aedes aegypti (Aus) and wild-type Aedes aegypti (Pud) lines. Frontiers in Microbiology, 0, 13, .	1.5	2
103	Advances in Mosquito Control: A Comprehensive Review. , 0, , .		2
104	Evidence of new strains of Wolbachia symbiont colonising semiaquatic bugs (Hemiptera: Gerroidea) in mangrove environment of the Lesser Antilles. PLoS ONE, 2022, 17, e0273668.	1.1	Ο

#	Article	IF	CITATIONS
105	Analysis of Aedes aegypti microRNAs in response to Wolbachia wAlbB infection and their potential role in mosquito longevity. Scientific Reports, 2022, 12, .	1.6	1
106	<i>Wolbachia w</i> AlbB remains stable in <i>Aedes aegypti</i> over 15 years but exhibits genetic background-dependent variation in virus blocking. , 2022, 1, .		9
107	Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study. Lancet Infectious Diseases, The, 2022, 22, 1587-1595.	4.6	24
108	Sex-based de novo transcriptome assemblies of the parasitoid wasp Encarsia suzannae, a host of the manipulative heritable symbiont Cardinium hertigii. GigaByte, 0, 2022, 1-13.	0.0	1
109	<i>Wolbachia</i> -Virus interactions and arbovirus control through population replacement in mosquitoes. Pathogens and Global Health, 2023, 117, 245-258.	1.0	14
110	Updating the Insecticide Resistance Status of Aedes aegypti and Aedes albopictus in Asia: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease, 2022, 7, 306.	0.9	8
111	Factors enhancing the transmission of mosquito-borne arboviruses in Africa. VirusDisease, 2022, 33, 477-488.	1.0	3
112	Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background. PLoS Neglected Tropical Diseases, 2022, 16, e0010786.	1.3	9
113	Wolbachia inhibits ovarian formation and increases blood feeding rate in female Aedes aegypti. PLoS Neglected Tropical Diseases, 2022, 16, e0010913.	1.3	3
114	Why <i>Wolbachia</i> -induced cytoplasmic incompatibility is so common. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
115	Modeling Spatial Waves of Wolbachia Invasion for Controlling Mosquito-Borne Diseases. SIAM Journal on Applied Mathematics, 2022, 82, 1903-1929.	0.8	2
116	Insect Landscape Genomics. Population Genomics, 2022, , .	0.2	1
118	Positive fitness effects help explain the broad range of Wolbachia prevalences in natural populations. , 0, 2, .		0
119	Assessing the efficacy of male Wolbachia-infected mosquito deployments to reduce dengue incidence in Singapore: study protocol for a cluster-randomized controlled trial. Trials, 2022, 23, .	0.7	7
120	Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti. IScience, 2023, 26, 105836.	1.9	9
122	Arboviral disease outbreaks, Aedes mosquitoes, and vector control efforts in the Pacific. Frontiers in Tropical Diseases, 0, 4, .	0.5	0
123	Impact of randomised <i>w</i> mel <i>Wolbachia</i> deployments on notified dengue cases and insecticide fogging for dengue control in Yogyakarta City. Global Health Action, 2023, 16, .	0.7	4
125	The phylogeny and distribution of Wolbachia in two pathogen vector insects, Asian citrus psyllid and Longan psyllid. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	1

#	Article	IF	CITATIONS
126	Importance of Wolbachia-mediated biocontrol to reduce dengue in Bangladesh and other dengue-endemic developing countries. Biosafety and Health, 2023, 5, 69-77.	1.2	3
127	Native Wolbachia infection and larval competition stress shape fitness and West Nile virus infection in Culex quinquefasciatus mosquitoes. Frontiers in Microbiology, 0, 14, .	1.5	5
128	Enhancing the scalability of Wolbachia-based vector-borne disease management: time and temperature limits for storage and transport of Wolbachia-infected Aedes aegypti eggs for field releases. Parasites and Vectors, 2023, 16, .	1.0	1
131	Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia. PLoS Neglected Tropical Diseases, 2023, 17, e0011222.	1.3	3
132	Global Dynamics for Competition between Two Wolbachia Strains with Bidirectional Cytoplasmic Incompatibility. Mathematics, 2023, 11, 1691.	1.1	0
133	Dengue Exposure and Wolbachia wMel Strain Affects the Fertility of Quiescent Eggs of Aedes aegypti. Viruses, 2023, 15, 952.	1.5	1