Reconstructing a B-cell clonal lineage. I. Statistical infer

F1000Research 2, 103

DOI: 10.12688/f1000research.2-103.v1

Citation Report

#	Article	IF	CITATIONS
1	Microbial colonization influences early B-lineage development in the gut lamina propria. Nature, 2013, 501, 112-115.	13.7	222
2	Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation. Frontiers in Immunology, 2014, 5, 170.	2.2	104
3	Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10275-10280.	3.3	73
4	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	6.6	65
5	Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. Cell Host and Microbe, 2014, 16, 304-313.	5.1	137
6	HIV-1 Envelope gp41 Antibodies Can Originate from Terminal Ileum B Cells that Share Cross-Reactivity with Commensal Bacteria. Cell Host and Microbe, 2014, 16, 215-226.	5.1	105
7	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	13.5	266
8	Assigning and visualizing germline genes in antibody repertoires. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140240.	1.8	20
9	Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. Cell Reports, 2015, 13, 2842-2850.	2.9	67
10	Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses, 2015, 7, 5443-5475.	1.5	26
11	Utilities for High-Throughput Analysis of B-Cell Clonal Lineages. Journal of Immunology Research, 2015, 2015, 1-9.	0.9	14
12	The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140239.	1.8	109
13	Discrimination of germline V genes at different sequencing lengths and mutational burdens: A new tool for identifying and evaluating the reliability of V gene assignment. Journal of Immunological Methods, 2015, 427, 105-116.	0.6	29
14	CATNAP: a tool to compile, analyze and tally neutralizing antibody panels. Nucleic Acids Research, 2015, 43, W213-W219.	6.5	118
15	The evolution within us. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140235.	1.8	34
16	Quantifying evolutionary constraints on B-cell affinity maturation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140244.	1.8	45
17	Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Medicine, 2015, 7, 121.	3.6	215
18	Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating	2.7	23

#	ARTICLE	IF	CITATIONS
19	SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts. Frontiers in Immunology, 2016, 7, 372.	2.2	67
20	Complex Antigens Drive Permissive Clonal Selection in Germinal Centers. Immunity, 2016, 44, 542-552.	6.6	278
21	A Therapeutic Antibody for Cancer, Derived from Single Human B Cells. Cell Reports, 2016, 15, 1505-1513.	2.9	43
22	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	13.5	270
23	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	5.8	86
24	Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nature Medicine, 2016, 22, 1465-1469.	15.2	104
25	The Diversity and Molecular Evolution of B-Cell Receptors during Infection. Molecular Biology and Evolution, 2016, 33, 1147-1157.	3.5	72
26	Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery. Cancer Immunology, Immunotherapy, 2016, 65, 171-180.	2.0	16
27	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	13.5	305
28	A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature, 2016, 529, 105-109.	13.7	140
29	Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Reports, 2016, 14, 43-54.	2.9	45
30	Genetic and structural analyses of affinity maturation in the humoral response to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 129-144.	2.8	17
31	Antibodyomics: bioinformatics technologies for understanding Bâ€cell immunity to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 108-128.	2.8	32
32	Human Ig knockin mice to study the development and regulation of <scp>HIV</scp> †broadly neutralizing antibodies. Immunological Reviews, 2017, 275, 89-107.	2.8	37
33	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	5.6	119
34	Hierarchical Clustering Can Identify B Cell Clones with High Confidence in Ig Repertoire Sequencing Data. Journal of Immunology, 2017, 198, 2489-2499.	0.4	137
35	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	2.9	69
36	Studying Antibody Repertoires with Next-Generation Sequencing. Methods in Molecular Biology, 2017, 1526, 257-270.	0.4	13

#	Article	IF	CITATIONS
37	CryoEM Structure of an Influenza Virus Receptor-Binding Site Antibody–Antigen Interface. Journal of Molecular Biology, 2017, 429, 1829-1839.	2.0	21
38	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	5.8	137
39	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	5.8	212
40	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	5.8	81
41	A Phylogenetic Codon Substitution Model for Antibody Lineages. Genetics, 2017, 206, 417-427.	1.2	56
42	Clonal Evolution of Autoreactive Germinal Centers. Cell, 2017, 170, 913-926.e19.	13.5	118
43	HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques. Journal of Virology, 2017, 91, .	1.5	20
44	BRILIA: Integrated Tool for High-Throughput Annotation and Lineage Tree Assembly of B-Cell Repertoires. Frontiers in Immunology, 2016, 7, 681.	2.2	35
45	Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Frontiers in Immunology, 2017, 8, 1418.	2.2	102
46	Humanized Immunoglobulin Mice. Advances in Immunology, 2017, 134, 235-352.	1.1	14
47	Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. Journal of Virology, 2018, 92, .	1.5	30
48	Memory B Cells that Cross-React with Group 1 and Group 2 Influenza A Viruses Are Abundant in Adult Human Repertoires. Immunity, 2018, 48, 174-184.e9.	6.6	124
49	QuantumClone: clonal assessment of functional mutations in cancer based on a genotype-aware method for clonal reconstruction. Bioinformatics, 2018, 34, 1808-1816.	1.8	20
50	Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 168-173.	3.3	113
51	HIV envelope V3 region mimic embodies key features of a broadly neutralizing antibody lineage epitope. Nature Communications, 2018, 9, 1111.	5.8	30
52	A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nature Medicine, 2018, 24, 401-407.	15.2	183
53	Benchmarking Tree and Ancestral Sequence Inference for B Cell Receptor Sequences. Frontiers in Immunology, 2018, 9, 2451.	2.2	26
54	Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	6.6	61

#	Article	IF	CITATIONS
55	The Bayesian optimist's guide to adaptive immune receptor repertoire analysis. Immunological Reviews, 2018, 284, 148-166.	2.8	12
56	A spectral clustering-based method for identifying clones from high-throughput B cell repertoire sequencing data. Bioinformatics, 2018, 34, i341-i349.	1.8	55
57	Intra-seasonal antibody repertoire analysis of a subject immunized with an MF59®-adjuvanted pandemic 2009 H1N1 vaccine. Vaccine, 2018, 36, 5325-5332.	1.7	4
58	Insights into the Structural Basis of Antibody Affinity Maturation from Next-Generation Sequencing. Frontiers in Immunology, 2018, 9, 117.	2.2	76
59	Computational Evaluation of B-Cell Clone Sizes in Bulk Populations. Frontiers in Immunology, 2018, 9, 1472.	2.2	46
60	Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell Host and Microbe, 2018, 23, 759-765.e6.	5.1	98
61	Immunoglobulin Clonotype and Ontogeny Inference. , 2019, , 972-983.		0
62	Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nature Communications, 2019, 10, 2898.	5.8	35
63	Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism. Cell, 2019, 177, 1124-1135.e16.	13.5	141
64	Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope. Cell Host and Microbe, 2019, 25, 827-835.e6.	5.1	127
65	DSab-origin: a novel IGHD sensitive VDJ mapping method and its application on antibody response after influenza vaccination. BMC Bioinformatics, 2019, 20, 137.	1.2	0
66	Selection of immunoglobulin elbow region mutations impacts interdomain conformational flexibility in HIV-1 broadly neutralizing antibodies. Nature Communications, 2019, 10, 654.	5.8	34
67	Affinity maturation in a human humoral response to influenza hemagglutinin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26745-26751.	3.3	25
68	Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22664-22672.	3.3	71
69	Cooperation between somatic mutation and germline-encoded residues enables antibody recognition of HIV-1 envelope glycans. PLoS Pathogens, 2019, 15, e1008165.	2.1	5
70	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	6.0	118
71	Antibody Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral Response. Cell Host and Microbe, 2020, 28, 572-585.e7.	5.1	87
72	AncesTree: An interactive immunoglobulin lineage tree visualizer. PLoS Computational Biology, 2020, 16, e1007731.	1.5	18

#	Article	IF	CITATIONS
73	A Bayesian phylogenetic hidden Markov model for B cell receptor sequence analysis. PLoS Computational Biology, 2020, 16, e1008030.	1.5	20
74	Dataset of antibody variable region sequence features inferred from a respiratory syncytial virus fusion protein-specific B cell receptor repertoire induced by natural infection of a healthy adult. Data in Brief, 2020, 33, 106499.	0.5	2
75	The respiratory syncytial virus fusion protein-specific B cell receptor repertoire reshaped by post-fusion subunit vaccination. Vaccine, 2020, 38, 7916-7927.	1.7	3
76	Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data. PLoS Computational Biology, 2020, 16, e1007977.	1.5	25
77	Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Reports, 2020, 30, 1553-1569.e6.	2.9	21
78	Alignment free identification of clones in B cell receptor repertoires. Nucleic Acids Research, 2021, 49, e21-e21.	6.5	15
79	Correlations in Somatic Hypermutation Between Sites in IGHV Genes Can Be Explained by Interactions Between AID and/or Polî· Hotspots. Frontiers in Immunology, 2020, 11, 618409.	2.2	2
80	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	13.5	57
81	Functional Homology for Antibody-Dependent Phagocytosis Across Humans and Rhesus Macaques. Frontiers in Immunology, 2021, 12, 678511.	2.2	11
82	The respiratory syncytial virus (RSV) prefusion Fâ€protein functional antibody repertoire in adult healthy donors. EMBO Molecular Medicine, 2021, 13, e14035.	3.3	14
83	Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Reports, 2021, 35, 109167.	2.9	8
84	A Prevalent Focused Human Antibody Response to the Influenza Virus Hemagglutinin Head Interface. MBio, 2021, 12, e0114421.	1.8	17
85	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	2.1	2
93	Tissue memory B cell repertoire analysis after ALVAC/AIDSVAX B/E gp120 immunization of rhesus macaques. JCI Insight, 2016, 1, e88522.	2.3	10
94	Likelihood-Based Inference of B Cell Clonal Families. PLoS Computational Biology, 2016, 12, e1005086.	1.5	93
95	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	2.1	38
96	Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants. Nature, 2021, 600, 530-535.	13.7	124
105	Affinity maturation for an optimal balance between long-term immune coverage and short-term resource constraints. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119	3.3	12

#	Article	IF	CITATIONS
106	Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	5.6	3
109	Different adjuvanted pediatric HIV envelope vaccines induced distinct plasma antibody responses despite similar B cell receptor repertoires in infant rhesus macaques. PLoS ONE, 2021, 16, e0256885.	1.1	1
113	Recall of B cell memory depends on relative locations of prime and boost immunization. Science Immunology, 2022, 7, eabn5311.	5.6	20
114	Antibody repertoire sequencing analysis. Acta Biochimica Et Biophysica Sinica, 2022, , .	0.9	2
118	Adaptive Immune Receptor Repertoire (AIRR) Community Guide to Repertoire Analysis. Methods in Molecular Biology, 2022, , 297-316.	0.4	5
119	Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees. Nature Communications, 2022, 13, .	5.8	20
120	Rotavirus VP4 Epitope of a Broadly Neutralizing Human Antibody Defined by Its Structure Bound with an Attenuated-Strain Virion. Journal of Virology, 2022, 96, .	1.5	6
122	Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection. Science Translational Medicine, 2022, 14, .	5.8	15
124	Rare, convergent antibodies targeting the stem helix broadly neutralize diverse betacoronaviruses. Cell Host and Microbe, 2023, 31, 97-111.e12.	5.1	21
126	An epitope-enriched immunogen expands responses to a conserved viral site. Cell Reports, 2022, 41, 111628.	2.9	8
127	A Zika virus-specific IgM elicited in pregnancy exhibits ultrapotent neutralization. Cell, 2022, 185, 4826-4840.e17.	13.5	11
129	A non-neutralizing glycoprotein B monoclonal antibody protects against herpes simplex virus disease in mice. Journal of Clinical Investigation, 2023, 133, .	3.9	5
132	B cell analyses after SARS-CoV-2 mRNA third vaccination reveals a hybrid immunity like antibody response. Nature Communications, 2023, 14, .	5.8	14
133	Humanized V(D)J-rearranging and TdT-expressing mouse vaccine models with physiological HIV-1 broadly neutralizing antibody precursors. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
134	Reconstructing B cell lineage trees with minimum spanning tree and genotype abundances. BMC Bioinformatics, 2023, 24, .	1.2	7
136	mRNA vaccines and hybrid immunity use different B cell germlines against Omicron BA.4 and BA.5. Nature Communications, 2023, 14, .	5.8	4
137	Exploring the impact of clonal definition on B-cell diversity: implications for the analysis of immune repertoires. Frontiers in Immunology, 0, 14, .	2.2	3