Regulation of <i>HoxA</i> expression in developing and

Development (Cambridge) 121, 1731-1741 DOI: 10.1242/dev.121.6.1731

Citation Report

#	Article	IF	CITATIONS
1	Zebrafish Hoxa and Evx-2 genes: cloning, developmental expression and implications for the functional evolution of posterior Hox genes. Mechanisms of Development, 1996, 59, 165-175.	1.7	70
2	Advanced mRNA differential display: isolation of a new differentially regulated myosin heavy chain-encoding gene in amphibian limb regeneration. Gene, 1996, 172, 175-181.	2.2	21
3	Stabilizing role of the basement membrane and dermal fibers during newt limb regeneration. , 1996, 245, 122-127.		23
4	The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP96 and class I homeoprotein HOXA9. Nature Genetics, 1996, 12, 159-167.	21.4	427
5	The molecular basis of hypodactyly (Hd): a deletion in Hoxa13 leads to arrest of digital arch formation. Nature Genetics, 1996, 13, 284-289.	21.4	158
6	An efficient method for isolating putative promoters and 5'-transcribed sequences from large genomic clones Genome Research, 1996, 6, 327-335.	5.5	2
7	The Abd-B-like Hox Homeodomain Proteins Can Be Subdivided by the Ability to Form Complexes with Pbx1a on a Novel DNA Target. Journal of Biological Chemistry, 1997, 272, 8198-8206.	3.4	128
8	Expression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9159-9164.	7.1	125
9	The Role of Retinoids in Patterning Fish, Amphibian, and Chick Embryos. Advances in Organ Biology, 1997, 3, 93-139.	0.1	5
10	Amphibian Limb Regeneration: Rebuilding a Complex Structure. Science, 1997, 276, 81-87.	12.6	450
11	Homeobox genes in axolotl lateral line placodes and neuromasts. Development Genes and Evolution, 1997, 207, 287-295.	0.9	28
12	Shh expression in developing and regenerating limb buds ofXenopus laevis. , 1997, 209, 227-232.		99
13	Expression ofMeis2, aKnotted-related murine homeobox gene, indicates a role in the differentiation of the forebrain and the somitic mesoderm. Developmental Dynamics, 1997, 210, 184-190.	1.8	60
14	Expression of regeneration-associated cytoskeletal proteins reveals differences and similarities between regenerating organs. , 1997, 210, 288-304.		20
15	Title is missing!. Hydrobiologia, 1998, 383, 125-130.	2.0	6
16	Hedgehog family member is expressed throughout regenerating and developing limbs. , 1998, 212, 352-363.		24
17	Expression ofMsx genes in regenerating and developing limbs of axolotl. , 1998, 282, 703-714.		82
18	Expression ofMsx-2 during development, regeneration, and wound healing in axolotl limbs. , 1998, 282, 715-723.		115

#	Article	IF	CITATIONS
19	Retinoic acid and thyroid hormone may function through similar and competitive pathways in regenerating axolotls. , 1998, 282, 724-738.		16
20	Cloning, sequencing and expression of a novel homeobox gene AxNox-1 from the Mexican axolotl. Gene, 1998, 216, 179-188.	2.2	1
21	Cloning of crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Molecular and Cellular Endocrinology, 1998, 139, 209-227.	3.2	139
22	The Heart of Metamorphosing Mexican Axolotl but Not That of the Cardiac Mutant Is Associated with the Upregulation ofHox A5. Biochemical and Biophysical Research Communications, 1998, 245, 746-751.	2.1	5
23	Expression ofHoxDGenes in Developing and Regenerating Axolotl Limbs. Developmental Biology, 1998, 200, 225-233.	2.0	108
24	Graded expression of Emx-2 in the adult newt limb and its corresponding regeneration blastema. Journal of Molecular Biology, 1998, 279, 501-511.	4.2	16
25	Evolution of Vertebrate Limbs: Robust Morphology and Flexible Development. American Zoologist, 1998, 38, 659-671.	0.7	15
26	Gene Expression during Amphibian Limb Regeneration. International Review of Cytology, 1998, 180, 1-50.	6.2	71
27	Evolution ofHoxa-11Expression in Amphibians: Is the Urodele Autopodium an Innovation?. American Zoologist, 1999, 39, 686-694.	0.7	29
28	Endothelial Cells Express a Novel, Tumor Necrosis Factor-α-regulated Variant of HOXA9. Journal of Biological Chemistry, 1999, 274, 1415-1422.	3.4	37
29	Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Development Growth and Differentiation, 1999, 41, 429-440.	1.5	48
30	Molecular control of vertebrate limb development, evolution and congenital malformations. Cell and Tissue Research, 1999, 296, 3.	2.9	40
31	Expression of axolotl RNA-binding protein during development of the Mexican axolotl. Cell and Tissue Research, 1999, 297, 283-290.	2.9	14
32	Conservation of gene expression during embryonic lens formation and cornea-lens transdifferentiation inXenopus laevis. Developmental Dynamics, 1999, 215, 308-318.	1.8	58
33	Expression ofMmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Developmental Dynamics, 1999, 216, 2-9.	1.8	128
34	Sonic Hedgehog (shh) expression in developing and regenerating axolotl limbs. The Journal of Experimental Zoology, 1999, 284, 197-206.	1.4	97
35	Morphological Clues from Multilegged Frogs: Are Retinoids to Blame?. Science, 1999, 284, 800-802.	12.6	95
36	A role for the homeobox gene Xvex-1 as part of the BMP-4 ventral signaling pathway. Mechanisms of Development, 1999, 86, 99-111.	1.7	21

CITATION REPORT ARTICLE IF CITATIONS The Planarian HOM/HOX Homeobox Genes (Plox) Expressed along the Anteroposterior Axis. 2.0 92 Developmental Biology, 1999, 210, 456-468. Towards a functional analysis of limb regeneration. Seminars in Cell and Developmental Biology, 1999, 5.0 10, 385-393. The coral Acropora: What it can contribute to our knowledge of metazoan evolution and the 2.5 39 evolution of developmental processes. BioEssays, 2000, 22, 291-296. Regeneration in the metazoans: why does it happen?. BioEssays, 2000, 22, 578-590. 269 Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. , 2000, 94 217, 216-224. Vaccinia as a Tool for Functional Analysis in Regenerating Limbs: Ectopic Expression of Shh. Developmental Biology, 2000, 218, 199-205. Analysis of Gene Expressions during Xenopus Forelimb Regeneration. Developmental Biology, 2000, 2.0 133 220, 296-306. Regeneration in Vertebrates. Developmental Biology, 2000, 221, 273-284. 2.0 204 Expression of Hoxb13 and Hoxc10 in Developing and Regenerating Axolotl Limbs and Tails. 2.0 88 Developmental Biology, 2001, 229, 396-406. FGF-10 Stimulates Limb Regeneration Ability in Xenopus laevis. Developmental Biology, 2001, 233, 72-79. Conservation of Hox/ParaHox-Related Genes in the Early Development of a Cnidarian. Developmental 2.0 94 Biology, 2001, 236, 89-98. Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. The Journal of Experimental Zoology, 2001, 291, 195-204. 1.4 131 Expression of HoxA5 in the Heart Is Upregulated During Thyroxin-Induced Metamorphosis of the 2.7 8 Mexican Axolotl (Ambystoma mexicanum). Cardiovascular Toxicology, 2001, 1, 225-236. Different Regulation of T-Box Genes Tbx4 and Tbx5 during Limb Development and Limb Regeneration. Developmental Biology, 2002, 250, 383-392. The molecular basis of amphibian limb regeneration: integrating the old with the new. Seminars in 5.091 Cell and Developmental Biology, 2002, 13, 345-352. Posterior hoxa genes expression during zebrafish bony fin ray development and regeneration suggests their involvement in scleroblast differentiation. Development Genes and Evolution, 2003, 213, 182-186.

54The spatial restrictions of 5′HoxC genes expression are maintained in adult newt spinal cord. Biology
of the Cell, 2003, 95, 389-394.2.01955Regeneration-specific expression pattern of three posterior Hox genes. Developmental Dynamics, 2003,
1.81.864

226, 349-355.

#

37

39

41

43

44

45

47

49

50

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
56	Regeneration of the urodele limb: A review. Developmental Dynamics, 2003, 226, 280-294.	1.8	188
57	Regeneration or scarring: An immunologic perspective. Developmental Dynamics, 2003, 226, 268-279.	1.8	243
58	Cell differentiation and cell fate during urodele tail and limb regeneration. Current Opinion in Genetics and Development, 2003, 13, 497-501.	3.3	75
59	Regeneration. Cell, 2003, 113, 559-562.	28.9	114
60	Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration inXenopus laevis. Developmental Dynamics, 2004, 230, 615-629.	1.8	13
61	Differential tissue development during embryogenesis and regeneration in an annelid. Developmental Dynamics, 2004, 231, 349-358.	1.8	35
62	FUNDAMENTALS OF PLANARIAN REGENERATION. Annual Review of Cell and Developmental Biology, 2004, 20, 725-757.	9.4	921
63	Amphibian Regeneration and Stem Cells. Current Topics in Microbiology and Immunology, 2004, 280, 1-70.	1.1	63
64	A stepwise model system for limb regeneration. Developmental Biology, 2004, 270, 135-145.	2.0	283
65	Regulation of Retinoic Acid Distribution Is Required for Proximodistal Patterning and Outgrowth of the Developing Mouse Limb. Developmental Cell, 2004, 6, 411-422.	7.0	285
66	Expression of heat-shock protein 70 during limb development and regeneration in the axolotl. Developmental Dynamics, 2005, 233, 1525-1534.	1.8	23
67	Retinoic acid during limb regeneration. , 2005, , 77-84.		0
69	Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development (Cambridge), 2005, 132, 4131-4142.	2.5	131
70	Bone Formation: Biological Aspects and Modelling Problems. Journal of Theoretical Medicine, 2005, 6, 41-55.	0.5	10
71	Of chicken wings and frog legs: A smorgasbord of evolutionary variation in mechanisms of tetrapod limb development. Developmental Biology, 2005, 288, 21-39.	2.0	45
72	Limb Regeneration in Axolotl: Is It Superhealing?. Scientific World Journal, The, 2006, 6, 12-25.	2.1	36
73	Newt Opportunities for Understanding the Dedifferentiation Process. Scientific World Journal, The, 2006, 6, 55-64.	2.1	12
75	A PCR survey for posterior Hox genes in amphibians. Molecular Phylogenetics and Evolution, 2006, 38, 449-458.	2.7	15

#	Article	IF	CITATIONS
76	Characterization ofXenopusdigits and regenerated limbs of the froglet. Developmental Dynamics, 2006, 235, 3316-3326.	1.8	39
78	Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputation-induced blastemas. Developmental Biology, 2007, 312, 231-244.	2.0	118
79	Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Developmental Biology, 2007, 312, 171-182.	2.0	110
80	The axolotl limb: A model for bone development, regeneration and fracture healing. Bone, 2007, 40, 45-56.	2.9	62
81	Transforming Growth Factor: β Signaling Is Essential for Limb Regeneration in Axolotls. PLoS ONE, 2007, 2, e1227.	2.5	127
82	Unifying principles of regeneration I: Epimorphosis versus morphallaxis. Development Growth and Differentiation, 2007, 49, 73-78.	1.5	169
83	Identification of differentially expressed genes in 4-day axolotl limb blastema by suppression subtractive hybridization. Journal of Physiology and Biochemistry, 2008, 64, 37-50.	3.0	16
84	Stretching the limits: Stem cells in regeneration science. Developmental Dynamics, 2008, 237, 3648-3671.	1.8	65
85	Mammalian regeneration and regenerative medicine. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 265-280.	3.6	89
86	Analysis of the expression and function of Wntâ€5a and Wntâ€5b in developing and regenerating axolotl (<i>Ambystoma mexicanum</i>) limbs. Development Growth and Differentiation, 2008, 50, 289-297.	1.5	62
87	Axolotl/Newt. Methods in Molecular Biology, 2008, 461, 467-480.	0.9	15
88	Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Developmental Biology, 2008, 319, 321-335.	2.0	119
89	Comparative Aspects of Animal Regeneration. Annual Review of Cell and Developmental Biology, 2008, 24, 525-549.	9.4	427
90	Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature, 2009, 460, 60-65.	27.8	730
91	Repatterning in amphibian limb regeneration: A model for study of genetic and epigenetic control of organ regeneration. Seminars in Cell and Developmental Biology, 2009, 20, 565-574.	5.0	54
92	miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Developmental Biology, 2009, 334, 468-480.	2.0	88
93	BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Developmental Biology, 2010, 10, 15.	2.1	46
94	Regulation of proximalâ€distal intercalation during limb regeneration in the axolotl (<i>Ambystoma) Tj ETQq1 1</i>	0.784314	rgBT /Overlo

#	Article	IF	CITATIONS
95	Leg regeneration in Drosophila abridges the normal developmental program. International Journal of Developmental Biology, 2010, 54, 1241-1250.	0.6	18
96	Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regenerative Medicine, 2010, 5, 451-462.	1.7	21
97	Vertebrates That Regenerate As Models For Guiding Stem Cels. Advances in Experimental Medicine and Biology, 2010, 695, 184-214.	1.6	26
98	Making heads from tails: Development of a reversed anterior–posterior axis during budding in an acoel. Developmental Biology, 2010, 338, 86-97.	2.0	36
99	Analysis of hoxa11 and hoxa13 expression during patternless limb regeneration in Xenopus. Developmental Biology, 2010, 338, 148-157.	2.0	46
100	The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, 2010, , .	1.6	3
101	Limb Regeneration: A New Development?. Annual Review of Cell and Developmental Biology, 2011, 27, 409-440.	9.4	142
102	Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration. Developmental Biology, 2011, 355, 263-274.	2.0	89
103	Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus. PLoS ONE, 2011, 6, e21721.	2.5	44
104	Evolution of a novel developmental trajectory: fission is distinct from regeneration in the annelid Pristina leidyi. Evolution & Development, 2011, 13, 80-95.	2.0	66
105	Characterizing Animal Development with Genetic Regulatory Mechanisms. Biological Theory, 2011, 6, 16-24.	1.5	4
106	Regeneration and Development in Animals. Biological Theory, 2011, 6, 25-35.	1.5	24
107	Network based transcription factor analysis of regenerating axolotl limbs. BMC Bioinformatics, 2011, 12, 80.	2.6	25
108	Looking proximally and distally: 100 years of limb regeneration and beyond. Developmental Dynamics, 2011, 240, 943-968.	1.8	105
109	Salamander limb development: Integrating genes, morphology, and fossils. Developmental Dynamics, 2011, 240, 1087-1099.	1.8	61
110	Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Developmental Dynamics, 2011, 240, 1826-1840.	1.8	58
111	The Axolotl Model for Regeneration and Aging Research: A Mini-Review. Gerontology, 2011, 57, 565-571.	2.8	78
112	Regeneration: The ultimate example of wound healing. Seminars in Cell and Developmental Biology, 2012, 23, 954-962.	5.0	58

#	Article	IF	CITATIONS
113	Early Regulation of Axolotl Limb Regeneration. Anatomical Record, 2012, 295, 1566-1574.	1.4	44
114	Regeneration of Appendages. , 2012, , 183-226.		2
115	Wound epithelium function in axolotl limb regeneration. Okajimas Folia Anatomica Japonica, 2012, 89, 75-81.	1.2	2
116	Hypothesis: Terminal transverse limb defects with "nubbins―represent a regenerative process during limb development in human fetuses. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012, 94, 129-133.	1.6	13
117	De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics, 2013, 14, 434.	2.8	63
118	Salamander Hox clusters contain repetitive DNA and expanded non-coding regions: a typical Hoxstructure for non-mammalian tetrapod vertebrates?. Human Genomics, 2013, 7, 9.	2.9	15
119	Progressive Specification Rather than Intercalation of Segments During Limb Regeneration. Science, 2013, 342, 1375-1379.	12.6	83
120	Pattern Formation in Regenerating Tissues. Springer Proceedings in Mathematics, 2013, , 7-15.	0.5	2
122	The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development. FASEB Journal, 2013, 27, 4877-4889.	0.5	98
123	RNA-Seq Reveals Dynamic Changes of Gene Expression in Key Stages of Intestine Regeneration in the Sea Cucumber Apostichopus japonicas. PLoS ONE, 2013, 8, e69441.	2.5	53
124	Cloning and expression analysis of Wnt6 and Hox6 during intestinal regeneration in the sea cucumber Apostichopus japonicus. Genetics and Molecular Research, 2013, 12, 5321-5334.	0.2	30
125	Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141550.	2.6	54
126	Is Salamander Limb Regeneration Really Perfect? Anatomical and Morphogenetic Analysis of Forelimb Muscle Regeneration in GFPâ€Transgenic Axolotls as a Basis for Regenerative, Developmental, and Evolutionary Studies. Anatomical Record, 2014, 297, 1076-1089.	1.4	25
127	Homeobox Genes Expressed During Echinoderm Arm Regeneration. Biochemical Genetics, 2014, 52, 166-180.	1.7	25
128	Conservation of Position-Specific Gene Expression in Axolotl Limb Skin. Zoological Science, 2014, 31, 6-13.	0.7	24
129	Keeping at Arm's Length during Regeneration. Developmental Cell, 2014, 29, 139-145.	7.0	51
130	Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (<i>Ambystoma mexicanum</i>). Regeneration (Oxford, England), 2015, 2, 182-201.	6.3	59
131	Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC Developmental Biology, 2015, 15, 45.	2.1	30

#	Article	IF	CITATIONS
132	Reconsidering regeneration in metazoans: an evo-devo approach. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	48
133	The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration (Oxford, England), 2015, 2, 54-71.	6.3	156
134	An orphan gene is necessary for preaxial digit formation during salamander limb development. Nature Communications, 2015, 6, 8684.	12.8	51
135	Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration. Developmental Biology, 2015, 406, 271-282.	2.0	32
136	Research into the Cellular and Molecular Mechanisms of Regeneration in Salamanders: Then and Now. Pancreatic Islet Biology, 2016, , 1-21.	0.3	1
137	Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8. Journal of Biological Chemistry, 2016, 291, 2664-2681.	3.4	52
138	The role of stem cells in limb regeneration. Organogenesis, 2016, 12, 16-27.	1.2	13
139	Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. Tissue Engineering - Part B: Reviews, 2016, 22, 251-262.	4.8	17
140	Posterior tail development in the salamander Eurycea cirrigera: exploring cellular dynamics across life stages. Development Genes and Evolution, 2017, 227, 85-99.	0.9	1
141	Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl. Development (Cambridge), 2017, 144, 601-611.	2.5	25
142	Advances in Decoding Axolotl Limb Regeneration. Trends in Genetics, 2017, 33, 553-565.	6.7	74
143	Mechanisms of urodele limb regeneration. Regeneration (Oxford, England), 2017, 4, 159-200.	6.3	97
144	Limb Regrowth and Tissue Engineering Alternatives. , 2017, , 213-236.		1
145	The role of HoxA11 and HoxA13 in the evolution of novel fin morphologies in a representative batoid (Leucoraja erinacea). EvoDevo, 2017, 8, 24.	3.2	12
146	Noncanonical <i>Hox</i> , <i>Etv4</i> , and <i>Gli3</i> gene activities give insight into unique limb patterning in salamanders. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 138-147.	1.3	11
147	Nerves, H2O2 and Shh: Three players in the game of regeneration. Seminars in Cell and Developmental Biology, 2018, 80, 65-73.	5.0	19
148	Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nature Communications, 2018, 9, 5153.	12.8	133
149	Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues. International Journal of Molecular Sciences, 2018, 19, 3752.	4.1	8

#	Article	IF	CITATIONS
150	Reproductive Strategies in Annelida: Germ Cell Formation and Regeneration. Diversity and Commonality in Animals, 2018, , 203-221.	0.7	1
151	New insight into functional limb regeneration: A to Z approaches. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1925-1943.	2.7	5
152	NvERTx: A gene expression database to compare embryogenesis and regeneration in the sea anemone <i>Nematostella vectensis</i> . Development (Cambridge), 2018, 145, .	2.5	47
153	Homeotic transformation of tails into limbs in anurans. Development Growth and Differentiation, 2018, 60, 365-376.	1.5	6
154	Hierarchical pattern formation during amphibian limb regeneration. BioSystems, 2019, 183, 103989.	2.0	19
155	Lissamphibian limbs and the origins of tetrapod hox domains. Developmental Biology, 2019, 456, 138-144.	2.0	11
156	A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Research, 2019, 26, 217-229.	3.4	45
157	Retinoic acid signaling determines the fate of the uterus from the mouse Müllerian duct. Reproductive Toxicology, 2019, 86, 56-61.	2.9	18
158	BMP signaling is essential for sustaining proximo-distal progression in regenerating axolotl limbs. Development (Cambridge), 2020, 147, .	2.5	24
159	The role of the 5′ HoxA genes in the development of the hindgut, vent, and a novel sphincter in a derived teleost (bluebanded goby, <i>Lythrypnus dalli</i>). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 518-530.	1.3	0
160	Normal development in Ambystoma mexicanum : A complementary staging table for the skull based on Alizarin red S staining. Developmental Dynamics, 2020, 249, 656-665.	1.8	3
161	Remembering where we are: Positional information in salamander limb regeneration. Developmental Dynamics, 2020, 249, 465-482.	1.8	7
162	A histological study of normal and pathological limb regeneration in the Mexican axolotl <i>Ambystoma mexicanum</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 116-128.	1.3	15
163	Regeneration and development. An amphibian call to arms. Developmental Dynamics, 2021, 250, 896-901.	1.8	4
165	Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Current Topics in Developmental Biology, 2021, 145, 235-275.	2.2	11
166	Essential roles of matrix metalloproteinases in axolotl digit regeneration. Cell and Tissue Research, 2021, 385, 105-113.	2.9	7
167	<i>Tgfâ€Î²</i> superfamily and limb regeneration: <i>Tgfâ€Î²</i> to start and <i>Bmp</i> to end. Developmental Dynamics, 2022, 251, 973-987.	1.8	9
169	Homeobox-Containing Genes in Limb Regeneration. , 2007, , 102-110.		5

#	Article	IF	CITATIONS
170	The Role of Retinoids in Developmental Mechanisms in Embryos. Sub-Cellular Biochemistry, 1998, 30, 81-111.	2.4	13
171	Regeneration of Appendages. , 2006, , 363-404.		3
174	Nerve dependency of regeneration: the role of <i>Distal-less</i> and FGF signaling in amphibian limb regeneration. Development (Cambridge), 1996, 122, 3487-3497.	2.5	217
175	Planarian Hox genes: novel patterns of expression during regeneration. Development (Cambridge), 1997, 124, 141-148.	2.5	64
176	A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes involved in vertebrate forelimb/hindlimb patterning. Development (Cambridge), 1997, 124, 1355-1366.	2.5	78
177	Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development (Cambridge), 2000, 127, 3961-3970.	2.5	279
178	Evolution of regeneration and fission in annelids: insights from <i>engrailed</i> - and <i>orthodenticle</i> -class gene expression. Development (Cambridge), 2001, 128, 2781-2791.	2.5	113
179	Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration. PLoS ONE, 2012, 7, e41804.	2.5	41
180	Positional Information Is Reprogrammed in Blastema Cells of the Regenerating Limb of the Axolotl (Ambystoma mexicanum). PLoS ONE, 2013, 8, e77064.	2.5	66
181	A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta. PLoS ONE, 2016, 11, e0149724.	2.5	31
182	Regeneration and pattern formation - an interview with Susan Bryant. International Journal of Developmental Biology, 2009, 53, 827-833.	0.6	2
183	Positional Memory in Vertebrate Regeneration: A Century's Insights from the Salamander Limb. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040899.	5.5	11
187	Neural control of growth and size in the axolotl limb regenerate. ELife, 2021, 10, .	6.0	16
188	The Axolotl's journey to the modern molecular era. Current Topics in Developmental Biology, 2022, 147, 631-658.	2.2	7
190	Newt <i>Hoxa13</i> has an essential and predominant role in digit formation during development and regeneration. Development (Cambridge), 2022, 149, .	2.5	6
191	A Morphological and Histological Investigation of Imperfect Lungfish Fin Regeneration. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	0
192	Hybridization Chain Reaction Fluorescence In Situ Hybridization (HCR-FISH) in Ambystoma mexicanum Tissue. Methods in Molecular Biology, 2023, , 109-122.	0.9	4
193	Whole-Mount In Situ Hybridization (WISH) for Salamander Embryos and Larvae. Methods in Molecular Biology, 2023, , 95-107.	0.9	1

#	Article	IF	CITATIONS
195	En1 and Lmx1b do not recapitulate embryonic dorsal-ventral limb patterning functions during mouse digit tip regeneration. Cell Reports, 2022, 41, 111701.	6.4	7
196	Integration failure of regenerated limb tissue is associated with incongruencies in positional information in the Mexican axolotl. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	3
197	The salamander blastema within the broader context of metazoan regeneration. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	1
199	Making a new limb out of old cells: exploring endogenous cell reprogramming and its role during limb regeneration. American Journal of Physiology - Cell Physiology, 2024, 326, C505-C512.	4.6	0
200	A Posthumanist View on Theming the Axolotl for a <i>Pueblo MÃ;gico</i> ., 2023, , 128-139.		0