Origins of the avian neural crest: the role of neural plate

Development (Cambridge) 121, 525-538 DOI: 10.1242/dev.121.2.525

Citation Report

#	Article	IF	CITATIONS
1	Serotonin regulates mouse cranial neural crest migration Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7182-7186.	3.3	176
2	Strategies for the generation of neuronal diversity in the developing central nervous system. Journal of Neuroscience, 1995, 15, 6987-6998.	1.7	140
3	Induction and patterning of the vertebrate nervous system. Trends in Genetics, 1995, 11, 273-278.	2.9	64
4	Neural Patterning: A forward role for Hedgehog. Current Biology, 1995, 5, 1347-1350.	1.8	24
5	Origin of the avian neural crestt. Stem Cells, 1995, 13, 640-646.	1.4	9
6	Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell, 1995, 82, 969-979.	13.5	989
7	Molecular genetic analysis of Wnt signals in mouse development. Seminars in Developmental Biology, 1995, 6, 267-274.	1.3	6
8	Pigment Patterns of Larval Salamanders (Ambystomatidae, Salamandridae): The Role of the Lateral Line Sensory System and the Evolution of Pattern-Forming Mechanisms. Developmental Biology, 1996, 175, 265-282.	0.9	45
9	Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mechanisms of Development, 1996, 60, 13-32.	1.7	136
10	Diversity and Pattern in the Developing Spinal Cord. Science, 1996, 274, 1115-1123.	6.0	681
11	Chapter 1 Culture and Microsurgical Manipulation of the Early Avian Embryo. Methods in Cell Biology, 1996, 51, 1-21.	0.5	31
12	The genesis of avian neural crest cells: a classic embryonic induction Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9352-9357.	3.3	47
13	Neuroectodermal Antigens Persist in Benign and Malignant Salivary Gland Tumor Cultures. JAMA Otolaryngology, 1996, 122, 551-558.	1.5	6
14	cash4, a novel achaete-scute homolog induced by Hensen's node during generation of the posterior nervous system Genes and Development, 1997, 11, 603-615.	2.7	69
15	Inductive Interactions Underlie Neural Crest Formation. Advances in Pharmacology, 1997, 42, 883-887.	1.2	2
16	Embryonic Neural Chimeras in the Study of Vertebrate Brain and Head Development. International Review of Cytology, 1997, 175, 241-309.	6.2	28
17	A Role for Midline Closure in the Reestablishment of Dorsoventral Pattern Following Dorsal Hindbrain Ablation. Developmental Biology, 1997, 183, 150-165.	0.9	23
18	Absence of Neural Crest Cell Regeneration from the Postotic Neural Tube. Developmental Biology, 1997, 184, 222-233.	0.9	27

#	Article	IF	CITATIONS
19	Chicken Transcription Factor AP-2: Cloning, Expression and Its Role in Outgrowth of Facial Prominences and Limb Buds. Developmental Biology, 1997, 188, 248-266.	0.9	120
20	Dorsal-Ventral Patterning during Neural Induction inXenopus:Assessment of Spinal Cord Regionalization withxHB9,a Marker for the Motor Neuron Region. Developmental Biology, 1997, 187, 209-223.	0.9	45
21	Neural Tube Is Partially Dorsalized by Overexpression ofHrPax-37:The Ascidian Homologue ofPax-3andPax-7. Developmental Biology, 1997, 187, 240-252.	0.9	109
22	Role of FGF andNogginin Neural Crest Induction. Developmental Biology, 1997, 189, 1-12.	0.9	171
23	Epithelial Cell Wedging and Neural Trough Formation Are Induced Planarly inXenopus,without Persistent Vertical Interactions with Mesoderm. Developmental Biology, 1997, 189, 256-269.	0.9	42
24	Inhibitory Effects of Ventral Signals on the Development of Brn-3.0-Expressing Neurons in the Dorsal Spinal Cord. Developmental Biology, 1997, 190, 18-31.	0.9	21
25	FORMATION AND FUNCTION OF SPEMANN'S ORGANIZER. Annual Review of Cell and Developmental Biology, 1997, 13, 611-667.	4.0	783
26	Differentiation of the vertebrate neural tube. Current Opinion in Cell Biology, 1997, 9, 885-891.	2.6	32
27	Control of Cell Pattern in the Neural Tube by the Zinc Finger Transcription Factor and Oncogene Gli-1. Neuron, 1997, 19, 15-26.	3.8	266
28	Assignment of Early Caudal Identity to Neural Plate Cells by a Signal from Caudal Paraxial Mesoderm. Neuron, 1997, 19, 487-502.	3.8	101
29	A Role for the Roof Plate and Its Resident TGFβ-Related Proteins in Neuronal Patterning in the Dorsal Spinal Cord. Cell, 1997, 91, 127-138.	13.5	522
30	Dynamo, a new zebrafish DVR member of the TGF-β superfamily is expressed in the posterior neural tube and is up-regulated by Sonic hedgehog. Mechanisms of Development, 1997, 61, 199-212.	1.7	19
31	The origins of the neural crest. Part II: an evolutionary perspective. Mechanisms of Development, 1997, 69, 13-29.	1.7	161
32	The origins of the neural crest. Part I: embryonic induction. Mechanisms of Development, 1997, 69, 3-11.	1.7	135
33	Expression and regulation of a netrin homologue in the zebrafish embryo. Mechanisms of Development, 1997, 62, 147-160.	1.7	92
34	Neural ectoderm, neural crest, and placodes: Contribution of the otic placode to the ectodermal lining of the embryonic opercular cavity in Atlantic cod (Teleostei). , 1997, 231, 231-252.		19
35	Inhibitory Interactions in the Patterning of Trunk Neural Crest Migration. Annals of the New York Academy of Sciences, 1998, 857, 13-22.	1.8	16
36	Neural fold fusion in the cranial region of the chick embryo. , 1998, 212, 473-481.		15

		CITATION R	EPORT	
#	Article		IF	CITATIONS
37	Cell fate determination in embryonic ectoderm. Journal of Neurobiology, 1998, 36, 128	-151.	3.7	70
38	Induction and patterning of the neural crest, a stem cell-like precursor population. , 19	98, 36, 175-189.		74
39	3 Development of Neural Crest in Xenopus. Current Topics in Developmental Biology, 1	.998, 43, 85-113.	1.0	59
40	SoxD. Neuron, 1998, 21, 77-85.		3.8	122
41	The inductive properties of mesoderm suggest that the neural crest cells are specified l gradient. Developmental Biology, 1998, 198, 319-329.	by a BMP	0.9	263
42	Partial respecification of nasotemporal polarity in double-temporal chick and chimeric c eyes. Mechanisms of Development, 1998, 74, 15-28.	hick–quail	1.7	12
43	Specification of the Hindbrain Fate in the Zebrafish. Developmental Biology, 1998, 197	, 283-296.	0.9	81
44	Progenitor Dispersal and the Origin of Early Neuronal Phenotypes in the Chick Embryo Developmental Biology, 1998, 199, 26-41.	Spinal Cord.	0.9	19
45	A Common Neural Progenitor for the CNS and PNS. Developmental Biology, 1998, 200	, 1-15.	0.9	181
46	Ventral and Lateral Regions of the Zebrafish Gastrula, Including the Neural Crest Proge Established by abmp2b/swirlPathway of Genes. Developmental Biology, 1998, 199, 93-	hitors, Are 110.	0.9	398
47	The Origin of the Subepicardial Mesenchyme in the Avian Embryo: An Immunohistoche Quail–Chick Chimera Study. Developmental Biology, 1998, 200, 57-68.	nical and	0.9	151
48	Early Migrating Neural Crest Cells Can Form Ventral Neural Tube Derivatives When Cha Transplantation. Developmental Biology, 1998, 203, 295-304.	llenged by	0.9	30
49	Neural Crest Cell Dynamics Revealed by Time-Lapse Video Microscopy of Whole Embry Cultures. Developmental Biology, 1998, 204, 327-344.) Chick Explant	0.9	151
50	Germ Layers and the Germ-Layer Theory Revisited. , 1998, , 121-186.			29
51	Neural Crest Specification Regulated by the Helix-Loop-Helix Repressor Id2. , 1998, 281	,988-991.		132
52	Identification and characterization of LMO4, an LMO gene with a novel pattern of expr embryogenesis. Proceedings of the National Academy of Sciences of the United States 95, 11257-11262.		3.3	89
53	Developmental Gene Expression in Amphioxus: New Insights into the Evolutionary Orig Brain Regions, Neural Crest, and Rostrocaudal Segmentation. American Zoologist, 199		0.7	44
54	7 Neural Crest Diversification. Current Topics in Developmental Biology, 1998, 43, 221	-258.	1.0	46

#	Article	IF	CITATIONS
55	5 Neural Crest Development: The Interplay between Morphogenesis and Cell Differentiation. Current Topics in Developmental Biology, 1998, 40, 177-209.	1.0	95
56	Chapter 10 Embryonic Axis Formation in the Zebrafish. Methods in Cell Biology, 1998, 59, 159-178.	0.5	17
57	Experimental Embryological Methods for Analysis of Neural Induction in the Amphibian. , 1999, 97, 351-392.		6
58	AmphiPax3/7, an amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest. Evolution & Development, 1999, 1, 153-165.	1.1	118
59	Ventrally emigrating neural tube cells differentiate into vascular smooth muscle cells. General Pharmacology, 1999, 33, 401-405.	0.7	15
60	Induction and differentiation of the neural crest. Current Opinion in Cell Biology, 1999, 11, 695-698.	2.6	51
61	Ventrally emigrating neural tube cells contribute to the formation of Meckel's and quadrate cartilage. Developmental Dynamics, 1999, 216, 37-44.	0.8	33
62	THE SPECIFICATION OF DORSAL CELL FATES IN THE VERTEBRATE CENTRAL NERVOUS SYSTEM. Annual Review of Neuroscience, 1999, 22, 261-294.	5.0	464
63	Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mechanisms of Development, 1999, 82, 51-66.	1.7	224
64	Fate maps old and new. Nature Cell Biology, 1999, 1, E103-E109.	4.6	44
65	Molecular Mechanisms of Neural Crest Formation. Annual Review of Cell and Developmental Biology,		209
	1999, 15, 81-112.	4.0	
66	1999, 15, 81-112. Ventrally Emigrating Neural Tube Cells Differentiate into Heart Muscle. Biochemical and Biophysical Research Communications, 1999, 254, 601-604.	4.0 1.0	22
66 67	Ventrally Emigrating Neural Tube Cells Differentiate into Heart Muscle. Biochemical and Biophysical		22 169
	Ventrally Emigrating Neural Tube Cells Differentiate into Heart Muscle. Biochemical and Biophysical Research Communications, 1999, 254, 601-604. Connexin 43 Expression Reflects Neural Crest Patterns during Cardiovascular Development.	1.0	
67	Ventrally Emigrating Neural Tube Cells Differentiate into Heart Muscle. Biochemical and Biophysical Research Communications, 1999, 254, 601-604. Connexin 43 Expression Reflects Neural Crest Patterns during Cardiovascular Development. Developmental Biology, 1999, 208, 307-323. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature,	1.0 0.9	169
67 68	Ventrally Emigrating Neural Tube Cells Differentiate into Heart Muscle. Biochemical and Biophysical Research Communications, 1999, 254, 601-604. Connexin 43 Expression Reflects Neural Crest Patterns during Cardiovascular Development. Developmental Biology, 1999, 208, 307-323. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature, 2000, 403, 734-740.	1.0 0.9 13.7	169 273
67 68 69	Ventrally Emigrating Neural Tube Cells Differentiate into Heart Muscle. Biochemical and Biophysical Research Communications, 1999, 254, 601-604. Connexin 43 Expression Reflects Neural Crest Patterns during Cardiovascular Development. Developmental Biology, 1999, 208, 307-323. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature, 2000, 403, 734-740. Raising the roof. Nature, 2000, 403, 720-721. Noelin-1 is a secreted glycoprotein involved in generation of the neural crest. Nature Cell Biology,	1.0 0.9 13.7 13.7	169 273 8

#	Article	IF	Citations
73	Contribution of single somites to the skeleton and muscles of the occipital and cervical regions in avian embryos. Anatomy and Embryology, 2000, 202, 375-383.	1.5	87
74	Timing and Competence of Neural Crest Formation. Developmental Neuroscience, 2000, 22, 217-227.	1.0	41
75	A Critical Period for Conversion of Ectodermal Cells to a Neural Crest Fate. Developmental Biology, 2000, 218, 13-20.	0.9	23
76	Snail-Related Transcriptional Repressors Are Required in Xenopus for both the Induction of the Neural Crest and Its Subsequent Migration. Developmental Biology, 2000, 221, 195-205.	0.9	220
77	Relationship between Gene Expression Domains of Xsnail, Xslug, and Xtwist and Cell Movement in the Prospective Neural Crest of Xenopus. Developmental Biology, 2000, 224, 215-225.	0.9	89
78	A novel member of the Xenopus Zic family, Zic5 , mediates neural crest development. Mechanisms of Development, 2000, 99, 83-91.	1.7	100
79	Neural patterning in the vertebrate embryo. International Review of Cytology, 2001, 203, 447-482.	6.2	151
80	Vertebrate Cranial Placodes I. Embryonic Induction. Developmental Biology, 2001, 232, 1-61.	0.9	570
81	Inductive Signals from the Somatopleure Mediated by Bone Morphogenetic Proteins Are Essential for the Formation of the Sternal Component of Avian Ribs. Developmental Biology, 2001, 232, 284-300.	0.9	50
82	Lateral Line Placodes Are Induced during Neurulation in the Axolotl. Developmental Biology, 2001, 234, 55-71.	0.9	16
83	Excess Lunatic Fringe Causes Cranial Neural Crest Over-Proliferation. Developmental Biology, 2001, 235, 121-130.	0.9	9
84	Induction of Ascidian Peripheral Neuron by Vegetal Blastomeres. Developmental Biology, 2001, 239, 107-117.	0.9	27
85	Embryonic Origin of Avian Corneal Sensory Nerves. Developmental Biology, 2001, 239, 323-337.	0.9	54
86	The early steps of neural crest development. Mechanisms of Development, 2001, 105, 27-35.	1.7	113
87	Segmental organization of neural crest migration. Mechanisms of Development, 2001, 105, 37-45.	1.7	75
88	Induction and development of neural crest in Xenopus laevis. Cell and Tissue Research, 2001, 305, 203-209.	1.5	75
89	Origin and evolution of the neural crest: A hypothetical reconstruction of its evolutionary history. Development Growth and Differentiation, 2001, 43, 509-520.	0.6	42
90	DEVELOPMENT: Riding the Crest of the Wnt Signaling Wave. Science, 2002, 297, 781-783.	6.0	37

#	Article	IF	CITATIONS
91	Posteriorization by FGF, Wnt, and Retinoic Acid Is Required for Neural Crest Induction. Developmental Biology, 2002, 241, 289-301.	0.9	220
92	Endogenous Patterns of BMP Signaling during Early Chick Development. Developmental Biology, 2002, 244, 44-65.	0.9	146
93	Extensive Cell Movements Accompany Formation of the Otic Placode. Developmental Biology, 2002, 249, 237-254.	0.9	209
94	Pax3-Expressing Trigeminal Placode Cells Can Localize to Trunk Neural Crest Sites but Are Committed to a Cutaneous Sensory Neuron Fate. Developmental Biology, 2002, 249, 219-236.	0.9	44
95	Neuronal Differentiation from Postmitotic Precursors in the Ciliary Ganglion. Developmental Biology, 2002, 252, 312-323.	0.9	10
96	Dorsalization of the Neural Tube by Xenopus Tiarin, a Novel Patterning Factor Secreted by the Flanking Nonneural Head Ectoderm. Neuron, 2002, 33, 515-528.	3.8	51
97	Association between the Cell Cycle and Neural Crest Delamination through Specific Regulation of G1/S Transition. Developmental Cell, 2002, 3, 383-395.	3.1	137
98	Early induction of neural crest cells: lessons learned from frog, fish and chick. Current Opinion in Genetics and Development, 2002, 12, 452-458.	1.5	152
99	Craniofacial Development. , 2002, , 421-498.		64
100	Molecular analysis of neural crest formation. Journal of Physiology (Paris), 2002, 96, 3-8.	2.1	28
100	Molecular analysis of neural crest formation. Journal of Physiology (Paris), 2002, 96, 3-8. Induction of the neural crest: a multigene process. Nature Reviews Genetics, 2002, 3, 453-461.	2.1 7.7	28 296
101	Induction of the neural crest: a multigene process. Nature Reviews Genetics, 2002, 3, 453-461. Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 2002, 105,	7.7	296
101 102	Induction of the neural crest: a multigene process. Nature Reviews Genetics, 2002, 3, 453-461. Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 2002, 105, 119-146. Wnt-frizzled signaling in the induction and differentiation of the neural crest. BioEssays, 2003, 25,	7.7 0.6	296 73
101 102 103	Induction of the neural crest: a multigene process. Nature Reviews Genetics, 2002, 3, 453-461. Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 2002, 105, 119-146. Wnt-frizzled signaling in the induction and differentiation of the neural crest. BioEssays, 2003, 25, 317-325. Deltex/Dtx mediates NOTCH signaling in regulation of Bmp4 expression in cranial neural crest	7.7 0.6 1.2	296 73 88
101 102 103 104	Induction of the neural crest: a multigene process. Nature Reviews Genetics, 2002, 3, 453-461. Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 2002, 105, 119-146. Wnt-frizzled signaling in the induction and differentiation of the neural crest. BioEssays, 2003, 25, 317-325. Deltex/Dtx mediates NOTCH signaling in regulation of Bmp4 expression in cranial neural crest formation during avian development. Development Growth and Differentiation, 2003, 45, 241-248. AP-2 and HNK-1 define distinct populations of cranial neural crest cells. Orthodontics and	7.7 0.6 1.2 0.6	296 73 88 34
101 102 103 104	Induction of the neural crest: a multigene process. Nature Reviews Genetics, 2002, 3, 453-461. Development and evolution of lateral line placodes in amphibians I. Development. Zoology, 2002, 105, 119-146. Wnt-frizzled signaling in the induction and differentiation of the neural crest. BioEssays, 2003, 25, 317-325. Deltex/Dtx mediates NOTCH signaling in regulation of Bmp4 expression in cranial neural crest formation during avian development. Development Growth and Differentiation, 2003, 45, 241-248. AP-2 and HNK-1 define distinct populations of cranial neural crest cells. Orthodontics and Craniofacial Research, 2003, 6, 210-219.	 7.7 0.6 1.2 0.6 1.2 	296 73 88 34 19

#	Article	IF	CITATIONS
109	Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Developmental Biology, 2003, 259, 109-122.	0.9	222
110	Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Developmental Biology, 2003, 260, 79-96.	0.9	212
111	Wnt–frizzled signaling in neural crest formation. Trends in Neurosciences, 2003, 26, 40-45.	4.2	129
112	Mice Lacking Zfhx1b, the Gene That Codes for Smad-Interacting Protein-1, Reveal a Role for Multiple Neural Crest Cell Defects in the Etiology of Hirschsprung Disease–Mental Retardation Syndrome. American Journal of Human Genetics, 2003, 72, 465-470.	2.6	272
113	Ventrally emigrating neural tube cells migrate into the developing vestibulocochlear nerve and otic vesicle. International Journal of Developmental Neuroscience, 2003, 21, 199-208.	0.7	15
114	Neural crest development is regulated by the transcription factor Sox9. Development (Cambridge), 2003, 130, 5681-5693.	1.2	410
115	Dlx proteins position the neural plate border and determine adjacent cell fates. Development (Cambridge), 2003, 130, 331-342.	1.2	106
116	Induction of neural crest in Xenopus by transcription factor AP2Â. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 532-537.	3.3	186
117	Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development (Cambridge), 2003, 130, 3111-3124.	1.2	244
118	Hox gene control of neural crest cell, pharyngeal arch and craniofacial patterning">Hox gene control of neural crest cell, pharyngeal arch and craniofacial patterning. Advances in Developmental Biology and Biochemistry, 2003, , 155-206.	0.3	1
119	Hatchability of Chicken Embryos Following Somite Manipulation. BioTechniques, 2003, 34, 1128-1130.	0.8	5
120	Making Headway: The Roles of Hox Genes and Neural Crest Cells in Craniofacial Development. Scientific World Journal, The, 2003, 3, 240-264.	0.8	13
121	Neural Crest Cells. , 2004, , 219-232.		5
122	Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Development (Cambridge), 2004, 131, 5871-5881.	1.2	196
123	Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Development (Cambridge), 2004, 131, 347-359.	1.2	97
124	Reiterated Wnt signaling during zebrafish neural crest development. Development (Cambridge), 2004, 131, 1299-1308.	1.2	241
125	Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population. Journal of Anatomy, 2004, 205, 79-98.	0.9	19
126	Mechanisms of roof plate formation in the vertebrate CNS. Nature Reviews Neuroscience, 2004, 5, 808-812.	4.9	79

#	Article	IF	CITATIONS
127	A slug, a fox, a pair of sox: Transcriptional responses to neural crest inducing signals. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 124-139.	3.6	33
128	Molecular mechanisms of neural crest induction. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 109-123.	3.6	55
129	Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. BioEssays, 2004, 26, 857-869.	1.2	247
130	Laser capture microdissection of fluorescently labeled embryonic cranial neural crest cells. Genesis, 2004, 39, 58-64.	0.8	28
131	Neural crest and the origin of ectomesenchyme: Neural fold heterogeneity suggests an alternative hypothesis. Developmental Dynamics, 2004, 229, 118-130.	0.8	55
132	Somatic transgenesis using retroviral vectors in the chicken embryo. Developmental Dynamics, 2004, 229, 630-642.	0.8	23
133	Identification of neural crest competence territory: Role of Wnt signaling. Developmental Dynamics, 2004, 229, 109-117.	0.8	48
134	Multiple roles of Sox2, an HMG-box transcription factor in avian neural crest development. Developmental Dynamics, 2004, 229, 74-86.	0.8	104
135	Neurotrophin-3 and TrkC are expressed in the outflow tract of the developing chicken heart. Developmental Dynamics, 2004, 230, 767-772.	0.8	8
136	Quail Cell Lines Supporting Replication of Marek's Disease Virus Serotype 1 and 2 and Herpesvirus of Turkeys. Avian Diseases, 2004, 48, 803-812.	0.4	8
137	Roof plate and dorsal spinal cord dl1 interneuron development in the dreher mutant mouse. Developmental Biology, 2004, 270, 382-392.	0.9	42
138	Molecular anatomy of placode development in Xenopus laevis. Developmental Biology, 2004, 271, 439-466.	0.9	243
139	Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Developmental Biology, 2004, 272, 89-103.	0.9	93
140	Induction of the neural crest and the opportunities of life on the edge. Developmental Biology, 2004, 275, 1-11.	0.9	216
141	Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction. Developmental Biology, 2004, 276, 16-30.	0.9	45
142	Early development of the cranial sensory nervous system: from a common field to individual placodes. Developmental Biology, 2004, 276, 1-15.	0.9	172
143	Krox-20 gene expression: Influencing hindbrain-craniofacial developmental interactions. Archives of Histology and Cytology, 2005, 68, 227-234.	0.2	9
145	Multiple Stem Cell Populations Contribute to the Formation of the Myocardium. Annals of the New York Academy of Sciences, 2005, 1047, 38-49.	1.8	8

#	Article	IF	CITATIONS
146	Relations and interactions between cranial mesoderm and neural crest populations. Journal of Anatomy, 2005, 207, 575-601.	0.9	368
147	Regulation of Slug transcription in embryonic ectoderm by beta-catenin-Lef/Tcf and BMP-Smad signaling. Development Growth and Differentiation, 2005, 47, 471-482.	0.6	83
148	Bone morphogenetic protein signalling and vertebrate nervous system development. Nature Reviews Neuroscience, 2005, 6, 945-954.	4.9	285
149	Role of morphogens in neural crest cell determination. Journal of Neurobiology, 2005, 64, 388-404.	3.7	34
150	Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Developmental Dynamics, 2005, 233, 430-444.	0.8	136
151	Wnts and the neural crest. Anatomy and Embryology, 2005, 209, 349-355.	1.5	24
152	Early stages of neural crest ontogeny: formation and regulation of cell delamination. International Journal of Developmental Biology, 2005, 49, 105-116.	0.3	51
153	Dynamic Alterations in Gene Expression after Wnt-mediated Induction of Avian Neural Crest. Molecular Biology of the Cell, 2005, 16, 5283-5293.	0.9	43
154	The Neural Crest. , 2005, , 29-39.		0
155	An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation. Development (Cambridge), 2005, 132, 3885-3894.	1.2	37
156	A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development (Cambridge), 2005, 132, 4051-4062.	1.2	249
157	Sensory Organs: Making and Breaking the Preâ€Placodal Region. Current Topics in Developmental Biology, 2005, 72, 167-204.	1.0	63
158	Neural Crest and Cranial Ectodermal Placodes. , 2005, , 67-127.		13
159	Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Developmental Biology, 2005, 288, 40-59.	0.9	150
160	TGF-Î ² Superfamily and Mouse Craniofacial Development: Interplay of Morphogenetic Proteins and Receptor Signaling Controls Normal Formation of the Face. Current Topics in Developmental Biology, 2005, 66, 65-133.	1.0	37
161	Msx1 and Pax3 Cooperate to Mediate FGF8 and WNT Signals during Xenopus Neural Crest Induction. Developmental Cell, 2005, 8, 167-178.	3.1	291
162	Restricted response of mesencephalic neural crest to sympathetic differentiation signals in the trunk. Developmental Biology, 2005, 278, 175-192.	0.9	15
163	Genetic network during neural crest induction: From cell specification to cell survival. Seminars in Cell and Developmental Biology, 2005, 16, 647-654.	2.3	133

	CHAHON R		
#	Article	IF	Citations
164	Early steps in neural crest specification. Seminars in Cell and Developmental Biology, 2005, 16, 642-646.	2.3	108
165	Specification of neural crest cell formation and migration in mouse embryos. Seminars in Cell and Developmental Biology, 2005, 16, 683-693.	2.3	121
166	Reiterated Wnt and BMP signals in neural crest development. Seminars in Cell and Developmental Biology, 2005, 16, 673-682.	2.3	57
167	Induction and specification of the vertebrate ectodermal placodes: precursors of the cranial sensory organs. Biology of the Cell, 2005, 97, 303-319.	0.7	68
168	Regulatory Mechanisms for Neural Crest Formation. Cells Tissues Organs, 2005, 179, 24-35.	1.3	23
169	Specification and Patterning of Neural Crest Cells During Craniofacial Development. Brain, Behavior and Evolution, 2005, 66, 266-280.	0.9	46
170	Neural Crest Stem and Progenitor Cells. Annual Review of Cell and Developmental Biology, 2006, 22, 267-286.	4.0	222
171	Neural Crest Inducing Signals. , 2006, 589, 24-31.		61
172	Abnormalities in neural crest cell migration in laminin α5 mutant mice. Developmental Biology, 2006, 289, 218-228.	0.9	65
173	Identification of an unexpected link between the Shh pathway and a G2/M regulator, the phosphatase CDC25B. Developmental Biology, 2006, 294, 133-147.	0.9	37
174	Induction and specification of cranial placodes. Developmental Biology, 2006, 294, 303-351.	0.9	354
175	PNS Precursor Cells in Development and Cancer. , 2006, , 189-217.		1
176	Specification of the neural crest occurs during gastrulation and requires Pax7. Nature, 2006, 441, 218-222.	13.7	343
177	The zic1 gene is expressed in chick somites but not in migratory neural crest. Gene Expression Patterns, 2006, 6, 539-545.	0.3	22
178	BMP-2-dependent integration of adult mouse subventricular stem cells into the neural crest of chick and quail embryos. Journal of Cell Science, 2006, 119, 4467-4474.	1.2	18
179	Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13403-13408.	3.3	341
180	Induction of proepicardial marker gene expression by the liver bud. Development (Cambridge), 2007, 134, 3627-3637.	1.2	62
181	Co-option of Signaling Mechanisms from Neural Induction to Telencephalic Patterning. Reviews in the Neurosciences, 2007, 18, 311-42.	1.4	22

#	Article	IF	CITATIONS
182	Multiple roles for Wnt signaling in the development of the vertebrate neural crest. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, 17, 203-221.	0.4	2
183	Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Developmental Biology, 2007, 304, 338-354.	0.9	138
184	Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Developmental Biology, 2007, 309, 208-221.	0.9	54
185	Migratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo. Developmental Dynamics, 2007, 236, 389-403.	0.8	21
186	Emerging roles forzic genes in early development. Developmental Dynamics, 2007, 236, 922-940.	0.8	127
187	Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state. Developmental Dynamics, 2007, 236, 1475-1483.	0.8	28
188	<i>Bmp2</i> is required for migration but not for induction of neural crest cells in the mouse. Developmental Dynamics, 2007, 236, 2493-2501.	0.8	52
189	Wnt6 controls amniote neural crest induction through the non anonical signaling pathway. Developmental Dynamics, 2007, 236, 2502-2511.	0.8	39
190	The development of mastication in rodents: From neurons to behaviors. Archives of Oral Biology, 2007, 52, 313-316.	0.8	19
191	A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells. Neural Development, 2008, 3, 27.	1.1	61
192	The origin and evolution of the neural crest. BioEssays, 2008, 30, 530-541.	1.2	124
193	Do vertebrate neural crest and cranial placodes have a common evolutionary origin?. BioEssays, 2008, 30, 659-672.	1.2	67
194	Rohon-Beard sensory neurons are induced by BMP4 expressing non-neural ectoderm in Xenopus laevis. Developmental Biology, 2008, 314, 351-361.	0.9	24
195	A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. Developmental Biology, 2008, 323, 114-129.	0.9	61
196	Molecular analysis of neural crest migration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1349-1362.	1.8	155
197	Chapter 3 Other Chimeras: Quail–Duck and Mouse–Chick. Methods in Cell Biology, 2008, 87, 59-74.	0.5	35
198	A nonneural epithelial domain of embryonic cranial neural folds gives rise to ectomesenchyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7750-7755.	3.3	40
199	Review: The Role of Neural Crest Cells in the Endocrine System. Endocrine Pathology, 2009, 20, 92-100.	5.2	51

#	Article	IF	CITATIONS
200	Expression of the Transcription Factor Snail and Its Target Gene Twist Are Associated with Malignancy in Pheochromocytomas. Annals of Surgical Oncology, 2009, 16, 1997-2005.	0.7	25
201	The Cells that Fill the Bill: Neural Crest and the Evolution of Craniofacial Development. Journal of Dental Research, 2009, 88, 12-21.	2.5	53
202	Fate map and morphogenesis of presumptive neural crest and dorsal neural tube. Developmental Biology, 2009, 330, 221-236.	0.9	60
203	The dorsal neural tube: A dynamic setting for cell fate decisions. Developmental Neurobiology, 2010, 70, 796-812.	1.5	69
204	<i>prdm1a</i> Regulates <i>sox10</i> and <i>islet1</i> in the development of neural crest and Rohonâ€Beard sensory neurons. Genesis, 2010, 48, 656-666.	0.8	39
205	Craniofacial birth defects: The role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. American Journal of Medical Genetics, Part A, 2010, 152A, 2984-2994.	0.7	153
206	Roles of bone morphogenetic protein signaling and its antagonism in holoprosencephaly. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2010, 154C, 43-51.	0.7	28
207	Use of Mutant Mouse Lines to Investigate Origin of Gonadotropin-Releasing Hormone-1 Neurons: Lineage Independent of the Adenohypophysis. Endocrinology, 2010, 151, 766-773.	1.4	21
208	Making Senses. International Review of Cell and Molecular Biology, 2010, 283, 129-234.	1.6	187
209	Neural Crest-Specific Loss of Prkar1a Causes Perinatal Lethality Resulting from Defects in Intramembranous Ossification. Molecular Endocrinology, 2010, 24, 1559-1568.	3.7	25
210	Wnt/β-Catenin Signaling in Vertebrate Posterior Neural Development. Colloquium Series on Developmental Biology, 2010, 1, 1-79.	0.2	12
211	Role of Cardiac Neural Crest Cells in Morphogenesis of the Heart and Great Vessels. , 2010, , 417-439.		2
212	Involvement of Neptune in induction of the hatching gland and neural crest in the Xenopus embryo. Differentiation, 2010, 79, 251-259.	1.0	9
213	Assembling Neural Crest Regulatory Circuits into a Gene Regulatory Network. Annual Review of Cell and Developmental Biology, 2010, 26, 581-603.	4.0	267
214	Flexibility of Neural Stem Cells. Frontiers in Physiology, 2011, 2, 16.	1.3	28
215	Specification and regionalisation of the neural plate border. European Journal of Neuroscience, 2011, 34, 1516-1528.	1.2	35
216	The emerging face of primary cilia. Genesis, 2011, 49, 231-246.	0.8	70
217	Maternal Intake of Folic Acid and Neural Crest Stem Cells. Vitamins and Hormones, 2011, 87, 143-173.	0.7	11

#	Article	IF	CITATIONS
218	FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development (Cambridge), 2012, 139, 289-300.	1.2	82
219	Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. Development (Cambridge), 2012, 139, 1175-1187.	1.2	86
220	Neural Crest–Determined Evolutionary Novelties. , 2012, , 651-686.		0
221	FGF signaling transforms non-neural ectoderm into neural crest. Developmental Biology, 2012, 372, 166-177.	0.9	45
222	The peripheral sensory nervous system in the vertebrate head: A gene regulatory perspective. Developmental Biology, 2012, 370, 3-23.	0.9	139
223	Paladin is an antiphosphatase that regulates neural crest cell formation and migration. Developmental Biology, 2012, 371, 180-190.	0.9	24
224	Current perspectives of the signaling pathways directing neural crest induction. Cellular and Molecular Life Sciences, 2012, 69, 3715-3737.	2.4	198
225	DNA Methyltransferase 3b Is Dispensable for Mouse Neural Crest Development. PLoS ONE, 2012, 7, e47794.	1.1	31
226	Polarity and segmentation. , 2012, , 23-48.		0
227	Neural crest specification: tissues, signals, and transcription factors. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 52-68.	5.9	58
228	Neural crest induction at the neural plate border in vertebrates. Developmental Biology, 2012, 366, 22-33.	0.9	143
229	Early neural crest induction requires an initial inhibition of Wnt signals. Developmental Biology, 2012, 365, 196-207.	0.9	39
230	Induction of the neural crest state: Control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Developmental Biology, 2012, 366, 10-21.	0.9	106
231	BMP-Smad 1/5/8 signalling in the development of the nervous system. Progress in Neurobiology, 2013, 109, 28-41.	2.8	137
232	Gross anatomy and development of the peripheral nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 115, 29-41.	1.0	67
233	Extracellular metalloproteinases in neural crest development and craniofacial morphogenesis. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 544-560.	2.3	19
234	Signals and Switches in Mammalian Neural Crest Cell Differentiation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008326-a008326.	2.3	191
235	Neural crest and somitic mesoderm as paradigms to investigate cell fate decisions during development. Development Growth and Differentiation, 2013, 55, 60-78.	0.6	27

ARTICLE IF CITATIONS # Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. 236 0.9 4 Developmental Biology, 2013, 382, 385-399. Dorsal aorta formation: Separate origins, lateralâ€toâ€medial migration, and remodeling. Development Growth and Differentiation, 2013, 55, 113-129. 239 Neurogenesis and Migration., 2013, , 339-361. 2 Migrating into Genomics with the Neural Crest. Advances in Biology, 2014, 2014, 1-8. 1.2 240 The neural crest lineage as a driver of disease heterogeneity in Tuberous Sclerosis Complex and 241 1.8 31 Lymphangioleiomyomatosis. Frontiers in Cell and Developmental Biology, 2014, 2, 69. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. 1.3 Frontiers in Physiology, 2014, 5, 345. 243 Neurocristopathies., 2014,, 361-394. 16 Neural crest cells: From developmental biology to clinical interventions. Birth Defects Research Part 244 3.6 26 C: Embryo Today Reviews, 2014, 102, 263-274. 245 Induction and Specification of Neural Crest Cells., 2014, , 27-49. 11 Establishing the pre-placodal region and breaking it into placodes with distinct identities. 247 153 Developmental Biology, 2014, 389, 13-27. A conserved role for non-neural ectoderm cells in early neural development. Development 248 1.2 14 (Cambridge), 2014, 141, 4127-4138. Foxi3 is necessary for the induction of the chick otic placode in response to FGF signaling. 249 49 Developmental Biology, 2014, 391, 158-169. Assessing Species-specific Contributions To Craniofacial Development Using Quail-duck Chimeras. 250 0.2 12 Journal of Visualized Experiments, 2014, , . Development of the Pre-Placodal Ectoderm and Cranial Sensory Placodes., 2015, , 331-356. Imaging the Cell and Molecular Dynamics of Craniofacial Development. Current Topics in 252 1.0 7 Developmental Biology, 2015, 115, 599-629. Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications. 1.8 28 International Journal of Molecular Sciences, 2015, 16, 30458-30469. Establishing neural crest identity: a gene regulatory recipe. Development (Cambridge), 2015, 142, 254 502 1.2 242-257. Transcriptional Regulation of Cranial Sensory Placode Development. Current Topics in Developmental Biology, 2015, 111, 301-350.

		CITATION REPORT		
#	Article		IF	CITATIONS
256	Pentimento: Neural Crest and the origin of mesectoderm. Developmental Biology, 201	5, 401, 37-61.	0.9	50
257	From classical to current: Analyzing peripheral nervous system and spinal cord lineage Developmental Biology, 2015, 398, 135-146.	and fate.	0.9	47
258	Neural Crest Specification by Inhibition of the ROCK/Myosin II Pathway. Stem Cells, 20	15, 33, 674-685.	1.4	33
259	A new role of hindbrain boundaries as pools of neural stem/progenitor cells regulated l Biology, 2016, 14, 57.	by Sox2. BMC	1.7	36
260	The molecular basis of craniofacial placode development. Wiley Interdisciplinary Review Developmental Biology, 2016, 5, 363-376.	NS:	5.9	52
261	Micrognathia in mouse models of ciliopathies. Biochemical Society Transactions, 2016	, 44, 1753-1759.	1.6	14
262	Neuroblastoma and Its Zebrafish Model. Advances in Experimental Medicine and Biolog 451-478.	ду, 2016, 916,	0.8	16
263	The Neural Crest Migrating into the Twenty-First Century. Current Topics in Developme 2016, 116, 115-134.	ental Biology,	1.0	102
264	Conversion of neural plate explants to pre-placodal ectoderm-like tissue inÂvitro. Bioch Biophysical Research Communications, 2016, 477, 807-813.	nemical and	1.0	1
265	Chlorpyrifos exposure affects <i>fgf8, sox9</i> , and <i>bmp4</i> expression required neural crest morphogenesis and chondrogenesis in <i>Xenopus laevis</i> embryos. En Molecular Mutagenesis, 2016, 57, 630-640.	for cranial vironmental and	0.9	20
266	Neural crest stem cells and their potential therapeutic applications. Developmental Bic 199-216.	ology, 2016, 419,	0.9	60
267	Grainyhead-like 2 downstream targets act to suppress EMT during neural tube closure. (Cambridge), 2016, 143, 1192-204.	. Development	1.2	51
268	Chemotaxis during neural crest migration. Seminars in Cell and Developmental Biology 111-118.	ı, 2016, 55,	2.3	56
269	WNT∫β-catenin signaling mediates human neural crest induction via a pre-neural borde Development (Cambridge), 2016, 143, 398-410.	er intermediate.	1.2	136
270	Signaling pathways and tissue interactions in neural plate border formation. Neurogen	.esis (Austin,) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
271	Grainyhead-like 2 in development and cancer. Tumor Biology, 2017, 39, 10104283176	59837.	0.8	8
272	Top-Down Inhibition of BMP Signaling Enables Robust Induction of hPSCs Into Neural Defined, Xeno-free Conditions. Stem Cell Reports, 2017, 9, 1043-1052.	Crest in Fully	2.3	73
273	Neural crest and cancer: Divergent travelers on similar paths. Mechanisms of Developr 89-99.	nent, 2017, 148,	1.7	50

#	Article	IF	CITATIONS
274	Sox2: To crest or not to crest?. Seminars in Cell and Developmental Biology, 2017, 63, 43-49.	2.3	17
275	Anatomic Origin and Molecular Genetics in Neuroblastoma. , 2017, , .		Ο
276	Neural crest delamination and migration: Looking forward to the next 150 years. Genesis, 2018, 56, e23107.	0.8	38
277	Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes and Development, 2018, 32, 165-180.	2.7	28
278	Generating retinoic acid gradients by local degradation during craniofacial development: One cell's cue is another cell's poison. Genesis, 2018, 56, e23091.	0.8	32
279	Pten regulates neural crest proliferation and differentiation during mouse craniofacial development. Developmental Dynamics, 2018, 247, 304-314.	0.8	11
280	Neural crest and the origin of speciesâ€specific pattern. Genesis, 2018, 56, e23219.	0.8	44
281	The periodic coloration in birds forms through a prepattern of somite origin. Science, 2018, 361, .	6.0	51
282	The neural border: Induction, specification and maturation of the territory that generates neural crest cells. Developmental Biology, 2018, 444, S36-S46.	0.9	72
283	Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo, 2019, 10, 17.	1.3	17
284	Self-organizing neuruloids model developmental aspects of Huntington's disease in the ectodermal compartment. Nature Biotechnology, 2019, 37, 1198-1208.	9.4	116
285	Identification of circular RNAâ€associated competing endogenous RNA network in the development of cleft palate. Journal of Cellular Biochemistry, 2019, 120, 16062-16074.	1.2	9
286	FGF Modulates the Axial Identity of Trunk hPSC-Derived Neural Crest but Not the Cranial-Trunk Decision. Stem Cell Reports, 2019, 12, 920-933.	2.3	43
287	The Neural Crest: A Remarkable Model System for Studying Development and Disease. Methods in Molecular Biology, 2019, 1976, 1-19.	0.4	4
288	Polarity and Regional Identity. , 2019, , 27-54.		0
289	Embryonic Chicken (<i>Gallus gallus domesticus</i>) as a Model of Cardiac Biology and Development. Comparative Medicine, 2019, 69, 184-203.	0.4	23
290	Integrated analysis identifying long non-coding RNAs (IncRNAs) for competing endogenous RNAs (ceRNAs) network-regulated palatal shelf fusion in the development of mouse cleft palate. Annals of Translational Medicine, 2019, 7, 762-762.	0.7	10
291	Specification and formation of the neural crest: Perspectives on lineage segregation. Genesis, 2019, 57, e23276.	0.8	59

		CITATION REPORT		
#	Article		IF	CITATIONS
292	Neural crest development: insights from the zebrafish. Developmental Dynamics, 2020,	249, 88-111.	0.8	63
293	Contribution of neural crest-derived stem cells and nasal chondrocytes to articular cartili regeneration. Cellular and Molecular Life Sciences, 2020, 77, 4847-4859.	age	2.4	11
294	Mitochondrial dysfunction interferes with neural crest specification through the FoxD3 transcription factor. Pharmacological Research, 2021, 164, 105385.		3.1	7
295	Current insights into neural crest cell development and pathologies. , 2021, , 127-137.			0
296	Quail-chick grafting experiments corroborate that Tbr1-positive eminential prethalamic r migrate along three streams into hypothalamus, subpallium and septocommissural areas Structure and Function, 2021, 226, 759-785.		1.2	6
297	Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneratio Proteome Research, 2021, 20, 2167-2181.	n. Journal of	1.8	4
298	The Role of Cell Tracing and Fate Mapping Experiments in Cardiac Outflow Tract Develop Opportunities through Emerging Technologies. Journal of Cardiovascular Development a 2021, 8, 47.	oment, New nd Disease,	0.8	2
299	An adverse outcome pathway on the disruption of retinoic acid metabolism leading to d craniofacial defects. Toxicology, 2021, 458, 152843.	evelopmental	2.0	11
300	From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Development. International Journal of Molecular Sciences, 2021, 22, 9141.	Embryonic	1.8	3
302	Neural Crest Formation and Diversification. , 2012, , 123-147.			1
303	Neural Differentiation of Human Embryonic Stem Cells and Their Potential Application in Sensorineural Hearing Loss. , 2009, , 261-282.	a Therapy for		1
304	Limited Dorsal Spinal Nondisjunctional Disorders: Limited Dorsal Myeloschisis, Congenit Dermal Sinus Tract, and Mixed Lesions. , 2020, , 2365-2422.	al Spinal		3
305	Neural Crest Cells. , 2004, , 205-218.			1
306	Cell fate decisions during the development of the peripheral nervous system in the verte Current Topics in Developmental Biology, 2020, 139, 127-167.	brate head.	1.0	16
307	Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Repro Toxicology, 2017, 72, 53-61.	ductive	1.3	68
308	Ectodermal Wnt Function as a Neural Crest Inducer. Science, 2002, 297, 848-851.		6.0	431
309	Epithelial-mesenchymal transitions: the importance of changing cell state in developmer Journal of Clinical Investigation, 2009, 119, 1438-1449.	t and disease.	3.9	1,155
310	The Embryology of Vagal Sensory Neurons. Frontiers in Neuroscience, 2005, , 3-26.		0.0	9

#	Article	IF	CITATIONS
311	Regulative response of the cranial neural tube after neural fold ablation: spatiotemporal nature of neural crest regeneration and up-regulation of <i>Slug</i> . Development (Cambridge), 1995, 121, 4103-4115.	1.2	81
312	Dorsalization of the neural tube by the non-neural ectoderm. Development (Cambridge), 1995, 121, 2099-2106.	1.2	258
313	The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Development (Cambridge), 1996, 122, 3393-3407.	1.2	158
314	Inhibition of floor plate differentiation by <i>Pax3</i> : evidence from ectopic expression in transgenic mice. Development (Cambridge), 1996, 122, 2555-2567.	1.2	55
315	A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development (Cambridge), 1996, 122, 2599-2610.	1.2	192
316	Sequence and developmental expression of <i>AmphiDll</i> , an amphioxus <i>Distalless</i> gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest. Development (Cambridge), 1996, 122, 2911-2920.	1.2	215
317	Mutations affecting neurogenesis and brain morphology in the zebrafish, <i>Danio rerio</i> . Development (Cambridge), 1996, 123, 205-216.	1.2	265
318	BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development (Cambridge), 1997, 124, 1-12.	1.2	100
319	Expression of <i>Pax-3</i> is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development (Cambridge), 1997, 124, 2075-2085.	1.2	161
320	Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue. Development (Cambridge), 1997, 124, 2477-2488.	1.2	96
321	The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development (Cambridge), 1997, 124, 2691-2700.	1.2	607
322	The role in neural patterning of translation initiation factor eIF4AII; induction of neural fold genes. Development (Cambridge), 1997, 124, 2751-2760.	1.2	80
323	Neural tube-ectoderm interactions are required for trigeminal placode formation. Development (Cambridge), 1997, 124, 4287-4295.	1.2	116
324	Neural crest induction in <i>Xenopus</i> : evidence for a two-signal model. Development (Cambridge), 1998, 125, 2403-2414.	1.2	429
325	Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development (Cambridge), 1998, 125, 3247-3258.	1.2	196
326	Effects of Shh and Noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm. Development (Cambridge), 1998, 125, 4919-4930.	1.2	116
327	A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development (Cambridge), 1998, 125, 5055-5067.	1.2	216
328	<i>Xenopus</i> Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development (Cambridge), 1998, 125, 579-587.	1.2	408

#	Article	IF	CITATIONS
329	Zebrafish <i>narrowminded</i> suggests a genetic link between formation of neural crest and primary sensory neurons. Development (Cambridge), 1999, 126, 3969-3979.	1.2	94
330	Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation. Development (Cambridge), 2000, 127, 2751-2761.	1.2	60
331	Competence, specification and commitment in otic placode induction. Development (Cambridge), 2000, 127, 3489-3499.	1.2	212
332	Dual origin and segmental organisation of the avian scapula. Development (Cambridge), 2000, 127, 3789-3794.	1.2	93
333	The fate of cells in the tailbud of <i>Xenopus laevis</i> . Development (Cambridge), 2000, 127, 255-267.	1.2	77
334	BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development (Cambridge), 2000, 127, 1095-1104.	1.2	157
335	The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development (Cambridge), 2000, 127, 1971-1980.	1.2	254
336	Requirement of <i>FoxD3</i> -class signaling for neural crest determination in <i>Xenopus</i> . Development (Cambridge), 2001, 128, 2525-2536.	1.2	207
337	The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development (Cambridge), 2001, 128, 1467-1479.	1.2	312
338	Fate map of the chicken neural plate at stage 4. Development (Cambridge), 2002, 129, 2807-2822.	1.2	83
339	The role of TGFÎ ² signaling in the formation of the dorsal nervous system is conserved betweenDrosophilaand chordates. Development (Cambridge), 2002, 129, 3575-3584.	1.2	27
340	Genetic modifiers of otocephalic phenotypes in <i>Otx2</i> heterozygous mutant mice. Development (Cambridge), 2002, 129, 4347-4357.	1.2	69
341	The transcription factor Sox9 is required for cranial neural crest development in <i>Xenopus</i> . Development (Cambridge), 2002, 129, 421-432.	1.2	244
342	Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development (Cambridge), 2002, 129, 433-442.	1.2	128
343	Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development (Cambridge), 2002, 129, 5117-5130.	1.2	137
344	Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development (Cambridge), 2002, 129, 863-873.	1.2	148
345	Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development (Cambridge), 2002, 129, 1681-1691.	1.2	115
346	An Intermediate Level of BMP Signaling Directly Specifies Cranial Neural Crest Progenitor Cells in Zebrafish. PLoS ONE, 2011, 6, e27403.	1.1	49

# 347	ARTICLE Interspecies Avian Brain Chimeras Reveal That Large Brain Size Differences Are Influenced by Cell–Interdependent Processes. PLoS ONE, 2012, 7, e42477.	IF 1.1	CITATIONS
348	Induction of Ectodermal Placodes. , 2000, , 87-97.		0
349	The Origin of the Neural Crest and Insights into Evolution of the Vertebrate Face. , 2001, , 235-240.		0
350	Experimental Embryological Methods for Analysis of Neural Induction in the Amphibian. Methods in Molecular Biology, 2008, 461, 405-446.	0.4	0
352	Modulations of Cellular Interactions During Development of the Neural Crest: Role of Growth Factors and Adhesion Molecules. Current Topics in Microbiology and Immunology, 1996, 212, 207-227.	0.7	5
353	Molecular Mechanisms Regulating the Early Development of the Vertebrate Nervous System. Handbook of Experimental Pharmacology, 1997, , 113-127.	0.9	Ο
354	Neural Crest Determination and Migration. , 2015, , 315-330.		0
355	Limited Dorsal Spinal Nondisjunctional Disorders: Limited Dorsal Myeloschisis, Congenital Spinal Dermal Sinus Tract, and Mixed Lesions. , 2019, , 1-64.		7
356	MicroRNAs as epigenetic regulators of orofacial development. Differentiation, 2022, 124, 1-16.	1.0	4
357	Comparison of Tendon Development Versus Tendon Healing and Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 821667.	1.8	14
361	Neural stemness unifies cell tumorigenicity and pluripotent differentiation potential. Journal of Biological Chemistry, 2022, 298, 102106.	1.6	5
362	Neural Crest Cell Migration. , 1998, , 225-243.		0
363	Making a head: Neural crest and ectodermal placodes in cranial sensory development. Seminars in Cell and Developmental Biology, 2023, 138, 15-27.	2.3	12
364	Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature. Developmental Dynamics, 2024, 253, 59-77.	0.8	1
365	LATS1/2 control TGFB-directed epithelial-to-mesenchymal transition in the murine dorsal cranial neuroepithelium through YAP regulation. Development (Cambridge), 2022, 149, .	1.2	3
366	Quantitative Experimental Embryology: A Modern Classical Approach. Journal of Developmental Biology, 2022, 10, 44.	0.9	3
367	Gene–environment interactions in the pathogenesis of common craniofacial anomalies. Current Topics in Developmental Biology, 2023, , 139-168.	1.0	2
370	Focal Spinal Nondisjunctional Disorders: Including a Discussion on the Embryogenesis of Cranial Focal Nondisjunctional Lesions. Advances and Technical Standards in Neurosurgery, 2023, , 65-128.	0.2	0

#	Article	IF	CITATIONS
372	Form and Function of Tissues which Undergo Mineralization. , 2023, , 71-130.		0