Activation of the unfolded protein response and autoph infection suppresses innate antiviral immunity in vitro

Journal of Clinical Investigation 121, 37-56

DOI: 10.1172/jci41474

Citation Report

#	Article	IF	CITATIONS
1	Functions of Autophagy in Hepatic and Pancreatic Physiology and Disease. Gastroenterology, 2011, 140, 1895-1908.	0.6	156
2	The Cell Biology of the Unfolded Protein Response. Gastroenterology, 2011, 141, 38-41.e2.	0.6	91
3	Autophagy in the control and pathogenesis of viral infection. Current Opinion in Virology, $2011, 1, 196-203$.	2.6	59
4	Dengue Virus and Autophagy. Viruses, 2011, 3, 1332-1341.	1.5	124
5	Changes in Autophagic Response in Patients with Chronic Hepatitis C Virus Infection. American Journal of Pathology, 2011, 178, 2708-2715.	1.9	58
6	Activation of unfolded protein response and autophagy during HCV infection modulates innate immune response. Journal of Hepatology, 2011, 55, 1150-1153.	1.8	25
7	Rab5 and Class III Phosphoinositide 3-Kinase Vps34 Are Involved in Hepatitis C Virus NS4B-Induced Autophagy. Journal of Virology, 2011, 85, 10561-10571.	1.5	136
8	Mechanisms for the anti-inflammatory effects of statins. Current Opinion in Lipidology, 2011, 22, 165-170.	1.2	196
10	Intracellular Redox Signaling as Therapeutic Target for Novel Antiviral Strategy. Current Pharmaceutical Design, 2011, 17, 3898-3904.	0.9	55
12	Virus-triggered autophagy in viral hepatitis - possible novel strategies for drug development. Journal of Viral Hepatitis, 2011, 18, 821-830.	1.0	44
13	The contribution of endoplasmic reticulum stress to liver diseases. Hepatology, 2011, 53, 1752-1763.	3.6	309
14	HCV: Written in our DNA. Self/nonself, 2011, 2, 108-113.	2.0	7
15	A Small Molecule Deubiquitinase Inhibitor Increases Localization of Inducible Nitric Oxide Synthase to the Macrophage Phagosome and Enhances Bacterial Killing. Infection and Immunity, 2011, 79, 4850-4857.	1.0	13
16	Dysfunction of Autophagy Participates in Vacuole Formation and Cell Death in Cells Replicating Hepatitis C Virus. Journal of Virology, 2011, 85, 13185-13194.	1.5	71
17	Is there a common upstream link for autophagic and apoptotic cell death in human high-grade gliomas?. Neuro-Oncology, 2011, 13, 725-735.	0.6	16
18	Impact of the Autophagy Machinery on Hepatitis C Virus Infection. Viruses, 2011, 3, 1342-1357.	1.5	46
19	Hepatitis C Virus Infection Is Blocked by HMGB1 Released from Virus-Infected Cells. Journal of Virology, 2011, 85, 9359-9368.	1.5	57
20	Antiviral Activity of a Small Molecule Deubiquitinase Inhibitor Occurs via Induction of the Unfolded Protein Response. PLoS Pathogens, 2012, 8, e1002783.	2.1	67

#	ARTICLE	IF	CITATIONS
21	Hepatitis C Virus-Induced Autophagy Is Independent of the Unfolded Protein Response. Journal of Virology, 2012, 86, 10724-10732.	1.5	51
22	Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Hepatitis C Virus Replication. PLoS Pathogens, 2012, 8, e1003056.	2.1	429
23	Hepatitis C Virus and Cellular Stress Response: Implications to Molecular Pathogenesis of Liver Diseases. Viruses, 2012, 4, 2251-2290.	1.5	67
24	Interplay between the cellular autophagy machinery and positive-stranded RNA viruses. Acta Biochimica Et Biophysica Sinica, 2012, 44, 375-384.	0.9	49
25	Replication of Hepatitis C Virus RNA on Autophagosomal Membranes. Journal of Biological Chemistry, 2012, 287, 18036-18043.	1.6	156
26	Is autophagy an avenue to modulate coxsackievirus replication and pathogenesis?. Future Microbiology, 2012, 7, 921-924.	1.0	6
27	In vivo and in vitro Leishmania amazonensis infection induces autophagy in macrophages. Tissue and Cell, 2012, 44, 401-408.	1.0	45
28	Targeting autophagy for the treatment of liver diseases. Pharmacological Research, 2012, 66, 463-474.	3.1	63
29	(+)RNA viruses rewire cellular pathways to build replication organelles. Current Opinion in Virology, 2012, 2, 740-747.	2.6	133
30	West Nile virus growth is independent of autophagy activation. Virology, 2012, 433, 262-272.	1.1	63
31	Novel Aspects of Mevalonate Pathway Inhibitors as Antitumor Agents. Clinical Cancer Research, 2012, 18, 3524-3531.	3.2	188
32	Comparison of pathways associated with hepatitis B- and C-infected hepatocellular carcinoma using pathway-based class discrimination method. Genomics, 2012, 99, 347-354.	1.3	20
33	The endoplasmic reticulum in plant immunity and cell death. Frontiers in Plant Science, 2012, 3, 200.	1.7	68
34	Autophagy is involved in the early step of Japanese encephalitis virus infection. Microbes and Infection, 2012, 14, 159-168.	1.0	84
35	Manipulation or capitulation: virus interactions with autophagy. Microbes and Infection, 2012, 14, 126-139.	1.0	95
36	The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy. Immunity, 2012, 36, 933-946.	6.6	241
37	Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication. Autophagy, 2012, 8, 1434-1447.	4.3	104
38	Autophagy Protects Cells From HCV-Induced Defects in Lipid Metabolism. Gastroenterology, 2012, 142, 644-653.e3.	0.6	66

#	ARTICLE	IF	CITATIONS
39	New targets for treatment against HCV infection. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2012, 26, 505-515.	1.0	1
40	West Nile Virus (WNV) Replication Is Independent of Autophagy in Mammalian Cells. PLoS ONE, 2012, 7, e45800.	1.1	47
41	How Human Tumor Viruses Make Use of Autophagy. Cells, 2012, 1, 617-630.	1.8	12
42	Modulation of Autophagy-Like Processes by Tumor Viruses. Cells, 2012, 1, 204-247.	1.8	14
43	Autophagy and Mechanisms of Effective Immunity. Frontiers in Immunology, 2012, 3, 60.	2.2	20
44	Virus–drug interactions—molecular insight into immunosuppression and HCV. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 355-362.	8.2	19
45	Autophagy and the Immune System. Annual Review of Immunology, 2012, 30, 611-646.	9.5	282
46	New targets for antiviral therapy of chronic hepatitis C. Liver International, 2012, 32, 9-16.	1.9	54
47	Living in the liver: hepatic infections. Nature Reviews Immunology, 2012, 12, 201-213.	10.6	451
48	Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiology Reviews, 2012, 36, 663-683.	3.9	103
49	Membrane recruitment of autophagy proteins in selective autophagy. Hepatology Research, 2012, 42, 435-441.	1.8	5
50	Activation of chemokine and inflammatory cytokine response in hepatitis C virus–infected hepatocytes depends on toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology, 2012, 55, 666-675.	3.6	156
51	Tumor-Specific Targeting With Modified Sindbis Viral Vectors: Evaluation with Optical Imaging and Positron Emission Tomography In Vivo. Molecular Imaging and Biology, 2013, 15, 166-174.	1.3	9
52	Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. Science China Life Sciences, 2013, 56, 421-430.	2.3	25
53	Interleukin-1 receptor-associated kinase M (IRAK-M) promotes human rhinovirus infection in lung epithelial cells via the autophagic pathway. Virology, 2013, 446, 199-206.	1.1	35
54	How Positive-Strand RNA Viruses Benefit from Autophagosome Maturation. Journal of Virology, 2013, 87, 9966-9972.	1.5	60
55	Dengue virus infection induces autophagy: an in vivo study. Journal of Biomedical Science, 2013, 20, 65.	2.6	67
56	The impact of macroautophagy on <scp>CD</scp> 8 ⁺ Tâ€cellâ€mediated antiviral immunity. Immunological Reviews, 2013, 255, 40-56.	2.8	20

#	Article	IF	CITATIONS
57	Innate immune responses in hepatitis C virus infection. Seminars in Immunopathology, 2013, 35, 53-72.	2.8	71
58	Pathway analysis in blood cells of pigs infected with classical swine fever virus: comparison of pigs that develop a chronic form of infection or recover. Archives of Virology, 2013, 158, 325-339.	0.9	18
59	Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nature Reviews Cancer, 2013, 13, 123-135.	12.8	688
60	Gamma interferon-inducible lysosomal thioreductase (GILT) ablation renders mouse fibroblasts sensitive to dengue virus replication. Virology, 2013, 441, 146-151.	1.1	16
61	Unfolded protein response pathways regulate Hepatitis C virus replication via modulation of autophagy. Biochemical and Biophysical Research Communications, 2013, 432, 326-332.	1.0	44
62	Hepatitis C Virus RNA Replication. Current Topics in Microbiology and Immunology, 2013, 369, 167-198.	0.7	116
63	Innate Immune Responses to Hepatitis C Virus. Current Topics in Microbiology and Immunology, 2013, 369, 219-242.	0.7	38
64	Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy, 2013, 9, 175-195.	4.3	121
65	Autophagy: A Critical Regulator of Cellular Metabolism and Homeostasis. Molecules and Cells, 2013, 36, 7-16.	1.0	270
66	Modulation of the autophagy pathway by human tumor viruses. Seminars in Cancer Biology, 2013, 23, 323-328.	4.3	47
67	Pathogen-Induced Autophagy Signaling in Innate Immunity. Journal of Innate Immunity, 2013, 5, 456-470.	1.8	35
68	IRGM in autophagy and viral infections. Frontiers in Immunology, 2013, 3, 426.	2.2	56
69	Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors. Acta Biochimica Et Biophysica Sinica, 2013, 45, 241-258.	0.9	30
70	Hepatitis C Virus Induces the Mitochondrial Translocation of Parkin and Subsequent Mitophagy. PLoS Pathogens, 2013, 9, e1003285.	2.1	157
71	Infection with Usutu Virus Induces an Autophagic Response in Mammalian Cells. PLoS Neglected Tropical Diseases, 2013, 7, e2509.	1.3	31
72	The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Research, 2013, 41, 7683-7699.	6.5	832
73	The Unfolded Protein Response in Fatty Liver Disease. Seminars in Liver Disease, 2013, 33, 321-329.	1.8	85
74	Functions of autophagy in normal and diseased liver. Autophagy, 2013, 9, 1131-1158.	4.3	384

#	Article	IF	Citations
75	Flaviviral regulation of the unfolded protein response: can stress be beneficial? Future Virology, 2013, 8, 1095-1109.	0.9	5
76	Architecture and biogenesis of plus-strand RNA virus replication factories. World Journal of Virology, 2013, 2, 32.	1.3	227
77	Japanese Encephalitis Virus Activates Autophagy as a Viral Immune Evasion Strategy. PLoS ONE, 2013, 8, e52909.	1.1	70
78	Activation of the Cellular Unfolded Protein Response by Recombinant Adeno-Associated Virus Vectors. PLoS ONE, 2013, 8, e53845.	1.1	38
79	Active RNA Replication of Hepatitis C Virus Downregulates CD81 Expression. PLoS ONE, 2013, 8, e54866.	1.1	8
80	Divergent Roles of Autophagy in Virus Infection. Cells, 2013, 2, 83-104.	1.8	158
81	Geranylgeranoic Acid Induces Incomplete Autophagy but Leads to the Accumulation of Autophagosomes in Human Hepatoma Cells., 2014,, 173-185.		1
82	Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein and Cell, 2014, 5, 912-927.	4.8	111
83	Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy, 2014, 10, 20-31.	4.3	80
84	Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy, 2014, 10, 766-784.	4.3	126
85	Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Frontiers in Microbiology, 2014, 5, 266.	1.5	116
86	Emerging Regulation and Function of Betatrophin. International Journal of Molecular Sciences, 2014, 15, 23640-23657.	1.8	65
87	ER stress, autophagy, and RNA viruses. Frontiers in Microbiology, 2014, 5, 388.	1.5	184
88	Autophagy in HCV Infection: Keeping Fat and Inflammation at Bay. BioMed Research International, 2014, 2014, 1-10.	0.9	29
89	A new paradigm: innate immune sensing of viruses via the unfolded protein response. Frontiers in Microbiology, 2014, 5, 222.	1.5	84
90	Unfolded protein response in hepatitis C virus infection. Frontiers in Microbiology, 2014, 5, 233.	1.5	57
91	The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. Frontiers in Plant Science, 2014, 5, 66.	1.7	43
92	The Role and Therapeutic Potential of Autophagy Modulation in Controlling Virusâ€Induced Cell Death. Medicinal Research Reviews, 2014, 34, 744-767.	5.0	12

#	Article	IF	CITATIONS
93	Endoplasmic Reticulum Stress Links Hepatitis C Virus RNA Replication to Wild-Type PGC-1α/Liver-Specific PGC-1α Upregulation. Journal of Virology, 2014, 88, 8361-8374.	1.5	31
94	Hepatitis C Virus Infection, Autophagy, and Innate Immune Response. , 2014, , 163-172.		1
95	Hepatitis C virus present in the sera of infected patients interferes with the autophagic process of monocytes impairing their in-vitro differentiation into dendritic cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1348-1355.	1.9	21
96	Phosphoprotein of Human Parainfluenza Virus Type 3 Blocks Autophagosome-Lysosome Fusion to Increase Virus Production. Cell Host and Microbe, 2014, 15, 564-577.	5.1	142
97	Autophagy: A Crucial Moderator of Redox Balance, Inflammation, and Apoptosis in Lung Disease. Antioxidants and Redox Signaling, 2014, 20, 474-494.	2.5	81
98	Role of intracellular events in the pathogenesis of dengue; An overview. Microbial Pathogenesis, 2014, 69-70, 45-52.	1.3	26
99	Triggering unfolded protein response by 2-Deoxy-d-glucose inhibits porcine epidemic diarrhea virus propagation. Antiviral Research, 2014, 106, 33-41.	1.9	46
100	Autophagy during early stages contributes to bovine viral diarrhea virus replication in <scp>MDBK</scp> cells. Journal of Basic Microbiology, 2014, 54, 1044-1052.	1.8	19
101	Revisiting Dengue Virus–Host Cell Interaction. Advances in Virus Research, 2014, 88, 1-109.	0.9	79
102	Hepatitis C Virus RNA Replication and Assembly: Living on the Fat of the Land. Cell Host and Microbe, 2014, 16, 569-579.	5.1	220
103	Liver autophagy: much more than just taking out the trash. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 187-200.	8.2	158
104	Suppression of Innate Antiviral Immunity after Hepatitis C Virus Infection. , 2014, , 137-159.		1
105	Hepatitis C Virus Core Protein Suppresses Mitophagy by Interacting with Parkin in the Context of Mitochondrial Depolarization. American Journal of Pathology, 2014, 184, 3026-3039.	1.9	56
106	Roles of bovine viral diarrhea virus envelope glycoproteins in inducing autophagy in MDBK cells. Microbial Pathogenesis, 2014, 76, 61-66.	1.3	10
107	Bovine viral diarrhea virus infection induces autophagy in MDBK cells. Journal of Microbiology, 2014, 52, 619-625.	1.3	28
108	RacGTPase-activating protein 1 interacts with hepatitis C virus polymerase NS5B to regulate viral replication. Biochemical and Biophysical Research Communications, 2014, 454, 19-24.	1.0	8
109	Melatonin modulates the autophagic response in acute liver failure induced by the rabbit hemorrhagic disease virus. Journal of Pineal Research, 2014, 56, 313-321.	3.4	49
110	Emerging functions of the unfolded protein response in immunity. Nature Immunology, 2014, 15, 910-919.	7.0	213

#	ARTICLE	IF	Citations
111	HCV Infection Selectively Impairs Type I but Not Type III IFN Signaling. American Journal of Pathology, 2014, 184, 214-229.	1.9	63
112	Reticulon 3 interacts with NS4B of the hepatitis C virus and negatively regulates viral replication by disrupting NS4B self-interaction. Cellular Microbiology, 2014, 16, 1603-1618.	1.1	37
115	Coxsackievirus A16 Elicits Incomplete Autophagy Involving the mTOR and ERK Pathways. PLoS ONE, 2015, 10, e0122109.	1.1	39
116	Trehalose-Mediated Autophagy Impairs the Anti-Viral Function of Human Primary Airway Epithelial Cells. PLoS ONE, 2015, 10, e0124524.	1.1	20
117	Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62. Journal of Virology, 2015, 89, 8026-8041.	1.5	100
118	Hepatitis C virus and autophagy. Biological Chemistry, 2015, 396, 1215-1222.	1.2	50
119	Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication. Cell Death and Disease, 2015, 6, e1770-e1770.	2.7	76
120	Autophagy and Hepatitis B Virus. , 2015, , 169-176.		0
121	Virus-induced double-membrane vesicles. Cellular Microbiology, 2015, 17, 45-50.	1.1	73
122	A Combined Proteomics/Genomics Approach Links Hepatitis C Virus Infection with Nonsense-Mediated mRNA Decay. Molecular Cell, 2015, 57, 329-340.	4.5	124
123	Biology of Zika Virus Infection in Human Skin Cells. Journal of Virology, 2015, 89, 8880-8896.	1.5	1,015
124	Amino acid substitutions in the non-structural proteins 4A or 4B modulate the induction of autophagy in West Nile virus infected cells independently of the activation of the unfolded protein response. Frontiers in Microbiology, 2014, 5, 797.	1.5	27
125	Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus. Veterinary Microbiology, 2015, 178, 217-229.	0.8	15
126	Catch Me If You Can: The Link between Autophagy and Viruses. PLoS Pathogens, 2015, 11, e1004685.	2.1	60
127	HCV Induces the Expression of Rubicon and UVRAG to Temporally Regulate the Maturation of Autophagosomes and Viral Replication. PLoS Pathogens, 2015, 11, e1004764.	2.1	98
128	Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clinical Microbiology and Infection, 2015, 21, 969-974.	2.8	29
129	Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Research, 2015, 209, 100-117.	1.1	38
130	Viruses and the autophagy pathway. Virology, 2015, 479-480, 450-456.	1.1	179

#	Article	IF	CITATIONS
131	Endoplasmic Reticulum Stress in Immunity. Annual Review of Immunology, 2015, 33, 107-138.	9.5	398
132	Hydroxychloroquine-Inhibited Dengue Virus Is Associated with Host Defense Machinery. Journal of Interferon and Cytokine Research, 2015, 35, 143-156.	0.5	91
133	Chaperones in hepatitis C virus infection. World Journal of Hepatology, 2016, 8, 9.	0.8	19
134	Integrated Stress Response Signaling Pathways Induced by Supraphysiological Concentrations of Thyroid Hormone Inhibit Viral Replication. Signal Transduction Insights, 2016, 5, STI.S39844.	2.0	4
135	HCV and Oxidative Stress: Implications for HCV Life Cycle and HCV-Associated Pathogenesis. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	62
136	Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication. Viruses, 2016, 8, 142.	1.5	28
137	Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response. Viruses, 2016, 8, 150.	1.5	64
138	Transgenic expression of non-structural genes of Theiler's virus suppresses initial viral replication and pathogenesis of demyelination. Journal of Neuroinflammation, 2016, 13, 133.	3.1	4
139	The Molecular Chaperone GRP78 Contributes to Toll-like Receptor 3-mediated Innate Immune Response to Hepatitis C Virus in Hepatocytes. Journal of Biological Chemistry, 2016, 291, 12294-12309.	1.6	30
140	The Autophagosomal SNARE Protein Syntaxin 17 Is an Essential Factor for the Hepatitis C Virus Life Cycle. Journal of Virology, 2016, 90, 5989-6000.	1.5	37
141	Human Choline Kinase- $\hat{l}\pm$ Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation. Journal of Virology, 2016, 90, 9075-9095.	1.5	8
142	Suppression of Host Innate Immune Response by Hepatitis C Virus via Induction of Autophagic Degradation of TRAF6. Journal of Virology, 2016, 90, 10928-10935.	1.5	40
143	Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells. Autophagy, 2016, 12, 1738-1758.	4.3	65
144	Molecular mechanisms of hepatitis C virus–induced hepatocellular carcinoma. Clinical Microbiology and Infection, 2016, 22, 853-861.	2.8	125
145	ER Stress, UPR and Virus Infections in Plants. , 2016, , 173-195.		2
146	p62/ <scp>SQSTM</scp> 1â€"Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Letters, 2016, 590, 2375-2397.	1.3	104
147	Hepatitis C Virus-Host Interactions. , 2016, , 197-233.		1
148	Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nature Reviews Microbiology, 2016, 14, 407-420.	13.6	91

#	ARTICLE	IF	CITATIONS
149	Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cellular and Molecular Immunology, 2016, 13, 11-35.	4.8	91
150	Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication. Emerging Microbes and Infections, 2016, 5, 1-12.	3.0	19
151	Membrane dynamics associated with viral infection. Reviews in Medical Virology, 2016, 26, 146-160.	3.9	38
152	Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nature Communications, 2016, 7, 10631.	5.8	57
153	New use of an old drug: chloroquine reduces viral and ALT levels in HCV non-responders (a) Tj ETQq0 0 0 rgBT /Ov Pharmacology, 2016, 94, 613-619.	erlock 10 0.7	Tf 50 587 Tc 38
154	Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway. Journal of Virology, 2016, 90, 1387-1396.	1.5	124
155	HCV infection, IFN response and the coding and non-coding host cell genome. Virus Research, 2016, 212, 85-102.	1.1	15
156	The autophagy elongation complex (ATG5-12/16L1) positively regulates HCV replication and is required for wild-type membranous web formation. Scientific Reports, 2017, 7, 40351.	1.6	56
157	Downregulation of autophagy-related gene ATG5 and GABARAP expression by IFN-λ1 contributes to its anti-HCV activity in human hepatoma cells. Antiviral Research, 2017, 140, 83-94.	1.9	16
158	The role of the unfolded protein response in dengue virus pathogenesis. Cellular Microbiology, 2017, 19, e12734.	1.1	44
159	Suppression of autophagy by mycophenolic acid contributes to inhibition of HCV replication in human hepatoma cells. Scientific Reports, 2017, 7, 44039.	1.6	16
160	Cell Death and Liver Injuries in Hepatitis C Virus Infection. , 2017, , 77-104.		0
161	Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3462-E3471.	3.3	103
162	Reestablishment of p53/Arf and interferon-β pathways mediated by a novel adenoviral vector potentiates antiviral response and immunogenic cell death. Cell Death Discovery, 2017, 3, 17017.	2.0	25
163	Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway. Autophagy, 2017, 13, 1709-1721.	4.3	22
165	TiAl6V4 particles promote osteoclast formation via autophagy-mediated downregulation of interferon-beta in osteocytes. Acta Biomaterialia, 2017, 48, 489-498.	4.1	38
166	Hepatitis C Virus-Induced Autophagy and Host Innate Immune Response. Viruses, 2017, 9, 224.	1.5	72
167	Modulation of Cell Death Pathways by Hepatitis C Virus Proteins in Huh7.5 Hepatoma Cells. International Journal of Molecular Sciences, 2017, 18, 2346.	1.8	11

#	ARTICLE	IF	CITATIONS
168	Respiratory Syncytial Virus Replication Is Promoted by Autophagy-Mediated Inhibition of Apoptosis. Journal of Virology, 2018, 92, .	1.5	69
169	Rewiring cellular networks by members of the Flaviviridae family. Nature Reviews Microbiology, 2018, 16, 125-142.	13.6	283
170	Dengue virus induced changes in Ca 2+ homeostasis in human hepatic cells that favor the viral replicative cycle. Virus Research, 2018, 245, 17-28.	1.1	31
171	Countervailing, time-dependent effects on host autophagy promote intracellular survival of Leishmania. Journal of Biological Chemistry, 2018, 293, 2617-2630.	1.6	44
172	Autophagy: The multiâ€purpose bridge in viral infections and host cells. Reviews in Medical Virology, 2018, 28, e1973.	3.9	52
173	Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy, 2018, 14, 336-346.	4.3	66
174	Autophagy activation is required for influenza A virus-induced apoptosis and replication. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 364-378.	1.9	74
175	The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions. International Journal of Molecular Sciences, 2018, 19, 3940.	1.8	46
176	Autophagy, EVs, and Infections: A Perfect Question for a Perfect Time. Frontiers in Cellular and Infection Microbiology, 2018, 8, 362.	1.8	53
177	LC3B is not recruited along with the autophagy elongation complex (ATG5-12/16L1) at HCV replication site and is dispensable for viral replication. PLoS ONE, 2018, 13, e0205189.	1.1	7
178	Virus and Autophagy: Enemies or Allies. Pancreatic Islet Biology, 2018, , 153-161.	0.1	0
179	Subversion of cellular autophagy during virus infection: Insights from hepatitis B and hepatitis C viruses. Liver Research, 2018, 2, 146-156.	0.5	17
180	Alcohol-induced autophagy via upregulation of PIASy promotes HCV replication in human hepatoma cells. Cell Death and Disease, 2018, 9, 898.	2.7	16
181	Chaperone-Mediated Autophagy Promotes Beclin1 Degradation in Persistently Infected Hepatitis C Virus Cell Culture. American Journal of Pathology, 2018, 188, 2339-2355.	1.9	18
182	Opposite Effects of Two Human ATG10 Isoforms on Replication of a HCV Sub-genomic Replicon Are Mediated via Regulating Autophagy Flux in Zebrafish. Frontiers in Cellular and Infection Microbiology, 2018, 8, 109.	1.8	8
183	Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity. Frontiers in Immunology, 2018, 9, 422.	2.2	127
184	Regulation of the Interferon Response by IncRNAs in HCV Infection. Frontiers in Microbiology, 2018, 9, 181.	1.5	14
185	Transduction with Lentiviral Vectors Altered the Expression Profile of Host MicroRNAs. Journal of Virology, 2018, 92, .	1.5	16

#	Article	IF	CITATIONS
186	Autophagy diminishes the early interferon- \hat{l}^2 response to influenza A virus resulting in differential expression of interferon-stimulated genes. Cell Death and Disease, 2018, 9, 539.	2.7	21
187	Lipid droplet density alters the early innate immune response to viral infection. PLoS ONE, 2018, 13, e0190597.	1.1	49
188	Cytomegalovirus and Autophagy. , 2018, , 9-21.		3
189	Hepatitis C virus infection increases autophagosome stability by suppressing lysosomal fusion through an Arl8b-dependent mechanism. Journal of Biological Chemistry, 2019, 294, 14257-14266.	1.6	15
190	A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells, 2019, 8, 674.	1.8	154
191	Chaperone-Mediated Autophagy in the Liver: Good or Bad?. Cells, 2019, 8, 1308.	1.8	23
192	<i>Flaviviridae</i> Viruses and Oxidative Stress: Implications for Viral Pathogenesis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	1.9	62
193	JunÃn virus induces autophagy in human A549 cells. PLoS ONE, 2019, 14, e0218730.	1.1	10
194	The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology, 2019, 533, 34-44.	1.1	54
195	Sjogren's syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clinical Immunology, 2019, 203, 81-121.	1.4	119
196	Hepatitis C virus core or NS3/4A protein expression preconditions hepatocytes against oxidative stress and endoplasmic reticulum stress. Redox Report, 2019, 24, 17-26.	1.4	15
197	Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses. Viruses, 2019, 11, 293.	1.5	12
198	Hepatitis C Virus Non-Structural Protein 5A (NS5A) Disrupts Mitochondrial Dynamics and Induces Mitophagy. Cells, 2019, 8, 290.	1.8	48
199	Crosstalk between Autophagy and Type I Interferon Responses in Innate Antiviral Immunity. Viruses, 2019, 11, 132.	1.5	64
200	The cellular stress response in hepatitis C virus infection: A balancing act to promote viral persistence and host cell survival. Virus Research, 2019, 263, 1-8.	1.1	15
201	Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. International Journal of Molecular Sciences, 2019, 20, 300.	1.8	78
202	Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. Journal of Pineal Research, 2019, 66, e12534.	3.4	124
203	Autophagy induction plays time-dependent role in viral load of HCV infected Huh7.5 cell line. IUBMB Life, 2019, 71, 41-44.	1.5	3

#	ARTICLE	IF	CITATIONS
204	Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis. Seminars in Cell and Developmental Biology, 2020, 101, 20-35.	2.3	25
205	Manipulation of autophagy by (+) RNA viruses. Seminars in Cell and Developmental Biology, 2020, 101, 3-11.	2.3	47
206	Autophagy in hepatitis B or C virus infection: An incubator and a potential therapeutic target. Life Sciences, 2020, 242, 117206.	2.0	15
207	Type I interferons and endoplasmic reticulum stress in health and disease. International Review of Cell and Molecular Biology, 2020, 350, 63-118.	1.6	53
208	Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacological Research, 2020, 161, 105218.	3.1	62
209	Eating the unknown: Xenophagy and ER-phagy are cytoprotective defenses against pathogens. Experimental Cell Research, 2020, 396, 112276.	1.2	18
210	Hepatitis C virus enhances Rubicon expression, leading to autophagy inhibition and intracellular innate immune activation. Scientific Reports, 2020, 10, 15290.	1.6	15
211	Aichi virus 3C protease modulates LC3- and SQSTM1/p62-involved antiviral response. Theranostics, 2020, 10, 9200-9213.	4.6	10
212	Taming the Autophagy as a Strategy for Treating COVID-19. Cells, 2020, 9, 2679.	1.8	52
213	Emerging relationship between RNA helicases and autophagy. Journal of Zhejiang University: Science B, 2020, 21, 767-778.	1.3	7
214	Nuclear factor-κB subunit p65 is involved in lipopolysaccharide-induced lipid accumulation via regulating DGAT1b in Ctenopharyngodon idellus kidney cells. Fish and Shellfish Immunology, 2020, 105, 71-77.	1.6	4
215	Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> by Engineering of Wnt Signaling. ACS Synthetic Biology, 2020, 9, 1638-1649.	1.9	13
216	Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Frontiers in Cell and Developmental Biology, 2020, 8, 47.	1.8	28
217	LncRNAs in HCV Infection and HCV-Related Liver Disease. International Journal of Molecular Sciences, 2020, 21, 2255.	1.8	31
218	Autophagy, Mitophagy and MicroRNA Expression in Chronic Hepatitis C and Autoimmune Hepatitis. Pathology and Oncology Research, 2020, 26, 2143-2151.	0.9	8
219	Strategies employed by viruses to manipulate autophagy. Progress in Molecular Biology and Translational Science, 2020, 172, 203-237.	0.9	17
221	Autophagy Promotes Duck Tembusu Virus Replication by Suppressing p62/SQSTM1-Mediated Innate Immune Responses In Vitro. Vaccines, 2020, 8, 22.	2.1	9
222	Autophagy Is a Potential Therapeutic Target Against Duck Tembusu Virus Infection in vivo. Frontiers in Cellular and Infection Microbiology, 2020, 10, 155.	1.8	2

#	Article	IF	CITATIONS
223	Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection. Viruses, 2020, 12, 414.	1.5	11
224	Mitophagy in the Pathogenesis of Liver Diseases. Cells, 2020, 9, 831.	1.8	48
225	Virus-Induced Cytoplasmic Aggregates and Inclusions Are Critical Cellular Regulatory and Antiviral Factors. Viruses, 2020, 12, 399.	1.5	20
226	Induction of autophagy and suppression of type I IFN secretion by CSFV. Autophagy, 2021, 17, 925-947.	4.3	39
227	Autophagy in HCV Replication and Protein Trafficking. International Journal of Molecular Sciences, 2021, 22, 1089.	1.8	11
228	Comparative Host Interactomes of the SARS-CoV-2 Nonstructural Protein 3 and Human Coronavirus Homologs. Molecular and Cellular Proteomics, 2021, 20, 100120.	2.5	15
229	The endoplasmic reticulum unfolded protein response – homeostasis, cell death and evolution in virus infections. FEMS Microbiology Reviews, 2021, 45, .	3.9	38
231	Ganoderma lucidum stimulates autophagy-dependent longevity pathways in Caenorhabditis elegans and human cells. Aging, 2021, 13, 13474-13495.	1.4	10
232	The Role of Autophagy in Murine Cytomegalovirus Hepatitis. Viral Immunology, 2021, 34, 241-255.	0.6	1
233	Metabolic reprogramming and immune regulation in viral diseases. Reviews in Medical Virology, 2022, 32, e2268.	3.9	7
234	Autophagy in liver diseases: A review. Molecular Aspects of Medicine, 2021, 82, 100973.	2.7	136
235	Antiviral Activity of Chrysin against Influenza Virus Replication via Inhibition of Autophagy. Viruses, 2021, 13, 1350.	1.5	14
236	Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate) Tj ETQq0	0.0 rgBT 4.3	Oyerlock 10
237	How to get away with liver innate immunity? A viruses' tale. Liver International, 2021, 41, 2547-2559.	1.9	1
238	MDA5 attenuate autophagy in chicken embryo fibroblasts infected with IBDV. British Poultry Science, 2022, 63, 154-163.	0.8	2
240	Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochemical Pharmacology, 2021, 193, 114764.	2.0	13
241	ATF6-DGAT pathway is involved in TLR7-induced innate immune response in Ctenopharyngodon idellus kidney cells. Developmental and Comparative Immunology, 2021, 124, 104197.	1.0	3
242	Autophagy in liver diseases. World Journal of Hepatology, 2021, 13, 6-65.	0.8	34

#	Article	IF	CITATIONS
243	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock 1	0 Jf 50 74	1,430 (editior
244	Autophagy and Viral Infection. Advances in Experimental Medicine and Biology, 2019, 1209, 55-78.	0.8	92
245	Persistent Expression of Hepatitis C Virus Non-Structural Proteins Leads to Increased Autophagy and Mitochondrial Injury in Human Hepatoma Cells. PLoS ONE, 2011, 6, e28551.	1.1	45
246	Ursolic Acid Suppresses Hepatitis B Virus X Protein-mediated Autophagy and Chemotherapeutic Drug Resistance. Anticancer Research, 2016, 36, 5097-5108.	0.5	12
247	Hepatitis C virus, mitochondria and auto/mitophagy: Exploiting a host defense mechanism. World Journal of Gastroenterology, 2014, 20, 2624.	1.4	16
248	Autophagy in hepatitis C virus-host interactions: Potential roles and therapeutic targets for liver-associated diseases. World Journal of Gastroenterology, 2014, 20, 5773.	1.4	36
249	Hepatitis C virus comes for dinner: How the hepatitis C virus interferes with autophagy. World Journal of Gastroenterology, 2015, 21, 8492.	1.4	24
250	Hepatitis B and C virus-induced hepatitis: Apoptosis, autophagy, and unfolded protein response. World Journal of Gastroenterology, 2015, 21, 13225.	1.4	63
251	Huh-7 Human Liver Cancer Cells: A Model System to Understand Hepatocellular Carcinoma and Therapy. Journal of Cancer Therapy, 2013, 04, 606-631.	0.1	18
252	Significance of Autophagy in Dengue Virus Infection: A Brief Review. American Journal of Tropical Medicine and Hygiene, 2019, 100, 783-790.	0.6	14
253	Autophagy and Immunity., 2013, , 145-165.		0
255	Innate Immune Recognition of Hepatitis C Virus. , 2016, , 299-329.		0
256	LYSOSOME-DEPENDENT DEATH OF HEPATOCYTES IN CHRONIC HEPATITIS C. Hepatology and Gastroenterology, 2020, 4, 34-44.	0.1	0
257	Characterizing the role of Tupaia DNA damage inducible transcript 3 (DDIT3) gene in viral infections. Developmental and Comparative Immunology, 2022, 127, 104307.	1.0	1
258	Autophagy and antiviral defense. IUBMB Life, 2022, 74, 317-338.	1.5	9
259	Hepatitis C virus and intracellular antiviral response. Current Opinion in Virology, 2022, 52, 244-249.	2.6	10
260	The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism. Frontiers in Microbiology, 2021, 12, 814635.	1.5	23
261	Functional characterization of BAG3 in orange-spotted grouper (Epinephelus coioides) during viral infection. Fish and Shellfish Immunology, 2022, 122, 465-475.	1.6	2

#	Article	IF	CITATIONS
262	DDIT3 antagonizes innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway. Virulence, 2022, 13, 514-529.	1.8	2
263	Host Molecules Regulating Neural Invasion of Zika Virus and Drug Repurposing Strategy. Frontiers in Microbiology, 2022, 13, 743147.	1.5	11
264	The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Frontiers in Immunology, 2022, 13, 831695.	2.2	1
265	Baicalein Activates Parkin-Dependent Mitophagy through NDP52 and OPTN. Cells, 2022, 11, 1132.	1.8	7
266	Activation of the Ca2+/NFAT Pathway by Assembly of Hepatitis C Virus Core Protein into Nucleocapsid-like Particles. Viruses, 2022, 14, 761.	1.5	0
269	Virus, Exosome, and MicroRNA: New Insights into Autophagy. Advances in Experimental Medicine and Biology, 2022, , .	0.8	12
271	In human astrocytes neurotropic flaviviruses increase autophagy, yet their replication is autophagy-independent. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	3
272	Swine acute diarrhea syndrome coronavirus induces autophagy to promote its replication via the Akt/mTOR pathway. IScience, 2022, 25, 105394.	1.9	2
273	Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases. International Journal of Molecular Sciences, 2022, 23, 15109.	1.8	5
274	Hepatocytes: A key role in liver inflammation. Frontiers in Immunology, 0, 13, .	2.2	14
275	Dengue virus induced autophagy is mediated by HMGB1 and promotes viral propagation. International Journal of Biological Macromolecules, 2023, 229, 624-635.	3.6	5
276	bta-miR-2904 inhibits bovine viral diarrhea virus replication by targeting viral-infection-induced autophagy via ATG13. Archives of Virology, 2023, 168, .	0.9	2
277	Glycoprotein Non-Metastatic Melanoma Protein B Restricts PRRSV Replication by Inhibiting Autophagosome-Lysosome Fusion. Viruses, 2023, 15, 920.	1.5	1
278	Coronavirus subverts ER-phagy by hijacking FAM134B and ATL3 into p62 condensates to facilitate viral replication. Cell Reports, 2023, 42, 112286.	2.9	12
279	Effects of Spatial Expression of Activating Transcription Factor 4 on the Pathogenicity of Two Phenotypes of Bovine Viral Diarrhea Virus by Regulating the Endoplasmic Reticulum-Mediated Autophagy Process. Microbiology Spectrum, 2023, 11, .	1.2	2
280	Crosstalk between Autophagy and RLR Signaling. Cells, 2023, 12, 956.	1.8	4
281	Comprehensive proteomic analysis of autophagosomes derived from Leishmania-infected macrophages. PLoS ONE, 2023, 18, e0284026.	1.1	0
288	Viruses and autophagy: bend, but don't break. Nature Reviews Microbiology, 0, , .	13.6	1

Article IF Citations