Neutrophil-mediated innate immune resistance to myc

Journal of Clinical Investigation 117, 1988-1994 DOI: 10.1172/jci31097

Citation Report

#	Article	IF	CITATIONS
1	Heparan Sulfate Proteoglycan–Involving Immunomodulation by Cathelicidin Antimicrobial Peptides LL-37 and PR-39. Scientific World Journal, The, 2007, 7, 1832-1838.	2.1	15
2	<i>Mycobacterium bovis</i> BCCâ€infected neutrophils and dendritic cells cooperate to induce specific T cell responses in humans and mice. European Journal of Immunology, 2008, 38, 437-447.	2.9	81
3	Innate immunity in tuberculosis: myths and truth. Microbes and Infection, 2008, 10, 995-1004.	1.9	206
4	Neutrophils recruited to the site of <i>Mycobacterium bovis</i> BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E ₂ production by macrophages. Cellular Microbiology, 2008, 10, 2589-2604.	2.1	84
5	Determinants of natural immunity against tuberculosis in an endemic setting: factors operating at the level of macrophage-Mycobacterium tuberculosis interaction. Clinical and Experimental Immunology, 2008, 151, 414-422.	2.6	10
6	Vitamin D in the treatment and prevention of tuberculosis. Expert Review of Endocrinology and Metabolism, 2008, 3, 105-107.	2.4	1
7	Expression of Cathelicidin LL-37 during <i>Mycobacterium tuberculosis</i> Infection in Human Alveolar Macrophages, Monocytes, Neutrophils, and Epithelial Cells. Infection and Immunity, 2008, 76, 935-941.	2.2	208
8	Lipocalin 2-Dependent Inhibition of Mycobacterial Growth in Alveolar Epithelium. Journal of Immunology, 2008, 181, 8521-8527.	0.8	127
9	Mice That Overexpress CC Chemokine Ligand 2 in Their Lungs Show Increased Protective Immunity to Infection with <i>Mycobacterium bovis</i> Bacille Calmetteâ€Guérin. Journal of Infectious Diseases, 2008, 198, 1044-1054.	4.0	17
10	Expression and Secretion of Cathelicidin LL-37 in Human Epithelial Cells after Infection by <i>Mycobacterium bovis</i> Bacillus Calmette-Guel r in. Vaccine Journal, 2008, 15, 1450-1455.	3.1	49
11	Update in Tuberculosis 2007. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 479-485.	5.6	32
12	Homeostatic Regulation of Blood Neutrophil Counts. Journal of Immunology, 2008, 181, 5183-5188.	0.8	244
13	Immunomodulation with Recombinant Interferon- \hat{I}^31b in Pulmonary Tuberculosis. PLoS ONE, 2009, 4, e6984.	2.5	99
14	Lipocalin 2 Is Required for Pulmonary Host Defense against <i>Klebsiella</i> Infection. Journal of Immunology, 2009, 182, 4947-4956.	0.8	194
15	Kinetics of Lethal Factor and Poly- <scp>d</scp> -Glutamic Acid Antigenemia during Inhalation Anthrax in Rhesus Macaques. Infection and Immunity, 2009, 77, 3432-3441.	2.2	63
16	Ironing Out the Wrinkles in Host Defense: Interactions between Iron Homeostasis and Innate Immunity. Journal of Innate Immunity, 2009, 1, 455-464.	3.8	53
17	Combination of Host Susceptibility and Virulence ofMycobacterium tuberculosisDetermines Dual Role of Nitric Oxide in the Protection and Control of Inflammation. Journal of Infectious Diseases, 2009, 199, 1222-1232.	4.0	32
18	High granulocyte/lymphocyte ratio and paucity of NKT cells defines TB disease in a TB-endemic setting. Tuberculosis, 2009, 89, 398-404.	1.9	68

#	Article	IF	CITATIONS
19	Combination of host susceptibility and <i>Mycobacterium tuberculosis</i> virulence define gene expression profile in the host. European Journal of Immunology, 2009, 39, 3369-3384.	2.9	23
20	1α,25â€dihydroxyvitamin D ₃ inhibits matrix metalloproteinases induced by <i>Mycobacterium tuberculosis</i> infection. Immunology, 2009, 127, 539-548.	4.4	141
21	Apoptosis and oxidative burst in neutrophils infected with Mycobacterium spp Immunology Letters, 2009, 126, 16-21.	2.5	16
22	Eliminating latent tuberculosis. Trends in Microbiology, 2009, 17, 183-188.	7.7	198
23	Cell-Mediated Immune Responses in Tuberculosis. Annual Review of Immunology, 2009, 27, 393-422.	21.8	1,030
24	Salbutamol up-regulates matrix metalloproteinase-9 in the alveolar space in the acute respiratory distress syndrome. Critical Care Medicine, 2009, 37, 2242-2249.	0.9	86
25	Mendelian randomization: potential use of genetics to enable causal inferences regarding HIV-associated biomarkers and outcomes. Current Opinion in HIV and AIDS, 2010, 5, 545-559.	3.8	7
26	When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. Journal of Leukocyte Biology, 2009, 87, 93-106.	3.3	258
27	Searching for novel intercellular signal-transducing molecules in the kidney and their clinical application. Clinical and Experimental Nephrology, 2010, 14, 523-527.	1.6	3
28	Differential activity of innate defense antimicrobial peptides against Nocardia species. BMC Microbiology, 2010, 10, 61.	3.3	18
29	Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes and Infection, 2010, 12, 1091-1101.	1.9	60
30	Guinea pig neutrophil–macrophage interactions during infection with Mycobacterium tuberculosis. Microbes and Infection, 2010, 12, 828-837.	1.9	17
31	Novel tuberculosis vaccines on the horizon. Current Opinion in Immunology, 2010, 22, 374-384.	5.5	61
32	Siderocalin inhibits the intracellular replication ofMycobacterium tuberculosisin macrophages. FEMS Immunology and Medical Microbiology, 2010, 58, 138-145.	2.7	35
33	Innate immunity to mycobacteria: vitamin D and autophagy. Cellular Microbiology, 2010, 12, 1026-1035.	2.1	85
34	The immunology of tuberculosis: From bench to bedside. Respirology, 2010, 15, 433-450.	2.3	155
35	Decrease in the Effectiveness of Bacille Calmetteâ€Guérin Vaccine against Pulmonary Tuberculosis: A Consequence of Increased Immune Suppression by Microbial Antioxidants, Not Overattenuation. Clinical Infectious Diseases, 2010, 51, 177-184.	5.8	41
36	Intracellular <i>Mycobacterium avium</i> Intersect Transferrin in the Rab11 ⁺ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway. Journal of Infectious Diseases, 2010, 201, 783-792.	4.0	64

#	Article	IF	CITATIONS
37	Global Reemergence of Tuberculosis: Are Host Defense Peptides an Option to Ameliorate Disease Burden?. Microbial Drug Resistance, 2010, 16, 1-7.	2.0	2
38	Risk factors for immune reconstitution inflammatory syndrome under combination antiretroviral therapy can be aetiology-specific. International Journal of STD and AIDS, 2010, 21, 573-579.	1.1	16
39	Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. European Respiratory Journal, 2010, 35, 1106-1112.	6.7	110
40	The Role of NK Cells in Bacterial Infections. , 2010, , 153-175.		2
41	Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection. Biochemical and Biophysical Research Communications, 2010, 396, 50-57.	2.1	28
42	The human cathelicidin hCAP18/LL-37: A multifunctional peptide involved in mycobacterial infections. Peptides, 2010, 31, 1791-1798.	2.4	100
43	Tuberculosis case-contact research in endemic tropical settings: design, conduct, and relevance to other infectious diseases. Lancet Infectious Diseases, The, 2010, 10, 723-732.	9.1	39
44	Immune Interference in <i>Mycobacterium tuberculosis</i> Intracellular Iron Acquisition through Siderocalin Recognition of Carboxymycobactins. ACS Chemical Biology, 2011, 6, 1327-1331.	3.4	27
45	Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in a lack of TLR1 cell surface expression. Journal of Leukocyte Biology, 2011, 90, 377-388.	3.3	71
46	Low serum levels of cathelicidin LL-37 in leprosy. Acta Tropica, 2011, 117, 56-59.	2.0	21
47	Lipocalin 2 regulation and its complex role in inflammation and cancer. Cytokine, 2011, 56, 435-441.	3.2	63
48	Mycobacteria-induced anaemia revisited: A molecular approach reveals the involvement of NRAMP1 and lipocalin-2, but not of hepcidin. Immunobiology, 2011, 216, 1127-1134.	1.9	29
49	Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Human Immunology, 2011, 72, 656-662.	2.4	65
50	Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19013-19017.	7.1	174
51	The secret trumps, impelling the pathogenicity of tubercle bacilli. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2011, 29, 14-19.	0.5	13
52	Tuberculosis. Lancet, The, 2011, 378, 57-72.	13.7	670
53	Antimicrobial Peptides in Innate Immunity against Mycobacteria. Immune Network, 2011, 11, 245.	3.6	47
54	Human Polymorphisms as Clinical Predictors in Leprosy. Journal of Tropical Medicine, 2011, 2011, 1-14.	1.7	9

	CHATION	LPORT	
#	Article	IF	CITATIONS
55	Development of Vaccines Against Burkholderia Pseudomallei. Frontiers in Microbiology, 2011, 2, 198.	3.5	70
56	Anti-Tuberculosis Activity of α-Helical Antimicrobial Peptides: De Novo Designed L- and D-Enantiomers Versus L- and D-LL37. Protein and Peptide Letters, 2011, 18, 241-252.	0.9	55
57	Induction of β-defensins by <scp>l</scp> -isoleucine as novel immunotherapy in experimental murine tuberculosis. Clinical and Experimental Immunology, 2011, 164, 80-89.	2.6	65
58	For better or for worse: the immune response against <i>Mycobacterium tuberculosis</i> balances pathology and protection. Immunological Reviews, 2011, 240, 235-251.	6.0	144
59	Immunology and pathogenesis of childhood TB. Paediatric Respiratory Reviews, 2011, 12, 3-8.	1.8	23
60	Lung Neutrophils Facilitate Activation of Naive Antigen-Specific CD4+ T Cells during <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2011, 186, 7110-7119.	0.8	198
61	Effects of Myeloid Differentiation Primary Response Gene 88 (MyD88) Activation on Helicobacter Infection In Vivo and Induction of a Th17 Response. Helicobacter, 2011, 16, 398-404.	3.5	23
62	The role of iron in the immune response to bacterial infection. Immunologic Research, 2011, 50, 1-9.	2.9	140
63	Clinical characteristics and outcomes of Mycobacterium tuberculosis disease in adult patients with hematological malignancies. BMC Infectious Diseases, 2011, 11, 324.	2.9	38
64	Human Lung Immunity against <i>Mycobacterium tuberculosis</i> . American Journal of Respiratory and Critical Care Medicine, 2011, 183, 696-707.	5.6	98
65	<i>Mycobacterium bovis</i> bacilli Calmette-Guerin regulates leukocyte recruitment by modulating alveolar inflammatory responses. Innate Immunity, 2012, 18, 531-540.	2.4	26
66	Old wine in new bottles: vitamin D in the treatment and prevention of tuberculosis. Proceedings of the Nutrition Society, 2012, 71, 84-89.	1.0	71
67	Current understanding of the immune response to tuberculosis in children. Current Opinion in Infectious Diseases, 2012, 25, 250-257.	3.1	39
68	Neutrophils Exert Protection in the Early Tuberculous Granuloma by Oxidative Killing of Mycobacteria Phagocytosed from Infected Macrophages. Cell Host and Microbe, 2012, 12, 301-312.	11.0	267
69	Cathepsin G and Neutrophil Elastase Contribute to Lung-Protective Immunity against Mycobacterial Infections in Mice. Journal of Immunology, 2012, 188, 4476-4487.	0.8	51
71	Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis?. Current Opinion in Microbiology, 2012, 15, 63-70.	5.1	53
72	Iron metabolism and the innate immune response to infection. Microbes and Infection, 2012, 14, 207-216.	1.9	214
73	Neutrophils in tuberculosis: friend or foe?. Trends in Immunology, 2012, 33, 14-25.	6.8	279

#	Article	IF	CITATIONS
74	Lipocalin 2 in cancer: When good immunity goes bad. Cancer Letters, 2012, 316, 132-138.	7.2	96
75	Mycobacterium tuberculosis Inhibits Neutrophil Apoptosis, Leading to Delayed Activation of Naive CD4 TAcells. Cell Host and Microbe, 2012, 11, 81-90.	11.0	154
76	Mycobacterium bovis BCG vaccine induces non-specific immune responses in Japanese flounder against Nocardia seriolae. Fish and Shellfish Immunology, 2012, 33, 243-250.	3.6	36
77	Elimination of intracellularly residingMycobacterium tuberculosisthrough targeting of host and bacterial signaling mechanisms. Expert Review of Anti-Infective Therapy, 2012, 10, 1007-1022.	4.4	16
78	<i>Mycobacterium Tuberculosis</i> Infection of the Placenta: A Study of the Early (Innate) Inflammatory Response in Two Cases. Pediatric and Developmental Pathology, 2012, 15, 132-136.	1.0	24
79	Lipocalin 2 Regulates Inflammation during Pulmonary Mycobacterial Infections. PLoS ONE, 2012, 7, e50052.	2.5	59
80	Azurophil Granule Proteins Constitute the Major Mycobactericidal Proteins in Human Neutrophils and Enhance the Killing of Mycobacteria in Macrophages. PLoS ONE, 2012, 7, e50345.	2.5	66
81	How Mycobacterium tuberculosis Manipulates Innate and Adaptive Immunity – New Views of an Old Topic. , 0, , .		5
82	Inflammation and Immunopathogenesis of Tuberculosis Progression. , 2012, , .		9
83	Comparison of interferon-γ-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection. Clinical and Experimental Immunology, 2012, 167, 317-329.	2.6	66
84	Optimization of a whole blood intracellular cytokine assay for measuring innate cell responses to mycobacteria. Journal of Immunological Methods, 2012, 376, 79-88.	1.4	16
85	Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cellular Microbiology, 2012, 14, 1109-1121.	2.1	116
86	A novel assay of antimycobacterial activity and phagocytosis by human neutrophils. Tuberculosis, 2013, 93, 167-178.	1.9	16
87	Diverse novel functions of neutrophils in immunity, inflammation, and beyond. Journal of Experimental Medicine, 2013, 210, 1283-1299.	8.5	572
88	Prominent role for T cell-derived Tumour Necrosis Factor for sustained control of Mycobacterium tuberculosis infection. Scientific Reports, 2013, 3, 1809.	3.3	108
89	Role of MHC class Ib molecule, H2-M3 in host immunity against tuberculosis. Vaccine, 2013, 31, 3818-3825.	3.8	11
90	Host-Directed Therapeutics for Tuberculosis: Can We Harness the Host?. Microbiology and Molecular Biology Reviews, 2013, 77, 608-627.	6.6	127
91	The Synthetic Cathelicidin HHC-10 InhibitsMycobacterium bovisBCGIn Vitroand in C57BL/6 Mice. Microbial Drug Resistance, 2013, 19, 124-129.	2.0	10

TION P

	CITATION	Report	
#	Article	IF	CITATIONS
92	Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Seminars in Immunopathology, 2013, 35, 439-453.	6.1	110
93	Changing world of neutrophils. Pflugers Archiv European Journal of Physiology, 2013, 465, 1521-1533.	2.8	22
94	Mice genetically inactivated in interleukinâ€17 <scp>A</scp> receptor are defective in longâ€ŧerm control of <i><scp>M</scp>ycobacterium tuberculosis</i> infection. Immunology, 2013, 140, 220-231.	4.4	61
95	HIV-1 and the immune response to TB. Future Virology, 2013, 8, 57-80.	1.8	74
96	Vitamin D Induces Interleukin-1β Expression: Paracrine Macrophage Epithelial Signaling Controls M. tuberculosis Infection. PLoS Pathogens, 2013, 9, e1003407.	4.7	198
97	B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response. PLoS Pathogens, 2013, 9, e1003472.	4.7	93
98	Neutrophilia independently predicts death in tuberculosis: Table 1–. European Respiratory Journal, 2013, 42, 1752-1757.	6.7	84
99	The Immune Response to Mycobacterium tuberculosis Infection in Humans. , 2013, , .		4
100	Two Human Host Defense Ribonucleases against Mycobacteria, the Eosinophil Cationic Protein (RNase) Tj ETO	Qq0 0 _{.0} rgBT 3.2	- Oygrlock 10
101	Blood Cells and Interferon-Gamma Levels Correlation in Latent Tuberculosis Infection. ISRN Pulmonology, 2013, 2013, 1-8.	0.3	8
102	Systems approach to tuberculosis vaccine development. Respirology, 2013, 18, 412-420.	2.3	26
103	The lack of L-PG production and the repercussions of it in regards toM. Tuberculosisinteractions with mononuclear phagocytes. Acta Microbiologica Et Immunologica Hungarica, 2013, 60, 127-144.	0.8	2
104	Vitamin D Deficiency in Medical Patients at a Central Hospital in Malawi: A Comparison with TB Patients from a Previous Study. PLoS ONE, 2013, 8, e59017.	2.5	23
105	Immune Vulnerability of Infants to Tuberculosis. Clinical and Developmental Immunology, 2013, 2013, 1-16.	3.3	59
106	Apoptotic Neutrophils Augment the Inflammatory Response to Mycobacterium tuberculosis Infection in Human Macrophages. PLoS ONE, 2014, 9, e101514.	2.5	20
107	The lack of a big picture in tuberculosis: the clinical point of view, the problems of experimental modeling and immunomodulation. The factors we should consider when designing novel treatment strategies. Frontiers in Microbiology, 2014, 5, 55.	3.5	15
108	Tuberculin skin test and interferon-gamma release assay values are associated with antimicrobial peptides expression in polymorphonuclear cells during latent tuberculous infection. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 330-334.	1.6	6

109An insight review on immunopathogenesis of bovine and human mycobacteria infections.0.3109International Journal of Medicine and Medical Sciences, 2014, 6, 42-52.	1	
--	---	--

# 110	ARTICLE IL-1α and Complement Cooperate in Triggering Local Neutrophilic Inflammation in Response to Adenovirus and Eliminating Virus-Containing Cells. PLoS Pathogens, 2014, 10, e1004035.	IF 4.7	CITATIONS
111	Striking the Right Balance Determines TB or Not TB. Frontiers in Immunology, 2014, 5, 455.	4.8	14
112	Anti-Inflammatory and Antimicrobial Actions of Vitamin D in Combating TB/HIV. Scientifica, 2014, 2014, 1-13.	1.7	50
113	Automated screening for tuberculosis by multiparametric analysis of data obtained during routine complete blood count. International Journal of Laboratory Hematology, 2014, 36, 156-164.	1.3	8
114	SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Seminars in Immunology, 2014, 26, 518-532.	5.6	59
115	Neutrophil counts in persons of African origin. Current Opinion in Hematology, 2014, 21, 50-57.	2.5	66
116	Role for Gr-1+Cells in the Control of High-Dose Mycobacterium bovis Recombinant BCG. Vaccine Journal, 2014, 21, 1120-1127.	3.1	1
117	Acute Myeloid Leukemia Presenting with Pulmonary Tuberculosis. Case Reports in Infectious Diseases, 2014, 2014, 1-4.	0.5	4
118	Polymorphism in cathelicidin gene (<i><scp>CAMP</scp></i>) that alters Hypoxiaâ€inducible factor (<scp>HIF</scp> â€lî±:: <scp>ARNT</scp>) binding is not associated with tuberculosis. International Journal of Immunogenetics, 2014, 41, 54-62.	1.8	12
119	Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis, 2014, 94, 363-373.	1.9	102
120	Early clearance of <i><scp>M</scp>ycobacterium tuberculosis</i> : a new frontier in prevention. Immunology, 2014, 141, 506-513.	4.4	143
121	Progress in tuberculosis vaccine development and host-directed therapies—a state of the art review. Lancet Respiratory Medicine,the, 2014, 2, 301-320.	10.7	195
122	Differential gene expression of activating Fcl ³ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clinical Microbiology and Infection, 2014, 20, O230-O238.	6.0	65
123	Innate Resistance to Tuberculosis in Man, Cattle and Laboratory Animal Models: Nipping Disease in the Bud?. Journal of Comparative Pathology, 2014, 151, 291-308.	0.4	32
124	Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunological Reviews, 2014, 262, 179-192.	6.0	163
125	Neutrophil gelatinase-associated lipocalin (NGAL) and insulin-like growth factor (IGF)-1 association with a Mannheimia haemolytica infection in sheep. Veterinary Immunology and Immunopathology, 2014, 161, 151-160.	1.2	1
126	Gr-1dimCD11b+ Immature Myeloid-Derived Suppressor Cells but Not Neutrophils Are Markers of Lethal Tuberculosis Infection in Mice. Journal of Immunology, 2014, 192, 4718-4727.	0.8	104
127	Biological Differences Between the Sexes and Susceptibility to Tuberculosis. Journal of Infectious Diseases, 2014, 209, S100-S106.	4.0	200

#	Article	IF	CITATIONS
128	Outbreaks of Mycobacterium tuberculosis MDR strains differentially induce neutrophil respiratory burst involving lipid rafts, p38 MAPK and Syk. BMC Infectious Diseases, 2014, 14, 262.	2.9	22
129	Cell-Autonomous Effector Mechanisms against Mycobacterium tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018507-a018507.	6.2	32
130	Functional analysis of the mRNA profile of neutrophil gelatinase-associated lipocalin overexpression in esophageal squamous cell carcinoma using multiple bioinformatic tools. Molecular Medicine Reports, 2014, 10, 1800-1812.	2.4	3
131	Intracellular Cytokine and Cathelicidin Secretion From Monocytes and Neutrophils in Childhood Tuberculosis. Pediatric Infectious Disease Journal, 2014, 33, 224-226.	2.0	5
132	Versatile myeloid cell subsets contribute to tuberculosisâ€associated inflammation. European Journal of Immunology, 2015, 45, 2191-2202.	2.9	63
133	Evolving immunological frontiers in tuberculosis. Indian Journal of Tuberculosis, 2015, 62, 139-142.	0.7	1
134	Early Exposure of Human Neutrophils to Mycobacteria Triggers Cell Damage and Pro-Inhibitory Molecules, but not Activation. , 0, , .		1
135	Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between <i>Mycobacterium tuberculosis</i> and Innate Immune Cells. Journal of Immunology Research, 2015, 2015, 1-12.	2.2	104
136	Host-Directed Therapies for Tuberculosis: Figure 1 Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021196.	6.2	104
137	Impaired CXCR1-dependent oxidative defence in active tuberculosis patients. Tuberculosis, 2015, 95, 744-750.	1.9	10
138	Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science, 2015, 347, 175-177.	12.6	138
139	The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunological Reviews, 2015, 264, 46-59.	6.0	35
140	New tricks for old dogs: countering antibiotic resistance in tuberculosis with hostâ€directed therapeutics. Immunological Reviews, 2015, 264, 344-362.	6.0	58
141	Status of vitamin D, antimicrobial peptide cathelicidin and T helper-associated cytokines in patients with diabetes mellitus and pulmonary tuberculosis. Experimental and Therapeutic Medicine, 2015, 9, 11-16.	1.8	30
142	Macrophage defense mechanisms against intracellular bacteria. Immunological Reviews, 2015, 264, 182-203.	6.0	724
143	Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunological Reviews, 2015, 264, 288-307.	6.0	287
144	Effect of Antiretroviral Therapy on HIV-mediated Impairment of the Neutrophil Antimycobacterial Response. Annals of the American Thoracic Society, 2015, 12, 1627-37.	3.2	22
145	Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology, 2015, 144, 171-185.	4.4	273

#	Article	IF	CITATIONS
146	Development of an inÂvitro model system to study the interactions between Mycobacterium marinum and teleost neutrophils. Developmental and Comparative Immunology, 2015, 53, 349-357.	2.3	13
147	The balance between protective and pathogenic immune responses in the TB-infected lung. Nature Immunology, 2015, 16, 57-63.	14.5	229
148	Serum inflammatory profiles in pulmonary tuberculosis and their association with treatment response. Journal of Proteomics, 2016, 149, 23-30.	2.4	21
149	Immunity against Mycobacterium tuberculosis: Defense strategies. Biology Bulletin Reviews, 2016, 6, 483-496.	0.9	1
150	Glibenclamide impairs responses of neutrophils against Burkholderia pseudomallei by reduction of intracellular glutathione. Scientific Reports, 2016, 6, 34794.	3.3	15
151	Innate Immune Responses to Tuberculosis. Microbiology Spectrum, 2016, 4, .	3.0	47
152	The Immune Interaction between HIV-1 Infection and Mycobacterium tuberculosis. Microbiology Spectrum, 2016, 4, .	3.0	16
153	Vitamin D as Adjunctive Host-Directed Therapy in Tuberculosis: A Systematic Review. Open Forum Infectious Diseases, 2016, 3, ofw151.	0.9	31
154	The Importance of First Impressions: Early Events in Mycobacterium tuberculosis Infection Influence Outcome. MBio, 2016, 7, e00342-16.	4.1	129
156	Beyond the skeleton: the role of vitamin D in companion animal health. Journal of Small Animal Practice, 2016, 57, 175-180.	1.2	24
157	In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine, 2016, 34, 4656-4665.	3.8	61
158	Vitamin D status predicts reproductive fitness in a wild sheep population. Scientific Reports, 2016, 6, 18986.	3.3	18
159	Brief Report: HIV-1 Infection Impairs CD16 and CD35 Mediated Opsonophagocytosis of Mycobacterium tuberculosis by Human Neutrophils. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 73, 263-267.	2.1	4
160	Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells. BMC Pulmonary Medicine, 2016, 16, 19.	2.0	49
161	Interaction between antimicrobial peptides and mycobacteria. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1034-1043.	2.6	47
162	Excessive Cytolytic Responses Predict Tuberculosis Relapse After Apparently Successful Treatment. Journal of Infectious Diseases, 2016, 213, 485-495.	4.0	34
163	Human neutrophil peptide-1 decreases during ageing in selected Mexican population. Immunologic Research, 2016, 64, 445-454.	2.9	2
164	Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Seminars in Immunopathology, 2016, 38, 153-166.	6.1	114

#	Article	IF	CITATIONS
166	Bacterial subversion of <scp>cAMP</scp> signalling inhibits cathelicidin expression, which is required for innate resistance to <i>Mycobacterium tuberculosis</i> . Journal of Pathology, 2017, 242, 52-61.	4.5	30
167	Human Immunology of Tuberculosis. Microbiology Spectrum, 2017, 5, .	3.0	101
168	Immunological consequences of strain variation within the <i>Mycobacterium tuberculosis</i> complex. European Journal of Immunology, 2017, 47, 432-445.	2.9	49
169	The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochemical and Photobiological Sciences, 2017, 16, 314-338.	2.9	77
170	M2 macrophages or IL-33 treatment attenuate ongoing Mycobacterium tuberculosis infection. Scientific Reports, 2017, 7, 41240.	3.3	37
171	Role of iron in the pathogenesis of respiratory disease. International Journal of Biochemistry and Cell Biology, 2017, 88, 181-195.	2.8	77
173	Killing <i>Mycobacterium tuberculosis In Vitro</i> : What Model Systems Can Teach Us. Microbiology Spectrum, 2017, 5, .	3.0	13
174	IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection. EBioMedicine, 2017, 23, 88-99.	6.1	60
175	Innate immunity in tuberculosis: host defense vs pathogen evasion. Cellular and Molecular Immunology, 2017, 14, 963-975.	10.5	369
	<i>InÂvivo</i> induction of neutrophil extracellular traps by <i>Mycobacterium tuberculosis</i> in a		
176	guinea pig model. Innate Immunity, 2017, 23, 625-637.	2.4	29
176 177	guinea pig model. Innate Immunity, 2017, 23, 625-637. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis. Journal of Neuroinflammation, 2017, 14, 31.	2.4	29 33
	guinea pig model. Innate Immunity, 2017, 23, 625-637. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis.		
177	guinea pig model. Innate Immunity, 2017, 23, 625-637. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis. Journal of Neuroinflammation, 2017, 14, 31. In vitro infection with Mycobacterium tuberculosis induces a distinct immunological pattern in	7.2	33
177 178	guinea pig model. Innate Immunity, 2017, 23, 625-637. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis. Journal of Neuroinflammation, 2017, 14, 31. In vitro infection with Mycobacterium tuberculosis induces a distinct immunological pattern in blood from healthy relatives of tuberculosis patients. Pathogens and Disease, 2017, 75, .	7.2	33 2
177 178 179	guinea pig model. Innate Immunity, 2017, 23, 625-637. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis. Journal of Neuroinflammation, 2017, 14, 31. In vitro infection with Mycobacterium tuberculosis induces a distinct immunological pattern in blood from healthy relatives of tuberculosis patients. Pathogens and Disease, 2017, 75, . Innate Immune Responses to Tuberculosis. , 2017, , 1-31.	7.2	33 2 0
177 178 179 180	guinea pig model. Innate Immunity, 2017, 23, 625-637. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis. Journal of Neuroinflammation, 2017, 14, 31. In vitro infection with Mycobacterium tuberculosis induces a distinct immunological pattern in blood from healthy relatives of tuberculosis patients. Pathogens and Disease, 2017, 75, . Innate Immune Responses to Tuberculosis. , 2017, , 1-31. Human Immunology of Tuberculosis. , 2017, , 213-237.	7.2	33 2 0 6
177 178 179 180 181	guinea pig model. Innate Immunity, 2017, 23, 625-637. Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis. Journal of Neuroinflammation, 2017, 14, 31. In vitro infection with Mycobacterium tuberculosis induces a distinct immunological pattern in blood from healthy relatives of tuberculosis patients. Pathogens and Disease, 2017, 75, . Innate Immune Responses to Tuberculosis. , 2017, , 1-31. Human Immunology of Tuberculosis. , 2017, , 213-237. The Immune Interaction between HIV-1 Infection andMycobacterium tuberculosis. , 2017, , 239-268.	7.2	 33 2 0 6 1

0			n	
	ΙΤΔΤ	$1 \cap N$	IVER	PORT
<u> </u>	/			

#	Article	IF	CITATIONS
185	Severe Tuberculosis in Humans Correlates Best with Neutrophil Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific CD4 T-Cell Response. Frontiers in Immunology, 2017, 8, 963.	4.8	63
186	Host-Directed Therapeutic Strategies for Tuberculosis. Frontiers in Medicine, 2017, 4, 171.	2.6	109
187	Neutrophils in Tuberculosis: Heterogeneity Shapes the Way?. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	76
188	Application of a whole blood mycobacterial growth inhibition assay to study immunity against Mycobacterium tuberculosis in a high tuberculosis burden population. PLoS ONE, 2017, 12, e0184563.	2.5	14
189	Heightened circulating levels of antimicrobial peptides in tuberculosis—Diabetes co-morbidity and reversal upon treatment. PLoS ONE, 2017, 12, e0184753.	2.5	20
190	The Immune Response to <i>Mycobacterium tuberculosis</i> in HIV-1-Coinfected Persons. Annual Review of Immunology, 2018, 36, 603-638.	21.8	85
191	Neutrophil gelatinase-associated lipocalin in patients with sarcoidosis. Respiratory Medicine, 2018, 138, S20-S23.	2.9	5
192	Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nature Medicine, 2018, 24, 130-143.	30.7	225
193	Transcriptomic Analysis of CD4+ T Cells Reveals Novel Immune Signatures of Latent Tuberculosis. Journal of Immunology, 2018, 200, 3283-3290.	0.8	43
194	Innate Cellular Immunity in Newly Diagnosed Pulmonary Tuberculosis Patients and During Chemotherapy. Annals of Global Health, 2018, 81, 669.	2.0	2
195	Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacological Research, 2018, 128, 288-305.	7.1	55
196	Vitamin D and the Skin: An Update for Dermatologists. American Journal of Clinical Dermatology, 2018, 19, 223-235.	6.7	114
197	Neutrophils: Innate Effectors of TB Resistance?. Frontiers in Immunology, 2018, 9, 2637.	4.8	59
198	Lipocalin-2 Functions as Inhibitor of Innate Resistance to Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 2717.	4.8	26
199	Coinfection with Mycobacterium tuberculosis and HIV. , 2018, , 127-144.		0
200	Early Resistance of Non-virulent Mycobacterial Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp. Frontiers in Immunology, 2018, 9, 1939.	4.8	6
201	Sera from patients with active pulmonary tuberculosis and their household contacts induce nuclear changes in neutrophils. Infection and Drug Resistance, 2018, Volume 11, 1685-1702.	2.7	3
202	The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Frontiers in Microbiology, 2018, 9, 2603.	3.5	56

#	ARTICLE Meta-Analysis Identification of Highly Robust and Differential Immune-Metabolic Signatures of	IF	CITATIONS
203	Systemic Host Response to Acute and Latent Tuberculosis in Children and Adults. Frontiers in Genetics, 2018, 9, 457.	2.3	16
204	Vitamin D and tuberculosis: where next?. Journal of Internal Medicine, 2018, 284, 145-162.	6.0	43
205	Osthole Protects against Acute Lung Injury by Suppressing NF- <i>κ</i> B-Dependent Inflammation. Mediators of Inflammation, 2018, 2018, 1-12.	3.0	30
206	<i>Galleria mellonella -</i> a novel infection model for the <i>Mycobacterium tuberculosis</i> complex. Virulence, 2018, 9, 1126-1137.	4.4	26
207	Vitamin D and Tuberculosis. , 2018, , 915-935.		4
208	Differential Effect of Viable Versus Necrotic Neutrophils on Mycobacterium tuberculosis Growth and Cytokine Induction in Whole Blood. Frontiers in Immunology, 2018, 9, 903.	4.8	40
209	Dynamic balance of pro―and antiâ€inflammatory signals controls disease and limits pathology. Immunological Reviews, 2018, 285, 147-167.	6.0	175
210	Susceptibility to Tuberculosis Is Associated With PI3K-Dependent Increased Mobilization of Neutrophils. Frontiers in Immunology, 2018, 9, 1669.	4.8	18
211	Neutrophils express pro- and anti-inflammatory cytokines in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Mucosal Immunology, 2019, 12, 1370-1381.	6.0	73
212	Early Clearance of Mycobacterium tuberculosis: The INFECT Case Contact Cohort Study in Indonesia. Journal of Infectious Diseases, 2020, 221, 1351-1360.	4.0	41
213	Understanding How BCG Vaccine Protects Against Mycobacterium tuberculosis Infection: Lessons From Household Contact Studies. Journal of Infectious Diseases, 2020, 221, 1229-1231.	4.0	5
214	Immunology of <i>Mycobacterium tuberculosis</i> Infections. Microbiology Spectrum, 2019, 7, .	3.0	152
215	Serum siderocalin levels in patients with tuberculosis and HIV infection. International Journal of Infectious Diseases, 2019, 85, 132-134.	3.3	6
216	Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections?. Pharmaceuticals, 2019, 12, 75.	3.8	22
217	Impact of selective immune-cell depletion on growth of Mycobacterium tuberculosis (Mtb) in a whole-blood bactericidal activity (WBA) assay. PLoS ONE, 2019, 14, e0216616.	2.5	4
218	Gr1int/high Cells Dominate the Early Phagocyte Response to Mycobacterial Lung Infection in Mice. Frontiers in Microbiology, 2019, 10, 402.	3.5	6
219	An Auto-luminescent Fluorescent BCG Whole Blood Assay to Enable Evaluation of Paediatric Mycobacterial Responses Using Minimal Blood Volumes. Frontiers in Pediatrics, 2019, 7, 151.	1.9	9
220	Neutrophils and Close Relatives in the Hypoxic Environment of the Tuberculous Granuloma: New Avenues for Host-Directed Therapies?. Frontiers in Immunology, 2019, 10, 417.	4.8	31

#	Article	IF	CITATIONS
221	Trained innate immunity and resistance to Mycobacterium tuberculosis infection. Clinical Microbiology and Infection, 2019, 25, 1468-1472.	6.0	74
222	Immunity to the Dual Threat of Silica Exposure and Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 3069.	4.8	25
223	Iron in Lung Pathology. Pharmaceuticals, 2019, 12, 30.	3.8	32
224	Immunology ofMycobacterium tuberculosisInfections. , 2019, , 1056-1086.		15
225	Galleria mellonella: An Infection Model for Screening Compounds Against the Mycobacterium tuberculosis Complex. Frontiers in Microbiology, 2019, 10, 2630.	3.5	20
226	Mycobacterium tuberculosis Drives Expansion of Low-Density Neutrophils Equipped With Regulatory Activities. Frontiers in Immunology, 2019, 10, 2761.	4.8	23
227	Eosinophil Polymorphonuclear Leukocytes in TB: What We Know so Far. Frontiers in Immunology, 2019, 10, 2639.	4.8	7
228	The risk of tuberculosis in cancer patients is greatest in lymphoma and myelodysplastic syndrome/myeloproliferative neoplasm: a large population-based cohort study. Leukemia and Lymphoma, 2019, 60, 720-725.	1.3	24
229	Prevalence and Determinants of QuantiFERON-Diagnosed Tuberculosis Infection in 9810 Mongolian Schoolchildren. Clinical Infectious Diseases, 2019, 69, 813-819.	5.8	30
230	The X chromosome and sex-specific effects in infectious disease susceptibility. Human Genomics, 2019, 13, 2.	2.9	271
231	Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 152-159.	2.5	56
232	Recent Developments and Future Prospects of Natural and Synthetic Antitubercular Peptide Drugs. , 2019, , 121-159.		1
233	The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty?. Cellular and Molecular Life Sciences, 2020, 77, 1497-1509.	5.4	48
234	Host defense mechanisms against Mycobacterium tuberculosis. Cellular and Molecular Life Sciences, 2020, 77, 1859-1878.	5.4	46
235	Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics, 2020, 9, 21.	3.7	28
236	Role of neutrophils in tuberculosis: A bird's eye view. Innate Immunity, 2020, 26, 240-247.	2.4	49
237	The mRNA expression of visfatin and lipocalinâ€2 in peripheral blood mononuclear cells from patients with pulmonary tuberculosis. Journal of Clinical Laboratory Analysis, 2020, 34, e23476.	2.1	1
238	Burden of Tuberculosis in South African Children During Treatment for Underlying Malignancies. Pediatric Infectious Disease Journal, 2020, 39, 1111-1115.	2.0	1

#	Article	IF	CITATIONS
239	Increased Neutrophil Count and Decreased Neutrophil CD15 Expression Correlate With TB Disease Severity and Treatment Response Irrespective of HIV Co-infection. Frontiers in Immunology, 2020, 11, 1872.	4.8	8
240	Diminished Systemic and Mycobacterial Antigen Specific Anti-microbial Peptide Responses in Low Body Mass Index–Latent Tuberculosis Co-morbidity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 165.	3.9	7
241	Towards new TB vaccines. Seminars in Immunopathology, 2020, 42, 315-331.	6.1	26
242	The immunopathogenesis of tuberculous pericarditis. Microbes and Infection, 2020, 22, 172-181.	1.9	9
243	Immune correlates of tuberculosis disease and risk translate across species. Science Translational Medicine, 2020, 12, .	12.4	52
244	Targeting immunometabolism in host defence against <i>Mycobacterium tuberculosis</i> . Immunology, 2021, 162, 145-159.	4.4	34
245	Tuberculosis vaccination needs to avoid â€~decoy' immune reactions. Tuberculosis, 2021, 126, 102021.	1.9	3
247	Unbiased Identification of Angiogenin as an Endogenous Antimicrobial Protein With Activity Against Virulent Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 618278.	3.5	10
248	Inflammatory Determinants of Differential Tuberculosis Risk in Pre-Adolescent Children and Young Adults. Frontiers in Immunology, 2021, 12, 639965.	4.8	7
249	Metabolic Regulation of Immune Responses to Mycobacterium tuberculosis: A Spotlight on L-Arginine and L-Tryptophan Metabolism. Frontiers in Immunology, 2020, 11, 628432.	4.8	16
250	BCGâ€induced protection against <i>Mycobacterium tuberculosis</i> infection: Evidence, mechanisms, and implications for nextâ€generation vaccines. Immunological Reviews, 2021, 301, 122-144.	6.0	26
251	Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. Immunity, 2021, 54, 526-541.e7.	14.3	25
252	Bovine Neutrophils Release Extracellular Traps and Cooperate With Macrophages in Mycobacterium avium subsp. paratuberculosis clearance In Vitro. Frontiers in Immunology, 2021, 12, 645304.	4.8	16
253	<i>Mycobacterium smegmatis</i> Resists the Bactericidal Activity of Hypochlorous Acid Produced in Neutrophil Phagosomes. Journal of Immunology, 2021, 206, 1901-1912.	0.8	8
254	Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. International Journal of Molecular Sciences, 2021, 22, 4801.	4.1	29
256	Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. Cell Stress, 2021, 5, 40-51.	3.2	9
257	Whole Blood Mycobacterial Growth Assays for Assessing Human Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 2021, 12, 641082.	4.8	4
258	Reduced neutrophil granular proteins and post-treatment modulation in tuberculous lymphadenitis. PLoS ONE, 2021, 16, e0253534.	2.5	0

#	Article	IF	CITATIONS
259	Mycobacterial Infection of Precision-Cut Lung Slices Reveals Type 1 Interferon Pathway Is Locally Induced by Mycobacterium bovis but Not M. tuberculosis in a Cattle Breed. Frontiers in Veterinary Science, 2021, 8, 696525.	2.2	6
260	Retention of ⁶⁴ Cu-FLFLF, a Formyl Peptide Receptor 1-Specific PET Probe, Correlates with Macrophage and Neutrophil Abundance in Lung Granulomas from Cynomolgus Macaques. ACS Infectious Diseases, 2021, 7, 2264-2276.	3.8	7
261	Parallel in vivo experimental evolution reveals that increased stress resistance was key for the emergence of persistent tuberculosis bacilli. Nature Microbiology, 2021, 6, 1082-1093.	13.3	15
262	Role of hematopoietic cells in Mycobacterium tuberculosis infection. Tuberculosis, 2021, 130, 102109.	1.9	6
263	Siderocalin Combats Mycobacterial Infections. Springer Briefs in Molecular Science, 2013, , 53-64.	0.1	1
264	CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. Journal of Clinical Investigation, 2014, 124, 1268-1282.	8.2	183
265	Dexamethasone, Cerebrospinal Fluid Matrix Metalloproteinase Concentrations and Clinical Outcomes in Tuberculous Meningitis. PLoS ONE, 2009, 4, e7277.	2.5	61
266	Blood Neutrophil Counts in HIV-Infected Patients with Pulmonary Tuberculosis: Association with Sputum Mycobacterial Load. PLoS ONE, 2013, 8, e67956.	2.5	27
267	Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathogens, 2017, 13, e1006577.	4.7	48
268	Stimulation of Nucleotide Oligomerization Domain and Toll-Like Receptors 2 to Enhance the Effect of Bacillus Calmette Guerin Immunization for Prevention of Mycobacterium Tuberculosis Infection: Protocol for a Series of Preclinical Randomized Controlled Trials. JMIR Research Protocols, 2019, 8, e13045.	1.0	2
270	Quantitative and Qualitative Perturbations of CD8+ MAITs in Healthy <i>Mycobacterium tuberculosis</i> –Infected Individuals. ImmunoHorizons, 2020, 4, 292-307.	1.8	21
271	The Role of Iron Metabolism in Lung Inflammation and Injury. Journal of Allergy & Therapy, 2012, 01, .	0.1	23
272	Role of cytokines and other factors involved in theMycobacterium tuberculosisinfection. World Journal of Immunology, 2015, 5, 16.	0.5	30
274	Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Frontiers in Microbiology, 2021, 12, 745592.	3.5	60
275	Infection and Sepsis. , 2010, , 239-274.		0
277	Antimicrobial agents and Burkholderia pseudomallei: perspectives from Thailand. Asian Biomedicine, 2014, 8, 167-172.	0.3	0
278	Vitamin D and Macrophage Functions in Tuberculosis. Macrophage, 0, , .	1.0	0
279	Cross-talk between the Immune System and Tuberculosis Pathogenesis; a Review with Emphasis on the Immune Based Treatment. International Journal of Basic Science in Medicine, 2016, 1, 40-47.	0.3	1

#	Article	IF	CITATIONS
280	Diagnostic Delay and Associated Clinical Features of Tuberculosis among Adult Patients with Acute Myeloid Leukemia in Doha, Qatar. Journal of Tuberculosis Research, 2018, 06, 49-62.	0.2	1
283	Recent Advances in the Treatment of Latent Tuberculosis Infection Among Adults Living with HIV Infection. , 2019, , 161-179.		0
286	How Far Is Vitamin D Implicated in Cutaneous Infections. Clinics in Dermatology, 2021, , .	1.6	0
290	Assessment of in vitro activities of novel modified antimicrobial peptides against clarithromycin resistant Mycobacterium abscessus. PLoS ONE, 2021, 16, e0260003.	2.5	4
291	A controversial role of neutrophils in tuberculosis infection pathogenesis. Russian Journal of Infection and Immunity, 2021, 11, 809-819.	0.7	2
292	Screening and identification of differentially expressed long non-coding RNAs in multidrug-resistant tuberculosis. PeerJ, 2022, 10, e12776.	2.0	6
293	Neutrophils in Bronchoalveolar Lavage Fluid Indicating the Severity and Relapse of Pulmonary Sarcoidosis. Frontiers in Medicine, 2021, 8, 787681.	2.6	4
294	Antimicrobial Activity of Neutrophils Against Mycobacteria. Frontiers in Immunology, 2021, 12, 782495.	4.8	15
295	Tuberculous Granuloma: Emerging Insights From Proteomics and Metabolomics. Frontiers in Neurology, 2022, 13, 804838.	2.4	9
296	It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Frontiers in Immunology, 2022, 13, 840225.	4.8	19
297	Impact of the synergistic effect of pneumonia and air pollutants on newly diagnosed pulmonary tuberculosis in southern Taiwan. Environmental Research, 2022, 212, 113215.	7.5	3
324	Hyporexia and cellular/biochemical characteristics of pleural fluid as predictive variables on a model for pleural tuberculosis diagnosis. Jornal Brasileiro De Pneumologia, 2021, 48, e20210245.	0.7	1
326	Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis Infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	8
327	Genetic and hormonal mechanisms underlying sex-specific immune responses in tuberculosis. Trends in Immunology, 2022, 43, 640-656.	6.8	11
329	Assessment of Paratuberculosis Vaccination Effect on In Vitro Formation of Neutrophil Extracellular Traps in a Sheep Model. Vaccines, 2022, 10, 1403.	4.4	2
330	Defining the role of neutrophils in the lung during infection: Implications for tuberculosis disease. Frontiers in Immunology, 0, 13, .	4.8	6
331	Serum biomarkers in patients with unilateral or bilateral active pulmonary tuberculosis: Immunological networks and promising diagnostic applications. Cytokine, 2023, 162, 156076.	3.2	1
333	Vitamin D induced microbicidal activity against Mycobacterium bovis BCG is dependent on the synergistic activity of bovine peripheral blood cell populations. Veterinary Immunology and Immunopathology 2023, 256, 110536	1.2	2

#	Article	IF	CITATIONS
334	The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Annals of Clinical Microbiology and Antimicrobials, 2023, 22, .	3.8	3
335	The efficacy of Bloso fish (Glossogobius giuris sp.) in improving hemoglobin, hematocrit, platelet, and albumin levels of Wistar rats with hypoalbuminemia. Potravinarstvo, 0, 17, 301-310.	0.6	0
336	Correlates of Protection from Tuberculosis. , 2023, , 99-137.		0
337	Association of circulating serum free bioavailable and total vitamin D with cathelicidin levels among active TB patients and household contacts. Scientific Reports, 2023, 13, .	3.3	0
339	Exploring the role of neutrophils in infectious and noninfectious pulmonary disorders. International Reviews of Immunology, 2024, 43, 41-61.	3.3	1
340	Protective Effect of BCG and Neutrophil-to-Lymphocyte Ratio on Latent Tuberculosis in End Stage Renal Disease. Infectious Diseases and Therapy, 0, , .	4.0	1
341	Neutrophil extracellular trap formation and gene programs distinguish TST/IGRA sensitization outcomes among Mycobacterium tuberculosis exposed persons living with HIV. PLoS Genetics, 2023, 19, e1010888.	3.5	1
342	MicroRNA hsa-miR-320a-3p and Its Targeted mRNA FKBP5 Were Differentially Expressed in Patients with HIV/TB Co-Infection. ACS Infectious Diseases, 0, , .	3.8	0
344	The contribution of IL-17A-dependent low LCN2 levels to Helicobacter pylori infection: Insights from clinical and experimental studies. International Immunopharmacology, 2023, 124, 110960.	3.8	0
346	Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microbial Pathogenesis, 2023, 185, 106459.	2.9	0
348	Vitamin D and tuberculosis. , 2024, , 1075-1089.		0
349	Host-directed therapy against tuberculosis: Concept and recent developments. Journal of Biosciences, 2023, 48, .	1.1	0
350	The uncharted territory of host-pathogen interaction in tuberculosis. Frontiers in Immunology, 0, 15,	4.8	0
351	Human Macrophages Activate Bystander Neutrophils' Metabolism and Effector Functions When Challenged with Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2024, 25, 2898.	4.1	Ο
352	VapC12 ribonuclease toxin modulates host immune response during Mycobacterium tuberculosis infection. Frontiers in Immunology, 0, 15, .	4.8	0