Gene therapy of metachromatic leukodystrophy revers in mice

Journal of Clinical Investigation 116, 3070-3082 DOI: 10.1172/jci28873

Citation Report

#	Article	IF	CITATIONS
1	Novel candidate disease for gene therapy: metachromatic leukodystrophy. Expert Opinion on Biological Therapy, 2007, 7, 1193-1205.	1.4	9
2	SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochemical Journal, 2007, 403, 305-312.	1.7	69
3	Safety of Arylsulfatase A Overexpression for Gene Therapy of Metachromatic Leukodystrophy. Human Gene Therapy, 2007, 18, 821-836.	1.4	47
4	MR-based imaging of neural stem cells. Neuroradiology, 2007, 49, 523-534.	1.1	42
6	Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. Journal of Inherited Metabolic Disease, 2007, 30, 175-183.	1.7	72
7	The Role and Metabolism of Sulfatide in the Nervous System. Molecular Neurobiology, 2008, 37, 93-103.	1.9	166
8	Coâ€expression of MGMT ^{P140K} and αâ€ <scp>L</scp> â€iduronidase in primary hepatocytes from mucopolysaccharidosis type I mice enables efficient selection with metabolic correction. Journal of Gene Medicine, 2008, 10, 249-259.	1.4	9
9	Cell-based drug delivery. Advanced Drug Delivery Reviews, 2008, 60, 286-295.	6.6	235
10	Metachromatic leukodystrophy: an overview of current and prospective treatments. Bone Marrow Transplantation, 2008, 42, S2-S6.	1.3	97
11	Gene therapy approaches for stem cell protection. Gene Therapy, 2008, 15, 100-108.	2.3	26
12	Metachromatic leukodystrophy: genetics, pathogenesis and therapeutic options. Acta Paediatrica, International Journal of Paediatrics, 2008, 97, 15-21.	0.7	117
13	From bone marrow to microglia: barriers and avenues. Trends in Immunology, 2008, 29, 227-234.	2.9	147
14	Gazing into the future: Parkinson's disease gene therapeutics to modify natural history. Experimental Neurology, 2008, 209, 101-113.	2.0	9
15	Early signs of neurolipidosis-related behavioural alterations in a murine model of metachromatic leukodystrophy. Behavioural Brain Research, 2008, 189, 306-316.	1.2	21
16	Patented therapeutic RNAi strategies for neurodegenerative diseases of the CNS. Expert Opinion on Therapeutic Patents, 2008, 18, 1161-1174.	2.4	6
17	Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology, 2008, 71, 1326-1334.	1.5	123
19	Applications of Lentiviral Vectors for Biology and Gene Therapy of Neurological Disorders. Current Gene Therapy, 2008, 8, 461-473.	0.9	139
20	Specific Determination of β-Galactocerebrosidase Activity via Competitive Inhibition of β-Galactosidase. Clinical Chemistry, 2009, 55, 541-548.	1.5	43

#	Article	IF	CITATIONS
21	Enzyme Replacement Improves Ataxic Gait and Central Nervous System Histopathology in a Mouse Model of Metachromatic Leukodystrophy. Molecular Therapy, 2009, 17, 600-606.	3.7	64
22	Dlg1, Sec8, and Mtmr2 Regulate Membrane Homeostasis in Schwann Cell Myelination. Journal of Neuroscience, 2009, 29, 8858-8870.	1.7	101
23	Reprogramming erythroid cells for lysosomal enzyme production leads to visceral and CNS cross-correction in mice with Hurler syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19958-19963.	3.3	49
24	Therapy for lysosomal storage disorders. IUBMB Life, 2010, 62, 33-40.	1.5	72
25	Global diffuse distribution in the brain and efficient gene delivery to the dorsal root ganglia by intrathecal injection of adenoâ€associated viral vector serotype 1. Journal of Gene Medicine, 2009, 11, 498-505.	1.4	30
26	Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy. Science, 2009, 326, 818-823.	6.0	1,368
27	Leukodystrophies. Neurologist, 2009, 15, 319-328.	0.4	82
28	Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood, 2010, 115, 5329-5337.	0.6	81
29	The galactocerebrosidase enzyme contributes to the maintenance of a functional hematopoietic stem cell niche. Blood, 2010, 116, 1857-1866.	0.6	50
30	Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood, 2010, 116, 5130-5139.	0.6	159
31	Identification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy. Science Translational Medicine, 2010, 2, 58ra84.	5.8	180
32	Multi-system disorders of glycosphingolipid and ganglioside metabolism. Journal of Lipid Research, 2010, 51, 1643-1675.	2.0	133
33	Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Human Molecular Genetics, 2010, 19, 147-158.	1.4	67
34	Brain <i>N</i> -acetylaspartate levels correlate with motor function in metachromatic leukodystrophy. Neurology, 2010, 75, 1896-1903.	1.5	37
35	Successful Treatment of Metachromatic Leukodystrophy Using Bone Marrow Transplantation of HoxB4 Overexpressing Cells. Molecular Therapy, 2010, 18, 1373-1378.	3.7	23
36	Recent Advances in Lentiviral Vector Development and Applications. Molecular Therapy, 2010, 18, 477-490.	3.7	288
37	Clinical and biochemical study of 29 Brazilian patients with metachromatic leukodystrophy. Journal of Inherited Metabolic Disease, 2010, 33, 257-262.	1.7	18
38	Macrophage-mediated GDNF Delivery Protects Against Dopaminergic Neurodegeneration: A Therapeutic Strategy for Parkinson's Disease. Molecular Therapy, 2010, 18, 1536-1544.	3.7	91

#	Article	IF	CITATIONS
39	Allogeneic stem cell transplantation does not improve neurological deficits in mucopolysaccharidosis type IIIA mice. Experimental Neurology, 2010, 225, 445-454.	2.0	30
40	Myelin lesions associated with lysosomal and peroxisomal disorders. Expert Review of Neurotherapeutics, 2010, 10, 1449-1466.	1.4	30
41	Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood, 2011, 117, e171-e181.	0.6	40
42	Magnetic Resonance Imaging Tracking of Stem Cells in Vivo Using Iron Oxide Nanoparticles as a Tool for the Advancement of Clinical Regenerative Medicine. Chemical Reviews, 2011, 111, 253-280.	23.0	385
43	Telencephalic histopathology and changes in behavioural and neural plasticity in a murine model for metachromatic leukodystrophy. Behavioural Brain Research, 2011, 222, 309-314.	1.2	3
44	Unrelated umbilical cord blood transplant for juvenile metachromatic leukodystrophy: A 5-year follow-up in three affected siblings. Molecular Genetics and Metabolism, 2011, 102, 207-209.	0.5	20
45	Gene therapy for leukodystrophies. Human Molecular Genetics, 2011, 20, R42-R53.	1.4	83
46	Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood, 2011, 117, 5332-5339.	0.6	201
47	Ex vivo gene transfer and correction for cell-based therapies. Nature Reviews Genetics, 2011, 12, 301-315.	7.7	340
48	A bidirectional promoter architecture enhances lentiviral transgenesis in embryonic and extraembryonic stem cells. Gene Therapy, 2011, 18, 817-826.	2.3	14
50	The Myelin Mutants as Models to Study Myelin Repair in the Leukodystrophies. Neurotherapeutics, 2011, 8, 607-624.	2.1	37
51	Genetic therapy for the nervous system. Human Molecular Genetics, 2011, 20, R28-R41.	1.4	62
52	Lysosomal Lipid Storage Diseases. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004804-a004804.	2.3	142
53	Stem Cell Transplantation in Inherited Metabolic Disorders. Hematology American Society of Hematology Education Program, 2011, 2011, 285-291.	0.9	38
54	Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15018-15023.	3.3	168
55	Hematopoietic Stem Cell and Gene Therapy Corrects Primary Neuropathology and Behavior in Mucopolysaccharidosis IIIA Mice. Molecular Therapy, 2012, 20, 1610-1621.	3.7	94
56	Correction of Brain Oligodendrocytes by AAVrh.10 Intracerebral Gene Therapy in Metachromatic Leukodystrophy Mice. Human Gene Therapy, 2012, 23, 903-914.	1.4	73
57	Ex Vivo Gene Therapy and Vision. Current Gene Therapy, 2012, 12, 103-115.	0.9	18

#	Article	IF	CITATIONS
58	Correction of Pathological Accumulation of Glycosaminoglycans in Central Nervous System and Peripheral Tissues of MPSIIIA Mice Through Systemic AAV9 Gene Transfer. Human Gene Therapy, 2012, 23, 1237-1246.	1.4	102
59	Developing treatment options for metachromatic leukodystrophy. Molecular Genetics and Metabolism, 2012, 105, 56-63.	0.5	41
60	Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain. Journal of Controlled Release, 2012, 162, 340-348.	4.8	32
61	Gene therapy approaches for lysosomal storage disorders, a good model for the treatment of mendelian diseases. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, 692-701.	0.7	16
62	Gene therapy for disorders of the central nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 113, 1859-1866.	1.0	4
63	Sphingolipid Disorders and the Neuronal Ceroid Lipofuscinoses or Batten Disease (Wolman Disease,) Tj ETQq1	1 0.784314	4 rgBT /Over
64	Myeloid/Microglial Driven Autologous Hematopoietic Stem Cell Gene Therapy Corrects a Neuronopathic Lysosomal Disease. Molecular Therapy, 2013, 21, 1938-1949.	3.7	96
65	Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy. Science, 2013, 341, 1233158.	6.0	998
66	The final frontier – crossing the bloodâ€brain barrier. EMBO Molecular Medicine, 2013, 5, 655-657.	3.3	10
67	Disease correction by combined neonatal intracranial AAV and systemic lentiviral gene therapy in Sanfilippo Syndrome type B mice. Gene Therapy, 2013, 20, 913-921.	2.3	33
68	Toward a gene therapy for neurological and somatic MPSIIIA. Rare Diseases (Austin, Tex), 2013, 1, e27209.	1.8	7
69	Therapy for Neuronopathic Lysosomal Storage Diseases. , 2013, , 243-258.		0
70	Advances and Pitfalls of Cell Therapy in Metabolic Leukodystrophies. Cell Transplantation, 2013, 22, 189-204.	1.2	17
71	Developing therapeutic approaches for metachromatic leukodystrophy. Drug Design, Development and Therapy, 2013, 7, 729.	2.0	42
72	Comparative Efficacy and Safety of Multiple Routes of Direct CNS Administration of Adeno-Associated Virus Gene Transfer Vector Serotype rh.10 Expressing the Human Arylsulfatase A cDNA to Nonhuman Primates. Human Gene Therapy Clinical Development, 2014, 25, 164-177.	3.2	46
73	Lentivector Integration Sites in Ependymal Cells From a Model of Metachromatic Leukodystrophy: Non-B DNA as a New Factor Influencing Integration. Molecular Therapy - Nucleic Acids, 2014, 3, e187.	2.3	13
74	Clinical Applications Involving CNS Gene Transfer. Advances in Genetics, 2014, 87, 71-124.	0.8	54
75	Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector. Gene Therapy, 2014, 21, 427-433.	2.3	32

#	Article	IF	CITATIONS
76	Metallothioneins as dynamic markers for brain disease in lysosomal disorders. Annals of Neurology, 2014, 75, 127-137.	2.8	17
77	Disease stage determines the efficacy of treatment of a paediatric neurodegenerative disease. European Journal of Neuroscience, 2014, 39, 2139-2150.	1.2	16
78	Sphingolipids and lysosomal pathologies. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 799-810.	1.2	88
79	A New Analytical Bench Assay for the Determination of Arylsulfatase A Activity Toward Galactosyl-3-Sulfate Ceramide: Implication for Metachromatic Leukodystrophy Diagnosis. Analytical Chemistry, 2014, 86, 473-481.	3.2	15
80	Gene therapy for the neurological manifestations in lysosomal storage disorders. Journal of Lipid Research, 2014, 55, 1827-1838.	2.0	22
81	New Innovations: Therapies for Genetic Conditions. Current Genetic Medicine Reports, 2014, 2, 113-123.	1.9	1
83	Sulfatide levels correlate with severity of neuropathy in metachromatic leukodystrophy. Annals of Clinical and Translational Neurology, 2015, 2, 518-533.	1.7	34
84	Recent advances in gene therapy for lysosomal storage disorders. The Application of Clinical Genetics, 2015, 8, 157.	1.4	36
85	Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15038.	1.8	29
86	Shedding of clinical-grade lentiviral vectors is not detected in a gene therapy setting. Gene Therapy, 2015, 22, 496-502.	2.3	12
87	Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Human Molecular Genetics, 2015, 24, 3372-3389.	1.4	63
88	Gene Therapy for Rare Central Nervous System Diseases Comes to Age. Endocrine Development, 2016, 30, 141-146.	1.3	9
89	Innovative Treatments for Lysosomal Diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 275-311.	2.2	24
90	Hematopoietic Stem Cell Gene Therapy Corrects Neuropathic Phenotype in Murine Model of Mucopolysaccharidosis Type II. Human Gene Therapy, 2015, 26, 357-366.	1.4	47
91	Lysosomal storage disease: Gene therapy on both sides of the blood–brain barrier. Molecular Genetics and Metabolism, 2015, 114, 83-93.	0.5	45
92	Arylsulfatase A Overexpressing Human iPSC-derived Neural Cells Reduce CNS Sulfatide Storage in a Mouse Model of Metachromatic Leukodystrophy. Molecular Therapy, 2015, 23, 1519-1531.	3.7	44
93	Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates. Human Gene Therapy Clinical Development, 2015, 26, 113-124.	3.2	68
94	Gene therapy returns to centre stage. Nature, 2015, 526, 351-360.	13.7	943

#	Article	IF	CITATIONS
95	Hematopoietic stem cell transplantation for metachromatic leukodystrophy. Expert Opinion on Orphan Drugs, 2015, 3, 911-919.	0.5	4
96	Rapid and Efficient Stable Gene Transfer to Mesenchymal Stromal Cells Using a Modified Foamy Virus Vector. Molecular Therapy, 2016, 24, 1227-1236.	3.7	10
97	Lentiviral Vector-Mediated Correction of a Mouse Model of Leukocyte Adhesion Deficiency Type I. Human Gene Therapy, 2016, 27, 668-678.	1.4	21
98	Alterations in membrane trafficking and pathophysiological implications in lysosomal storage disorders. Biochimie, 2016, 130, 152-162.	1.3	29
100	Preclinical Testing of the Safety and Tolerability of Lentiviral Vector–Mediated Above-Normal Alpha-L-Iduronidase Expression in Murine and Human Hematopoietic Cells Using Toxicology and Biodistribution Good Laboratory Practice Studies. Human Gene Therapy, 2016, 27, 813-829.	1.4	40
101	Gene therapy for metachromatic leukodystrophy. Journal of Neuroscience Research, 2016, 94, 1169-1179.	1.3	64
102	Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet, The, 2016, 388, 476-487.	6.3	393
103	Engineering Stem Cells for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 10-55.	3.9	25
104	Gene therapy for leukodystrophy: progress, challenges and opportunities. Expert Opinion on Orphan Drugs, 2016, 4, 359-367.	0.5	8
105	Modulators of microglia: a patent review. Expert Opinion on Therapeutic Patents, 2016, 26, 427-437.	2.4	23
106	Gene therapy for lysosomal storage disorders: a good start. Human Molecular Genetics, 2016, 25, R65-R75.	1.4	44
107	Outcome of Early Juvenile Onset Metachromatic Leukodystrophy After Unrelated Cord Blood Transplantation: A Case Series and Review of the Literature. Journal of Child Neurology, 2016, 31, 338-344.	0.7	18
108	Bone marrow-derived macrophages and the CNS: An update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 310-322.	1.8	43
109	Disease correction by AAV-mediated gene therapy in a new mouse model of mucopolysaccharidosis type IIID. Human Molecular Genetics, 2017, 26, 1535-1551.	1.4	39
110	Hematopoietic Stem Cell Gene Therapy for Storage Disease: Current and New Indications. Molecular Therapy, 2017, 25, 1155-1162.	3.7	68
111	Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Human Gene Therapy, 2017, 28, 988-1003.	1.4	82
112	Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells. Science Advances, 2017, 3, e1701211.	4.7	38
113	Current and Future Treatments for Lysosomal Storage Disorders. Current Treatment Options in Neurology, 2017, 19, 45.	0.7	9

#	Article	IF	CITATIONS
114	Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. Journal of Inherited Metabolic Disease, 2017, 40, 543-554.	1.7	67
115	Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Italian Journal of Pediatrics, 2018, 44, 130.	1.0	38
116	Nonclinical comparability studies of recombinant human arylsulfatase A addressing manufacturing process changes. PLoS ONE, 2018, 13, e0195186.	1.1	8
117	Gene-Based Approaches to Inherited Neurometabolic Diseases. Human Gene Therapy, 2019, 30, 1222-1235.	1.4	28
118	Peripheral neuropathy in metachromatic leukodystrophy: current status and future perspective. Orphanet Journal of Rare Diseases, 2019, 14, 240.	1.2	54
119	Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opinion on Orphan Drugs, 2019, 7, 473-500.	0.5	20
120	Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Molecular Medicine, 2019, 11, .	3.3	86
121	Autologous, Gene-Modified Hematopoietic Stem and Progenitor Cells Repopulate the Central Nervous System with Distinct Clonal Variants. Stem Cell Reports, 2019, 13, 91-104.	2.3	10
122	Assessing the Impact of Cyclosporin A on Lentiviral Transduction and Preservation of Human Hematopoietic Stem Cells in Clinically RelevantEx VivoGene Therapy Settings. Human Gene Therapy, 2019, 30, 1133-1146.	1.4	8
123	Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nature Reviews Drug Discovery, 2019, 18, 447-462.	21.5	141
124	Lysosomal Leukodystrophies Lysosomal Storage Diseases Associated With White Matter Abnormalities. Journal of Child Neurology, 2019, 34, 339-358.	0.7	14
125	Long-Term Persistence of Anti-HIV Broadly Neutralizing Antibody-Secreting Hematopoietic Cells in Humanized Mice. Molecular Therapy, 2019, 27, 164-177.	3.7	25
126	The influence of environment and origin on brain resident macrophages and implications for therapy. Nature Neuroscience, 2020, 23, 157-166.	7.1	74
127	Metabolism of Glycosphingolipids and Their Role in the Pathophysiology of Lysosomal Storage Disorders. International Journal of Molecular Sciences, 2020, 21, 6881.	1.8	34
128	Lentiviral Hematopoietic Stem Cell Gene Therapy Rescues Clinical Phenotypes in a Murine Model of Pompe Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 558-570.	1.8	11
129	In vitro Validation of Chimeric β-Galactosylceramidase Enzymes With Improved Enzymatic Activity and Increased Secretion. Frontiers in Molecular Biosciences, 2020, 7, 167.	1.6	6
130	Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Frontiers in Medicine, 2020, 7, 576221.	1.2	56
131	Gene therapy approaches in central nervous system regenerative medicine. , 2020, , 375-398.		0

		CITATION REPORT		
#	Article		IF	Citations
132	The Role of Hematopoietic Cell Transplant in the Glycoprotein Diseases. Cells, 2020, 9	, 1411.	1.8	14
133	Experimental gene therapies for the NCLs. Biochimica Et Biophysica Acta - Molecular B 2020, 1866, 165772.	asis of Disease,	1.8	11
134	Chinese Cases of Metachromatic Leukodystrophy with the Novel Missense Mutations Journal of Molecular Neuroscience, 2021, 71, 245-251.	in ARSA Gene.	1,1	2
135	Update on Clinical ExÂVivo Hematopoietic Stem Cell Gene Therapy for Inherited Monc Molecular Therapy, 2021, 29, 489-504.	genic Diseases.	3.7	46
136	Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Develop Biomolecules, 2021, 11, 611.	nent.	1.8	27
137	Canavan Disease as a Model for Gene Therapy-Mediated Myelin Repair. Frontiers in Ce Neuroscience, 2021, 15, 661928.	lular	1.8	11
138	Functional rescue in an Angelman syndrome model following treatment with lentivect hematopoietic stem cells. Human Molecular Genetics, 2021, 30, 1067-1083.	or transduced	1.4	25
139	The transformative potential of HSC gene therapy as a genetic medicine. Gene Therap	y, 2023, 30, 197-215.	2.3	13
140	Safety of Direct Intraparenchymal AAVrh.10-Mediated Central Nervous System Gene T Metachromatic Leukodystrophy. Human Gene Therapy, 2021, 32, 563-580.	herapy for	1.4	18
141	Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Frontier Biosciences, 2021, 8, 624988.	s in Molecular	1.6	21
143	Hematopoietic Stem Cell Gene Therapy for Lysosomal Storage Disorders: Expected Be Limitations. Pancreatic Islet Biology, 2013, , 127-138.	nefits and	0.1	1
144	Transplantation of Oligodendrocyte Progenitor Cells in Animal Models of Leukodystro Methods in Molecular Biology, 2009, 549, 175-185.	phies.	0.4	6
145	Microglia: a cellular vehicle for CNS gene therapy. Journal of Clinical Investigation, 200 2857-2860.	6, 116,	3.9	33
146	Gene therapy for severe combined immunodeficiency: are we there yet?. Journal of Clir Investigation, 2007, 117, 1456-1465.	nical	3.9	196
147	Gene Therapy Corrects Mitochondrial Dysfunction in Hematopoietic Progenitor Cells a from Coq9R239X Mice. PLoS ONE, 2016, 11, e0158344.	nd Fibroblasts	1.1	2
148	Treatment for Lysosomal Storage Disorders. Current Pharmaceutical Design, 2020, 26	, 5110-5118.	0.9	12
149	Endocytic mechanisms and drug discovery in neurodegenerative diseases. Frontiers in Landmark, 2008, Volume, 6086.	Bioscience -	3.0	7
150	Stem Cell Research Tools in Human Metabolic Disorders: An Overview. Cells, 2021, 10	, 2681.	1.8	5

#	ARTICLE General Forensic Neuropathology of Infants and Children., 2008., 247-341.	IF	CITATIONS
153	Leukodystrophies and Lysosomal Storage Disorders. Pancreatic Islet Biology, 2013, , 63-125.	0.1	2
155	Molecular Therapy for Lysosomal Storage Diseases. , 0, , .		0
156	Mitochondrial neurogastrointestinal encephalomyopathy syndrome: case report. Balıkesir Sağlık Bilimleri Dergisi, 2014, 3, 114-117.	0.0	0
157	General Forensic Neuropathology of Infants and Children. , 2014, , 263-362.		0
158	Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases and Its Implications for Future Gene Therapy Trials in Turke. Trakya University Journal of Natural Sciences, 0, , .	0.4	0
160	Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. Advances in Experimental Medicine and Biology, 2021, , 135-162.	0.8	3
161	Gene Therapy Developments for Pompe Disease. Biomedicines, 2022, 10, 302.	1.4	19
162	Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet, The, 2022, 399, 372-383.	6.3	109
163	A Mutation-Agnostic Hematopoietic Stem Cell Gene Therapy for Metachromatic Leukodystrophy. CRISPR Journal, 2022, 5, 66-79.	1.4	8
165	Delineating the Neuropathology of Lysosomal Storage Diseases Using Patient-Derived Induced Pluripotent Stem Cells. Stem Cells and Development, 2022, 31, 221-238.	1.1	2
169	Genetic Manipulation of Hematopoietic Stem Cells. , 0, , 116-128.		0
170	Hematopoietic stem cell gene therapy ameliorates CNS involvement in murine model of GM1-gangliosidosis. Molecular Therapy - Methods and Clinical Development, 2022, 25, 448-460.	1.8	4
171	Haematopoietic stem cell gene therapy in inborn errors of metabolism. British Journal of Haematology, 2022, 198, 227-243.	1.2	5
172	New Indications for Hematopoietic Stem Cell Gene Therapy in Lysosomal Storage Disorders. Frontiers in Oncology, 2022, 12, .	1.3	6
173	High-throughput analysis of hematopoietic stem cell engraftment after intravenous and intracerebroventricular dosing. Molecular Therapy, 2022, 30, 3209-3225.	3.7	4
174	Gene Therapy for Pediatric Neurologic Disease. Hematology/Oncology Clinics of North America, 2022, ,	0.9	0
175	Genetically modified macrophages accelerate myelin repair. EMBO Molecular Medicine, 2022, 14, .	3.3	9

#	Article	IF	CITATIONS
176	Mammalian Sulfatases: Biochemistry, Disease Manifestation, and Therapy. International Journal of Molecular Sciences, 2022, 23, 8153.	1.8	6
177	The therapeutic potential of bone marrowâ€derived macrophages in neurological diseases. CNS Neuroscience and Therapeutics, 2022, 28, 1942-1952.	1.9	8
178	Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: the more, the merrier?. Brain, 2022, 145, 4178-4192.	3.7	15
179	Screening chimeric GAA variants in preclinical study results in hematopoietic stem cell gene therapy candidate vectors for Pompe disease. Molecular Therapy - Methods and Clinical Development, 2022, 27, 464-487.	1.8	4
180	Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Molecular Therapy, 2023, 31, 657-675.	3.7	2
181	Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Frontiers in Genome Editing, 0, 4, .	2.7	2
182	Preserving Ambulation in a Gene Therapy-Treated Girl Affected by Metachromatic Leukodystrophy: A Case Report. Journal of Personalized Medicine, 2023, 13, 637.	1.1	1
183	Gene Therapy of Sphingolipid Metabolic Disorders. International Journal of Molecular Sciences, 2023, 24, 3627.	1.8	6
184	New therapeutic strategies for the treatment of metachromatic leukodystrophy. Genes and Cells, 2020, 15, 41-50.	0.2	1
185	An innovative hematopoietic stem cell gene therapy approach benefits <scp>CLN1</scp> disease in the mouse model. EMBO Molecular Medicine, 2023, 15, .	3.3	3
186	<i>Ex vivo</i> gene therapy for lysosomal storage disorders: future perspectives. Expert Opinion on Biological Therapy, 2023, 23, 353-364.	1.4	1
187	Single Systemic Administration of a Gene Therapy Leading to Disease Treatment in Metachromatic Leukodystrophy <i>Arsa</i> Knock-Out Mice. Journal of Neuroscience, 2023, 43, 3567-3581.	1.7	1
188	Advances in therapies for neurological lysosomal storage disorders. Journal of Inherited Metabolic Disease, 2023, 46, 874-905.	1.7	10