Differences in glucose recognition by individual rat pan intercellular differences in glucose-induced biosynthet

Journal of Clinical Investigation 89, 117-125 DOI: 10.1172/jci115551

Citation Report

#	Article	IF	CITATIONS
1	Immunocytochemical localization of alpha-protein kinase C in rat pancreatic beta-cells during glucose-induced insulin secretion Journal of Cell Biology, 1992, 119, 313-324.	2.3	79
2	Pancreatic beta cells in insulinâ€dependent diabetes. Diabetes/metabolism Reviews, 1992, 8, 209-227.	0.2	127
3	Effect of streptozotocin and nicotinamide upon FAD-glycerophosphate dehydrogenase activity and insulin release in purified pancreatic B-cells. Molecular and Cellular Biochemistry, 1993, 120, 135-140.	1.4	15
4	βâ€cell GLUTâ€2 loss and nonâ€insulinâ€dependent diabetes mellitus: Current status of the hypothesis. Diabetes/metabolism Reviews, 1993, 9, 231-236.	0.2	9
5	Islet Amyloid Polypeptide: A Review of Its Biology and Potential Roles in the Pathogenesis of Diabetes Mellitus. Veterinary Pathology, 1993, 30, 317-332.	0.8	100
6	Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Molecular and Cellular Endocrinology, 1993, 94, 9-20.	1.6	155
7	Muscarinic modulation of insulin secretion by single pancreatic β-cells. Molecular and Cellular Endocrinology, 1993, 93, 63-69.	1.6	19
8	B-cell size influences glucose-stimulated insulin secretion. American Journal of Physiology - Cell Physiology, 1993, 265, C358-C364.	2.1	58
9	Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport EMBO Journal, 1993, 12, 2873-2879.	3.5	153
10	Preservation of glucose-responsive islet beta-cells during serum-free culture Endocrinology, 1994, 134, 2614-2621.	1.4	38
11	Immunocytochemical and ultrastructural heterogeneities of normal and glibenclamide stimulated pancreatic beta cells in the rat. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1994, 425, 305-13.	1.4	23
12	Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia, 1994, 37, S57-S64.	2.9	145
13	Irreversible loss of normal beta-cell regulation by glucose in neonatally streptozotocin diabetic rats. Diabetologia, 1994, 37, 351-357.	2.9	19
14	Stimulatory Effect of a Sulfonylurea Analog and Its Polymer Conjugate on Insulin Secretion from Rat Islets. Biotechnology Progress, 1994, 10, 630-635.	1.3	11
15	Heterogeneous secretion of individual B cells in response to D-glucose and to nonglucidic nutrient secretagogues. American Journal of Physiology - Cell Physiology, 1995, 268, C611-C618.	2.1	27
16	The vitamin-E derivative U-83836-E in the low-dose streptozocin-treated mouse: effects on diabetes development. Diabetes Research and Clinical Practice, 1995, 30, 163-171.	1.1	4
17	Pancreatic islet B-cell individual variability rather than subpopulation heterogeneity. Molecular and Cellular Endocrinology, 1996, 118, 163-171.	1.6	10
18	Islet amyloid polypeptide and insulin gene expression are regulated in parallel by glucose in vivo in rats. American Journal of Physiology - Endocrinology and Metabolism, 1996, 271, E1008-E1014.	1.8	34

\mathbf{C}	TATI	ON	DEDC	NDT.
	LAH	ΟN	Repo	жт

#	Article	IF	CITATIONS
19	Quantitative Subcellular Imaging of Glucose Metabolism within Intact Pancreatic Islets. Journal of Biological Chemistry, 1996, 271, 3647-3651.	1.6	193
20	Individual β Cells within the Intact Islet Differentially Respond to Glucose. Journal of Biological Chemistry, 1997, 272, 26573-26577.	1.6	55
21	Metabolic Fate of Glucose in Purified Islet Cells. Journal of Biological Chemistry, 1997, 272, 18572-18579.	1.6	380
22	Is GLUT2 required for glucose sensing?. Diabetologia, 1997, 40, 104-111.	2.9	40
23	Ultrastructural and secretory heterogeneity of fa/fa (Zucker) rat islets. Molecular and Cellular Endocrinology, 1998, 136, 119-129.	1.6	16
24	Intercellular Differences in Interleukin 1^2 -Induced Suppression of Insulin Synthesis and Stimulation of Noninsulin Protein Synthesis by Rat Pancreatic 2 -Cells [*] . Endocrinology, 1998, 139, 1540-1545.	1.4	39
25	Effect of Glucose on Production and Release of Proinsulin Conversion Products by Cultured Human Islets1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1234-1238.	1.8	7
26	Glucose-induced pulsatile insulin release from single islets at stable and oscillatory cytoplasmic Ca ²⁺ . American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E796-E800.	1.8	26
27	Expression and Regulation of Glucokinase in Rat Islet \hat{I}^2 - and $\hat{I}\pm$ -Cells during Development*. Endocrinology, 1999, 140, 3762-3766.	1.4	20
28	β-Cell Dysfunction and Death. Advances in Molecular and Cell Biology, 1999, 29, 47-73.	0.1	4
29	Cellular Origin of Hexokinase in Pancreatic Islets. Journal of Biological Chemistry, 1999, 274, 32803-32809.	1.6	52
30	Unbiased estimation of total βâ€cell number and mean βâ€cell volume in rodent pancreas. Apmis, 1999, 107, 791-799.	0.9	42
31	Real-time Analysis of Glucose Metabolism by Microscopy. Trends in Endocrinology and Metabolism, 1999, 10, 413-417.	3.1	43
32	Expression profiling of pancreatic beta cells: Glucose regulation of secretory and metabolic pathway genes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5773-5778.	3.3	162
33	Glucose-mediated Ca2+ signalling in single clonal insulin-secreting cells: evidence for a mixed model of cellular activation. International Journal of Biochemistry and Cell Biology, 2000, 32, 557-569.	1.2	13
34	mRNA profiling of pancreatic beta-cells: investigating mechanisms of diabetes. , 2001, , 187-211.		2
35	Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulation. Biotechnology and Bioengineering, 2001, 75, 741-744.	1.7	46
36	Tolbutamide stimulation of pancreatic β-cells involves both cell recruitment and increase in the individual Ca2+ response. British Journal of Pharmacology, 2001, 133, 575-585.	2.7	20

ARTICLE IF CITATIONS # Expression of the Protein Tyrosine Phosphatase-like Protein IA-2 During Pancreatic Islet Development. 37 1.3 19 Journal of Histochemistry and Cytochemistry, 2001, 49, 767-775. Expression of the Receptor Tyrosine Kinase KIT in Mature Â-Cells and in the Pancreas in Development. 0.3 Diabetes, 2001, 50, 2021-2028. Measurements of Cytoplasmic Ca2+ in Islet Cell Clusters Show That Glucose Rapidly Recruits Â-Cells 39 0.3 98 and Gradually Increases the Individual Cell Response. Diabetes, 2001, 50, 540-550. Proinsulin processing in the diabetic Goto-Kakizaki rat. Journal of Endocrinology, 2002, 175, 637-647. Co-ordinated Ca2+-signalling within pancreatic islets: does \hat{l}^2 -cell entrainment require a secreted 41 1.1 26 messenger. Cell Calcium, 2002, 31, 209-219. Non-invasive live-cell measurement of changes in macrophage NAD(P)H by two-photon microscopy. 1.1 Immunology Letters, 2005, 96, 33-38. Redox Control of Exocytosis: Regulatory Role of NADPH, Thioredoxin, and Glutaredoxin. Diabetes, 43 0.3 232 2005, 54, 2132-2142. Glucose Suppresses Superoxide Generation in Metabolically Responsive Pancreatic Î² Cells*. Journal of 44 1.6 120 Biological Chemistry, 2005, 280, 20389-20396. Metabolic Activation of Glucose Low-Responsive Î²-Cells by Glyceraldehyde Correlates with Their 45 Biosynthetic Activation in Lower Glucose Concentration Range But Not at High Glucose. 9 1.4 Endocrinology, 2006, 147, 5196-5204. Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia, 2008, 51, 1843-1852. Mutated ATP synthase induces oxidative stress and impaired insulin secretion in β ells of female 48 1.7 16 BHE/cdb rats. Diabetes/Metabolism Research and Reviews, 2008, 24, 392-403. A Role for the Extracellular Calcium-Sensing Receptor in Cell-Cell Communication in Pancreatic Islets 49 1.1 of Langerhans. Cellular Physiology and Biochemistry, 2008, 22, 557-566. Exploring Functional Î²-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker. PLoS ONE, 2009, 50 1.1 39 4, e5555. Maturation of Adult ^î²-Cells Revealed Using a Pdx1/Insulin Dual-Reporter Lentivirus. Endocrinology, 1.4 64 2009, 150, 1627-1635. Kisspeptin stimulation of insulin secretion: mechanisms of action in mouse islets and rats. 52 2.9 70 Diabetologia, 2009, 52, 855-862. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of 294 Ămerica, 2009, 106, 14872-14877. Effects of palmitate on ER and cytosolic Ca²⁺homeostasis in $\hat{1}^2$ -cells. American Journal of 54 1.8 169 Physiology - Endocrinology and Metabolism, 2009, 296, E690-E701. Chapter 17 Glucose, Regulator of Survival and Phenotype of Pancreatic Beta Cells. Vitamins and Hormones, 2009, 80, 507-539.

CITATION REPORT

#	Article	IF	CITATIONS
56	Single pancreatic beta cells co-express multiple islet hormone genes in mice. Diabetologia, 2010, 53, 128-138.	2.9	58
57	Functional interactions between pancreatic beta cells and (pre)adipocytes. Endocrine, 2010, 38, 118-126.	1.1	3
58	Protein Markers for Insulin-Producing Beta Cells with Higher Glucose Sensitivity. PLoS ONE, 2010, 5, e14214.	1.1	33
59	Pim3 negatively regulates glucose-stimulated insulin secretion. Islets, 2010, 2, 308-317.	0.9	18
60	Connexins: Key Mediators of Endocrine Function. Physiological Reviews, 2011, 91, 1393-1445.	13.1	145
61	In Vivo Misfolding of Proinsulin Below the Threshold of Frank Diabetes. Diabetes, 2011, 60, 2092-2101.	0.3	35
62	A Low-Oxygenated Subpopulation of Pancreatic Islets Constitutes a Functional Reserve of Endocrine Cells. Diabetes, 2011, 60, 2068-2075.	0.3	68
63	Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21063-21068.	3.3	133
64	Subpopulations of GFP-Marked Mouse Pancreatic β-Cells Differ in Size, Granularity, and Insulin Secretion. Endocrinology, 2012, 153, 5180-5187.	1.4	47
65	Connexin-dependent signaling in neuro-hormonal systems. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1919-1936.	1.4	21
66	β-Cell Dysfunction in Chronic Pancreatitis. Digestive Diseases and Sciences, 2012, 57, 1764-1772.	1.1	68
67	Functional characteristics of neonatal rat \hat{I}^2 cells with distinct markers. Journal of Molecular Endocrinology, 2014, 52, 11-28.	1.1	37
68	Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicology and Applied Pharmacology, 2014, 279, 173-185.	1.3	59
69	Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns. Scientific Reports, 2015, 5, 7845.	1.6	73
70	Characterization of Antibodies to Products of Proinsulin Processing Using Immunofluorescence Staining of Pancreas in Multiple Species. Journal of Histochemistry and Cytochemistry, 2015, 63, 646-662.	1.3	32
71	Direct effect of glucocorticoids on glucose-activated adult rat β-cells increases their cell number and their functional mass for transplantation. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E698-E705.	1.8	10
72	Disallowed and Allowed Gene Expression: Two Faces of Mature Islet Beta Cells. Annual Review of Nutrition, 2016, 36, 45-71.	4.3	74
73	Single-Cell Mass Cytometry Analysis of the Human Endocrine Pancreas. Cell Metabolism, 2016, 24, 616-626.	7.2	126

CITATION REPORT

		CITATION RE	PORT	
#	Article		IF	CITATIONS
74	Beta Cell Hubs Dictate Pancreatic Islet Responses toÂGlucose. Cell Metabolism, 2016,	24, 389-401.	7.2	370
75	Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nature Rev Endocrinology, 2016, 12, 695-709.	views	4.3	150
76	Multifunctional <i>in vivo</i> imaging of pancreatic islets in diabetes development. Jou Science, 2016, 129, 2865-75.	urnal of Cell	1.2	21
77	All mixed up: defining roles for Î ² -cell subtypes in mature islets. Genes and Developmer 228-240.	nt, 2017, 31,	2.7	62
78	Is a \hat{I}^2 cell a \hat{I}^2 cell?. Current Opinion in Endocrinology, Diabetes and Obesity, 2017, 24	, 92-97.	1.2	3
79	Virgin Beta Cells Persist throughout Life at a Neogenic Niche within Pancreatic Islets. C Metabolism, 2017, 25, 911-926.e6.	Cell	7.2	172
80	β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Res Metabolism, 2017, 25, 898-910.e5.	istance. Cell	7.2	149
81	Heterogeneity in the Beta-Cell Population: a Guided Search Into Its Significance in Pan Implants. Current Diabetes Reports, 2017, 17, 86.	creas and in	1.7	26
82	Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pan Streptozotocin induced diabetic rats. Biomedicine and Pharmacotherapy, 2017, 95, 17	creas of '5-185.	2.5	51
83	Interrogating islets in health and disease with single-cell technologies. Molecular Meta 6, 991-1001.	bolism, 2017,	3.0	42
84	Critical and Supercritical Spatiotemporal Calcium Dynamics in Beta Cells. Frontiers in F 2017, 8, 1106.	'hysiology,	1.3	41
85	Heterogeneity of the Pancreatic Beta Cell. Frontiers in Genetics, 2017, 8, 22.		1.1	81
86	The role of beta cell heterogeneity in islet function and insulin release. Journal of Molec Endocrinology, 2018, 61, R43-R60.	cular	1.1	54
87	New Understanding of Î ² -Cell Heterogeneity and In Situ Islet Function. Diabetes, 2018	, 67, 537-547.	0.3	116
88	Gap junction proteins are key drivers of endocrine function. Biochimica Et Biophysica A Biomembranes, 2018, 1860, 124-140.	Acta -	1.4	34
89	Ultrastructure of endocrine pancreatic granules during pancreatic differentiation in the snake, <i>Natrix natrix</i> L. (Lepidosauria, Serpentes). Journal of Morphology, 2018, 2	e grass 279, 330-348.	0.6	3
90	The Impact of Pancreatic Beta Cell Heterogeneity on Type 1 Diabetes Pathogenesis. Cu Reports, 2018, 18, 112.	urrent Diabetes	1.7	17
91	Single molecule approaches for studying gene regulation in metabolic tissues. Diabete Metabolism, 2018, 20, 145-156.	s, Obesity and	2.2	4

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Random Matrix Analysis of Ca2+ Signals in β-Cell Collectives. Frontiers in Physiology, 2	2019, 10, 1194.	1.3	5
93	Informing β-cell regeneration strategies using studies of heterogeneity. Molecular Met 27, S49-S59.	abolism, 2019,	3.0	7
94	Navigating the Depths and Avoiding the Shallows of Pancreatic Islet Cell Transcriptom 2019, 68, 1380-1393.	es. Diabetes,	0.3	73
95	Evidence of a developmental origin of beta-cell heterogeneity using a dual lineage trac Development (Cambridge), 2019, 146, .	ing technology.	1.2	11
96	Leader β-cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nature Metal 615-629.	oolism, 2019, 1,	5.1	128
97	The Pdx1-Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Proger Proliferation and Mature Islet β-Cell Function. Diabetes, 2019, 68, 1806-1818.	iitor Cell	0.3	31
98	Heterogeneity of the Human Pancreatic Islet. Diabetes, 2019, 68, 1230-1239.		0.3	65
99	How Heterogeneity in Glucokinase and Gap-Junction Coupling Determines the Islet [Ca Biophysical Journal, 2019, 117, 2188-2203.	a2+] Response.	0.2	26
100	Transcriptional Heterogeneity of Beta Cells in the Intact Pancreas. Developmental Cell, 115-125.e4.	, 2019, 48,	3.1	70
101	Characterization of the Goto-Kakizaki (GK) Rat Model of Type 2 Diabetes. Methods in I Biology, 2019, 1916, 203-211.	Molecular	0.4	21
102	Metabolic and Functional Heterogeneity in Pancreatic β Cells. Journal of Molecular Bio 1395-1406.	logy, 2020, 432,	2.0	24
103	Molecular and functional profiling of human islets: from heterogeneity to human phen Diabetologia, 2020, 63, 2095-2101.	otypes.	2.9	17
104	β Cells Operate Collectively to Help Maintain Glucose Homeostasis. Biophysical Journa 2588-2595.	ıl, 2020, 118,	0.2	21
105	Importance of Both Imprinted Genes and Functional Heterogeneity in Pancreatic Beta Link?. International Journal of Molecular Sciences, 2021, 22, 1000.	Cells: Is There a	1.8	10
106	GLP-1 receptor signaling increases PCSK1 and \hat{I}^2 cell features in human $\hat{I}\pm$ cells. JCI Insig	ght, 2021, 6, .	2.3	24
107	Small subpopulations of β-cells do not drive islet oscillatory [Ca2+] dynamics via gap j communication. PLoS Computational Biology, 2021, 17, e1008948.	unction	1.5	22
109	Predisposition to Proinsulin Misfolding as a Genetic Risk to Diet-Induced Diabetes. Dia 2580-2594.	betes, 2021, 70,	0.3	6
110	Stem/progenitor cells in normal physiology and disease of the pancreas. Molecular and Endocrinology, 2021, 538, 111459.	Cellular	1.6	6

#	Article	IF	Citations
111	Molecular Biology of Gap Junction Proteins. , 1994, , 333-356.		4
112	Glucose-Induced B-Cell Recruitment and the Expression of Hexokinase Isoenzymes. Advances in Experimental Medicine and Biology, 1997, 426, 259-266.	0.8	6
113	Reconstructing Islet Function In Vitro. Advances in Experimental Medicine and Biology, 1997, 426, 285-298.	0.8	20
114	Intercellular Communication and Insulin Secretion. , 1997, , 24-42.		6
115	Pancreatic beta cell heterogeneity in glucose-induced insulin secretion Journal of Biological Chemistry, 1992, 267, 21344-21348.	1.6	136
118	GLUT-2 function in glucose-unresponsive beta cells of dexamethasone-induced diabetes in rats Journal of Clinical Investigation, 1993, 92, 1950-1956.	3.9	41
119	Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program Journal of Clinical Investigation, 1996, 98, 1568-1574.	3.9	255
120	Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation Journal of Clinical Investigation, 1996, 98, 2805-2812.	3.9	163
121	Bone marrow: An extra-pancreatic hideout for the elusive pancreatic stem cell?. Journal of Clinical Investigation, 2003, 111, 799-801.	3.9	24
122	Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. Journal of Clinical Investigation, 1999, 104, 67-72.	3.9	96
123	Dominant protein interactions that influence the pathogenesis of conformational diseases. Journal of Clinical Investigation, 2013, 123, 3124-3134.	3.9	21
124	Susceptibility of Pancreatic Beta Cells to Fatty Acids Is Regulated by LXR/PPARα-Dependent Stearoyl-Coenzyme A Desaturase. PLoS ONE, 2009, 4, e7266.	1.1	43
125	Glucose Regulates Rat Beta Cell Number through Age-Dependent Effects on Beta Cell Survival and Proliferation. PLoS ONE, 2014, 9, e85174.	1.1	7
126	Semi-automated digital measurement as the method of choice for beta cell mass analysis. PLoS ONE, 2018, 13, e0191249.	1.1	3
127	The physiological role of \hat{I}^2 -cell heterogeneity in pancreatic islet function. Nature Reviews Endocrinology, 2022, 18, 9-22.	4.3	61
128	Gene Expression Profiling by Microarrays. , 2001, , .		2
131	Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport. EMBO Journal, 1993, 12, 2873-9.	3.5	53
132	Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. ELife, 2021, 10, .	2.8	11

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
138	Irreversible loss of normal beta-cell regulation by glucose in neonatally streptozotocin diabetic rats. Diabetologia, 1994, 37, 351-357.	2.9	2
140	Dynamic <i>Ins2</i> Gene Activity Defines β-Cell Maturity States. Diabetes, 2022, 71, 2612-2631.	0.3	5
141	Molecular phenotyping of single pancreatic islet leader beta cells by "Flash-Seq― Life Sciences, 2023, 316, 121436.	2.0	10
144	A beta cell subset with enhanced insulin secretion and glucose metabolism is reduced in type 2 diabetes. Nature Cell Biology, 2023, 25, 565-578.	4.6	11
145	Monitoring autophagic flux inÂvivo revealed its physiological response and significance of heterogeneity in pancreatic beta cells. Cell Chemical Biology, 2023, 30, 658-671.e4.	2.5	3
146	Epigenetic dosage identifies two major and functionally distinct Î ² cell subtypes. Cell Metabolism, 2023, 35, 821-836.e7.	7.2	12
147	"FunDNAmethyl―Mechanism for Developmental Restriction of a β-Cell Subpopulation. Diabetes, 2023, 72, 557-559.	0.3	0
151	Insulin biosynthesis and release in health and disease. , 2023, , 3-24.		0