Einstein's Proposal of the Photon Concept—a Translat of 1905

American Journal of Physics 33, 367-374 DOI: 10.1119/1.1971542

Citation Report

#	Article	IF	CITATIONS
1	Thermodynamics in Einstein's Thought: Thermodynamics played a special role in Einstein's early search for a unified foundation of physics. Science, 1967, 157, 509-516.	12.6	101
2	Interaction between Hydromagnetic Waves and a Time-Dependent, Inhomogeneous Medium. Physics of Fluids, 1970, 13, 2710.	1.4	235
3	Multiphoton optical heterodyne detection. IEEE Journal of Quantum Electronics, 1975, 11, 595-602.	1.9	6
4	Theory of photoemission: Independent particle model. Topics in Applied Physics, 1978, , 105-134.	0.8	10
5	"On the History of the Special Relativity Theory― , 1979, , 89-108.		0
7	The resolution of photoelectron microscopes with UV, X-ray, and synchrotron excitation sources. Ultramicroscopy, 1989, 27, 273-300.	1.9	73
8	Underlying probability distributions of Planck's radiation law. International Journal of Theoretical Physics, 1990, 29, 1379-1392.	1.2	2
9	Prolegomenon to a Proper Interpretation of Quantum Field Theory. Philosophy of Science, 1990, 57, 594-618.	1.0	29
10	The quantum efficiency of vision. , 1991, , 3-24.		87
11	The de Broglie-Bohm theory of motion and quantum field theory. Physics Reports, 1993, 224, 95-150.	25.6	93
12	Finatoin's answer to Na the number of photons a classical inversent?' European Journal of Dhusica		
	1999, 20, L37-L38.	0.6	0
13	Quantum vacuum fluctuations. Comptes Rendus Physique, 2001, 2, 1287-1298.	0.6	0
13 14	Quantum vacuum fluctuations. Comptes Rendus Physique, 2001, 2, 1287-1298. Quantum interference experiments with large molecules. American Journal of Physics, 2003, 71, 319-325.	0.6 0.1 0.7	0 4 190
13 14 15	Pristein's answer to is the number of photons a classical invariant? . European Journal of Physics, 1999, 20, L37-L38. Quantum vacuum fluctuations. Comptes Rendus Physique, 2001, 2, 1287-1298. Quantum interference experiments with large molecules. American Journal of Physics, 2003, 71, 319-325. Reappraising EinsteinÂs 1905 application of thermodynamics and statistics to radiation. European Journal of Physics, 2004, 25, 269-277.	0.6 0.1 0.7 0.6	0 4 190 4
13 14 15 16	Enistein's aliswer to is the humber of photon's a classical invariant? . European Journal of Physics, 1999, 20, L37-L38. Quantum vacuum fluctuations. Comptes Rendus Physique, 2001, 2, 1287-1298. Quantum interference experiments with large molecules. American Journal of Physics, 2003, 71, 319-325. Reappraising EinsteinÂs 1905 application of thermodynamics and statistics to radiation. European Journal of Physics, 2004, 25, 269-277. THE OPTICAL ANALYSIS OF MINERALS. Canadian Mineralogist, 2005, 43, 543-552.	0.6 0.1 0.7 0.6 1.0	0 4 190 4 5
13 14 15 16 17	Provide the number of protons a classical invariant? - European Journal of Physics, 1999, 20, L37-L38. Quantum vacuum fluctuations. Comptes Rendus Physique, 2001, 2, 1287-1298. Quantum interference experiments with large molecules. American Journal of Physics, 2003, 71, 319-325. Reappraising EinsteinÂs 1905 application of thermodynamics and statistics to radiation. European Journal of Physics, 2004, 25, 269-277. THE OPTICAL ANALYSIS OF MINERALS. Canadian Mineralogist, 2005, 43, 543-552. Revisiting Bohr's Semiclassical Quantum Theoryâ€. Journal of Physical Chemistry B, 2006, 110, 19861-19866.	0.6 0.1 0.7 0.6 1.0	0 4 190 4 5 1
13 14 15 16 17 18	Provide the series of protons a classical invariant? - European Journal of Physics, 1999, 20, L37-L38. Quantum vacuum fluctuations. Comptes Rendus Physique, 2001, 2, 1287-1298. Quantum interference experiments with large molecules. American Journal of Physics, 2003, 71, 319-325. Reappraising EinsteinÂs 1905 application of thermodynamics and statistics to radiation. European Journal of Physics, 2004, 25, 269-277. THE OPTICAL ANALYSIS OF MINERALS. Canadian Mineralogist, 2005, 43, 543-552. Revisiting Bohr's Semiclassical Quantum Theoryâ€. Journal of Physical Chemistry B, 2006, 110, 19861-19866. Maxwell's equations, radiative transfer, and coherent backscattering: A general perspective. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101, 540-555.	0.6 0.1 0.7 0.6 1.0 2.6 2.3	0 4 190 4 5 1 1 24

#	Article	IF	CITATIONS
20	Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry, 2007, 79, 293-465.	1.9	950
21	Chapter 3 Historical papers on the particle concept of light. Progress in Optics, 2007, , 51-95.	0.6	3
22	A combined study of surface roughness in polycrystalline aluminium during uniaxial deformation using laser-induced photoemission and confocal microscopy. Philosophical Magazine, 2007, 87, 907-924.	1.6	7
23	Effect of realistic focal conditions on the strong-field ionization of helium. Physical Review A, 2009, 79, .	2.5	8
24	Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 1210-1222.	2.3	79
26	The Theory of (Exclusively) Local Beables. Foundations of Physics, 2010, 40, 1858-1884.	1.3	46
27	Invited Review Article: Single-photon sources and detectors. Review of Scientific Instruments, 2011, 82, 071101.	1.3	1,096
28	Absorption of a pulse by an optically dense medium: An argument for field quantization. American Journal of Physics, 2011, 79, 527-531.	0.7	1
29	Analysis of spectrometric data and detection processes corroborate photons as diffractively evolving wave packets. Proceedings of SPIE, 2011, , .	0.8	2
30	Strain-Induced Surface Dynamics of Aluminum Studied by InÂSitu Photoelectron Emission. Jom, 2012, 64, 44-50.	1.9	2
31	Evanescent wave of a single photon. Optical Engineering, 2013, 52, 074103.	1.0	3
32	On Althusser's Philosophy of the Encounter. World Review of Political Economy, 2013, 4, 38.	0.5	0
33	Continuing research on the classical spiraling photon model. , 2014, , .		0
36	On the Doppler effect for photons in rotating systems. European Journal of Physics, 2014, 35, 025015.	0.6	5
37	Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146, 4-33.	2.3	45
38	Quantum fields. , 0, , 10-41.		0
39	Gravity meets quantum physics. Nature Photonics, 2015, 9, 143-144.	31.4	0
40	Quantum non-Gaussianity from a large ensemble of single photon emitters. Optics Express, 2016, 24, 27352.	3.4	8

#	Article	IF	CITATIONS
41	Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook. Applied Physics Reviews, 2016, 3, 011103.	11.3	59
42	Multiscale modeling of silicon heterojunction solar cells. , 2016, , .		1
43	Translational Science for Energy and Beyond. Inorganic Chemistry, 2016, 55, 9131-9143.	4.0	11
44	Development and validation of the photoelectric effect concept inventory. European Journal of Physics, 2016, 37, 055709.	0.6	4
46	Wide-field TCSPC: methods and applications. Measurement Science and Technology, 2017, 28, 012003.	2.6	60
47	Beating Darwin-Bragg losses in lab-based ultrafast x-ray experiments. Structural Dynamics, 2017, 4, 044011.	2.3	3
48	The universal meaning of the quantum of action. European Physical Journal H, 2017, 42, 523-536.	0.8	2
49	Light for the quantum. Entangled photons and their applications: a very personal perspective. Physica Scripta, 2017, 92, 072501.	2.5	50
50	Analysis of the Jun Ishiwara's "The universal meaning of the quantum of action― European Physical Journal H, 2017, 42, 507-521.	0.8	3
51	What Is Light?. Science and Education, 2018, 27, 81-111.	2.7	25
52	Introduction to PV Plants. , 2018, , 33-64.		3
53	A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue. Journal of Neuroscience Methods, 2018, 294, 102-110.	2.5	18
54	Flexible, lead-free, gamma-shielding materials based on natural rubber/metal oxide composites. Iranian Polymer Journal (English Edition), 2018, 27, 33-41.	2.4	54
55	Can a short intervention focused on gravitational waves and quantum physics improve students' understanding and attitude?. Physics Education, 2018, 53, 065020.	0.5	14
56	All classical predictions of general relativity from special relativistic Hamiltonian dynamics. Modern Physics Letters A, 2018, 33, 1850169.	1.2	0
57	Relativistic description of the photoelectric effect. American Journal of Physics, 2018, 86, 825-830.	0.7	4
58	Stochastic laser cooling enabled by many-body effects. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 135002.	1.5	2
59	Use and mis-use of x-ray photoemission spectroscopy Ce3d spectra of Ce ₂ O ₃ and CeO ₂ . Journal of Physics Condensed Matter, 2018, 30, 343003.	1.8	61

#	Article	IF	CITATIONS
60	On the controllability of a quantum object. Journal of Physics: Conference Series, 2019, 1399, 022010.	0.4	0
61	Photoelectron ejection by electromagnetic wave. Optik, 2019, 181, 802-809.	2.9	7
62	Refutation of the short report "On the impossibility of "Photoelectron ejection by electromagnetic waveâ€â€• Optik, 2020, 202, 163734.	2.9	5
63	Young's double-slit interference enabled by surface plasmon polaritons: a review. Journal Physics D: Applied Physics, 2020, 53, 053001.	2.8	10
64	Chemical Insights into the Rapid, Light-Induced Auto-Oxidation of Molybdenum Disulfide Aqueous Dispersions. Chemistry of Materials, 2020, 32, 148-156.	6.7	11
65	Quantum thermodynamics and quantum coherence engines. Turkish Journal of Physics, 2020, 44, .	1.1	9
66	Signal and power transfer from remote. AIP Conference Proceedings, 2020, , .	0.4	0
67	Local Selective Realism: Shifting from Classical to Quantum Electrodynamics. Foundations of Science, 2020, 25, 955-970.	0.7	3
68	Simple equipment for teaching internal photoelectric effect. Physics Education, 2020, 55, 055011.	0.5	5
69	Synthesis of improved dye-sensitized solar cell for renewable energy power generation. Solar Energy, 2020, 206, 918-934.	6.1	40
70	Modeling of dust soiling effects on solar photovoltaic performance: A review. Solar Energy, 2021, 220, 1074-1088.	6.1	25
71	Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications. Applied Physics Letters, 2021, 118, .	3.3	124
72	Classical model of a delayed-choice quantum eraser. Physical Review A, 2021, 103, .	2.5	8
73	Identification of C-H Bond Vibration Mode Using Absorption Spectroscopy By A Simple Optically Configured Setup. Groningen Journal of European Law, 0, , .	0.2	0
74	Photoelectric effect measurements on a conventional neon bulb. American Journal of Physics, 2021, 89, 969-974.	0.7	0
75	Student User Experience with the IBM QISKit Quantum Computing Interface. Lecture Notes in Networks and Systems, 2020, , 547-563.	0.7	6
77	Virtual optical pulling force. Optica, 2020, 7, 1024.	9.3	26
78	Probing Trace Elements in Human Tissues with Synchrotron Radiation. Crystals, 2020, 10, 12.	2.2	16

# 79	ARTICLE Implications of a modified Coulomb force for general relativity theory. Physics Essays, 2008, 21, 288-302.	IF 0.4	Citations
80	Einstein's 1905 "Revolutionary―Paper on Quanta as a Manifest and Detailed Example of a "Principle Theory― Advances in Historical Studies, 2014, 03, 130-154.	0.1	0
81	Das Lichtquant. , 1986, , 368-393.		0
82	Einstein, la luz, el espacio-tiempo y los cuantos. Arbor, 2015, 191, a266.	0.3	0
83	Representations of Quantized Light. Lecture Notes in Physics, 2020, , 15-54.	0.7	0
85	Statistical Thermodynamics of an Ideal Gas. Resonance, 2022, 27, 47-61.	0.3	0
86	Dispersion of organic exciton polaritons—a novel undergraduate experiment. European Journal of Physics, 2022, 43, 035301.	0.6	5
87	Optical pulling force upon elliptical cylinder nanoparticles in the infrared range. , 2022, 1, 538.		0
88	Superconducting photon detectors. Contemporary Physics, 2021, 62, 69-91.	1.8	20
89	Planck's Law. , 0, , 38-38.		0
92	A comprehensive and critical review of bio-inspired metaheuristic frameworks for extracting parameters of solar cell single and double diode models. Energy Reports, 2022, 8, 7085-7106.	5.1	9
93	Monte Carlo Simulations Demonstrating Physics of Equivalency of Gamma, Electron-Beam, and X-Ray for Radiation Sterilization. SSRN Electronic Journal, 0, , .	0.4	0
94	Photoelectric effect: Magnetic force should increase with increase in frequency of EM waves. AIP Conference Proceedings, 2022, , .	0.4	1
95	On estimation of total length of sodium light wave using air-wedge method. AIP Conference Proceedings, 2022, , .	0.4	1
96	Monte Carlo simulations demonstrating physics of equivalency of gamma, electron-beam, and X-ray for radiation sterilization. Radiation Physics and Chemistry, 2023, 204, 110702.	2.8	4
97	Research Progress of Superconducting Transition-Edge Sensor Based Single-Photon Detector. Applied Physics, 2023, 13, 27-37.	0.0	0
98	Polymerization-Induced Clusteroluminescence of Poly(cyclic carbonate)s. Journal of Materials Chemistry C, O, , .	5.5	0
99	Photonic Quantum Computing: An Overview. SSRN Electronic Journal, 0, , .	0.4	0

#ARTICLEIFCITATIONS100Quantifying the ultrafast and steady-state molecular reduction potential of a plasmonic
photocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2023, 0.11101An Investigation into True Reality: Observer, 5D Space, and Cognizance. Open Journal of Philosophy,
2023, 13, 702-735.0.10102Review of Generative Models for the Inverse Design of Nanophotonic Metasurfaces. Applied Science0.90