PRIME

Computer Architecture News 44, 27-39 DOI: 10.1145/3007787.3001140

Citation Report

#	Article	IF	CITATIONS
1	A Vision for All-Spin Neural Networks: A Device to System Perspective. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 2267-2277.	3.5	58
2	Fathom: reference workloads for modern deep learning methods. , 2016, , .		96
3	Utilizing 3D ICs in architectures for neural networks. , 2016, , .		0
4	IMEC: A Fully Morphable In-Memory Computing Fabric Enabled by Resistive Crossbar. IEEE Computer Architecture Letters, 2017, 16, 123-126.	1.0	6
5	DLPlib: A Library for Deep Learning Processor. Journal of Computer Science and Technology, 2017, 32, 286-296.	0.9	5
6	Processing-In-Memory Architecture Design for Accelerating Neuro-Inspired Algorithms. , 2017, , 183-207.		1
7	A generalized model of TiO _{<i>x</i>} -based memristive devices and its application for image processing. Chinese Physics B, 2017, 26, 090502.	0.7	6
8	MNSIM: Simulation Platform for Memristor-based Neuromorphic Computing System. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, , 1-1.	1.9	42
9	Data-centric computation mode for convolution in deep neural networks. , 2017, , .		3
10	Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE, 2017, 105, 2295-2329.	16.4	2,217
11	Moonwalk. ACM SIGPLAN Notices, 2017, 52, 511-526.	0.2	3
12	TETRIS. Computer Architecture News, 2017, 45, 751-764.	2.5	47
13	Methods for high resolution programming in lithuim niobate memristors for neuromorphic hardware. , 2017, , .		3
14	Speeding up crossbar resistive memory by exploiting in-memory data patterns. , 2017, , .		15
15	AEP: An error-bearing neural network accelerator for energy efficiency and model protection. , 2017, , \cdot		2
16	RRAM-based reconfigurable in-memory computing architecture with hybrid routing. , 2017, , .		1
17	Energy Efficient In-Memory Binary Deep Neural Network Accelerator with Dual-Mode SOT-MRAM. , 2017,		22
18	High performance and energy-efficient in-memory computing architecture based on SOT-MRAM. , 2017, ,		10

#	Article	IF	CITATIONS
19	Socrates-D: Multicore Architecture for On-Line Learning. , 2017, , .		3
20	An energy-efficient and high-throughput bitwise CNN on sneak-path-free digital ReRAM crossbar. , 2017, , .		17
21	AEP: An error-bearing neural network accelerator for energy efficiency and model protection. , 2017, ,		1
22	Generalize or Die: Operating Systems Support for Memristor-Based Accelerators. , 2017, , .		7
23	Memristor crossbar based implementation of a multilayer perceptron. , 2017, , .		9
24	AEPE: An area and power efficient RRAM crossbar-based accelerator for deep CNNs. , 2017, , .		20
25	Blurring the Lines between Memory and Computation. IEEE Micro, 2017, 37, 13-15.	1.8	4
26	TraNNsformer: Neural network transformation for memristive crossbar based neuromorphic system design. , 2017, , .		28
27	TETRIS., 2017,,.		255
28	Moonwalk. , 2017, , .		22
29	TETRIS. Operating Systems Review (ACM), 2017, 51, 751-764.	1.5	24
30	Moonwalk. Operating Systems Review (ACM), 2017, 51, 511-526.	1.5	2
31	TETRIS. ACM SIGPLAN Notices, 2017, 52, 751-764.	0.2	8
32	Moonwalk. Computer Architecture News, 2017, 45, 511-526.	2.5	8
33	Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices. Frontiers in Neuroscience, 2017, 11, 538.	1.4	117
34	Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator. , 2017, , .		17
35	In-Place Irregular Computation for Message-Passing Chip-Multiprocessors. , 2017, , .		0
36	Exploring the impact of memory block permutation on performance of a crossbar ReRAM main memory.		4

#	ARTICLE Design and Evaluation of a Spintronic In-Memory Processing Platform for Nonvolatile Data	IF	Citations
37	Encryption. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 1788-1801.	1.9	34
38	Computing in Memory With Spin-Transfer Torque Magnetic RAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 470-483.	2.1	235
39	IMCE: Energy-efficient bit-wise in-memory convolution engine for deep neural network. , 2018, , .		38
40	HielM: Highly flexible in-memory computing using STT MRAM. , 2018, , .		25
41	ReGAN: A pipelined ReRAM-based accelerator for generative adversarial networks. , 2018, , .		53
42	Towards Memory-Efficient Allocation of CNNs on Processing-in-Memory Architecture. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 1428-1441.	4.0	19
43	Voltage-Controlled Magnetic Tunnel Junctions for Processing-In-Memory Implementation. IEEE Electron Device Letters, 2018, 39, 440-443.	2.2	29
44	Scaling for edge inference of deep neural networks. Nature Electronics, 2018, 1, 216-222.	13.1	299
45	Making Memristive Neural Network Accelerators Reliable. , 2018, , .		75
46	GraphR: Accelerating Graph Processing Using ReRAM. , 2018, , .		169
47	Neuro-Inspired Computing With Emerging Nonvolatile Memorys. Proceedings of the IEEE, 2018, 106, 260-285.	16.4	782
48	BenchIP: Benchmarking Intelligence Processors. Journal of Computer Science and Technology, 2018, 33, 1-23.	0.9	17
49	PRINS: Processing-in-Storage Acceleration of Machine Learning. IEEE Nanotechnology Magazine, 2018, 17, 889-896.	1.1	29
50	NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 3067-3080.	1.9	350
51	The future of electronics based on memristive systems. Nature Electronics, 2018, 1, 22-29.	13.1	1,369
52	IMCS2: Novel Device-to-Architecture Co-Design for Low-Power In-Memory Computing Platform Using Coterminous Spin Switch. IEEE Transactions on Magnetics, 2018, 54, 1-14.	1.2	9
53	Power optimization through peripheral circuit reusing integrated with loop tiling for RRAM crossbar-based CNN. , 2018, , .		2
54	ReRAM-based accelerator for deep learning. , 2018, , .		21

#	ARTICLE	IF	CITATIONS
55	Design and optimization of FeFET-based crossbars for binary convolution neural networks. , 2018, , .		39
56	Rescuing memristor-based computing with non-linear resistance levels. , 2018, , .		7
57	A peripheral circuit reuse structure integrated with a retimed data flow for low power RRAM crossbar-based CNN. , 2018, , .		10
58	Overview of the state of the art in embedded machine learning. , 2018, , .		9
59	Computing-in-memory with spintronics. , 2018, , .		12
60	Multiscale Co-Design Analysis of Energy, Latency, Area, and Accuracy of a ReRAM Analog Neural Training Accelerator. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 86-101.	2.7	119
61	A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors. , 2018, , .		169
62	Neurostream: Scalable and Energy Efficient Deep Learning with Smart Memory Cubes. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 420-434.	4.0	61
63	Neuromorphic computing's yesterday, today, and tomorrow – an evolutional view. The Integration VLSI Journal, 2018, 61, 49-61.	1.3	25
64	Stuck-at Fault Tolerance in RRAM Computing Systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 102-115.	2.7	88
65	Cross-Layer Design Exploration for Energy-Quality Tradeoffs in Spiking and Non-Spiking Deep Artificial Neural Networks. IEEE Transactions on Multi-Scale Computing Systems, 2018, 4, 613-623.	2.5	11
66	Asymmetric-ReRAM: A Low Latency and High Reliability Crossbar Resistive Memory Architecture. , 2018, ,		3
67	PermDNN: Efficient Compressed DNN Architecture with Permuted Diagonal Matrices. , 2018, , .		61
68	Efficient Allocation and Heterogeneous Composition of NVM Crossbar Arrays for Deep Learning Acceleration. , 2018, , .		0
69	Structural exploration of stochastic neural networks for severely-constrained 3D memristive devices. Nonlinear Theory and Its Applications IEICE, 2018, 9, 466-478.	0.4	1
70	A novel memristor-based restricted Boltzmann machine for contrastive divergence. IEICE Electronics Express, 2018, 15, 20171062-20171062.	0.3	7
71	Fault Tolerance for RRAM-Based Matrix Operations. , 2018, , .		22
72	RNSnet: In-Memory Neural Network Acceleration Using Residue Number System. , 2018, , .		34

#	Article	IF	CITATIONS
73	AxTrain. , 2018, , .		23
74	Hardware-Software Co-Design for an Analog-Digital Accelerator for Machine Learning. , 2018, , .		20
75	Improving Noise Tolerance of Hardware Accelerated Artificial Neural Networks. , 2018, , .		1
76	Socrates-D 2.0: A Low Power High Throughput Architecture for Deep Network Training. , 2018, , .		0
77	Power-Efficient ReRAM-Aware CNN Model Generation. , 2018, , .		1
78	Moving CNN Accelerator Computations Closer to Data. , 2018, , .		1
79	Low-Consumption Neuromorphic Memristor Architecture Based on Convolutional Neural Networks. , 2018, , .		8
80	Hardware Design for Machine Learning. International Journal of Artificial Intelligence & Applications, 2018, 9, 63-84.	0.3	14
81	R-Accelerator: A Reconfigurable Accelerator with RRAM Based Logic Contraction and Resource Optimization for Application Specific Computing. , 2018, , .		1
82	Benchmark of RRAM based Architectures for Dot-Product Computation. , 2018, , .		5
83	A Heterogeneous SoC for Soft Cast Wireless Video Transmission. , 2018, , .		1
84	PredJoule: A Timing-Predictable Energy Optimization Framework for Deep Neural Networks. , 2018, , .		23
85	Selective Data Transfer from DRAMs for CNNs. , 2018, , .		4
86	A Versatile ReRAM-based Accelerator for Convolutional Neural Networks. , 2018, , .		6
87	Neuromorphic Computing Across the Stack: Devices, Circuits and Architectures. , 2018, , .		6
88	Processing-in-Memory for Energy-Efficient Neural Network Training: A Heterogeneous Approach. , 2018, , .		73
89	MDACache: Caching for Multi-Dimensional-Access Memories. , 2018, , .		10
90	Benchmarking and Analyzing Deep Neural Network Training. , 2018, , .		82

#	Article	IF	CITATIONS
91	SCOPE: A Stochastic Computing Engine for DRAM-Based In-Situ Accelerator. , 2018, , .		50
92	LerGAN: A Zero-Free, Low Data Movement and PIM-Based GAN Architecture. , 2018, , .		22
93	Fast Object Tracking on a Many-Core Neural Network Chip. Frontiers in Neuroscience, 2018, 12, 841.	1.4	9
94	Towards accurate and high-speed spiking neuromorphic systems with data quantization-aware deep networks. , 2018, , .		1
95	Crossbar-Aware Neural Network Pruning. IEEE Access, 2018, 6, 58324-58337.	2.6	43
96	Analysis and Design of Memristor Crossbar Based Neuromorphic Intrusion Detection Hardware. , 2018, , \cdot		5
97	Active Storage. , 2018, , 1-8.		0
98	RRAM-Based Neuromorphic Hardware Reliability Improvement by Self-Healing and Error Correction. , 2018, , .		6
99	CISC: Coordinating Intelligent SSD and CPU to Speedup Graph Processing. , 2018, , .		2
100	Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems. Neural Networks, 2018, 108, 217-223.	3.3	48
101	THOR: THermal-aware Optimizations for extending ReRAM Lifetime. , 2018, , .		7
102	Hardware for machine learning: Challenges and opportunities. , 2018, , .		35
103	Exploring a SOT-MRAM Based In-Memory Computing for Data Processing. IEEE Transactions on Multi-Scale Computing Systems, 2018, 4, 676-685.	2.5	27
104	IMAGING: In-Memory AlGorithms for Image processiNG. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 4258-4271.	3.5	39
105	Nonvolatile memory outlook: Technology driven or application driven. , 2018, , .		0
106	ReRAM-Based Processing-in-Memory Architecture for Recurrent Neural Network Acceleration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 2781-2794.	2.1	81
107	Scaling Datacenter Accelerators with Compute-Reuse Architectures. , 2018, , .		11
108	PROMISE: An End-to-End Design of a Programmable Mixed-Signal Accelerator for Machine-Learning Algorithms. , 2018, , .		40

#	Article	IF	Citations
109	GANAX: A Unified MIMD-SIMD Acceleration for Generative Adversarial Networks. , 2018, , .		58
110	Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural Networks. , 2018, , .		220
111	A Configurable Cloud-Scale DNN Processor for Real-Time Al. , 2018, , .		332
112	Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous Vision. , 2018, , .		51
113	Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Network. , 2018, , .		284
114	Weighted Synapses Without Carry Operations for RRAM-Based Neuromorphic Systems. Frontiers in Neuroscience, 2018, 12, 167.	1.4	10
115	Joint Design of Training and Hardware Towards Efficient and Accuracy-Scalable Neural Network Inference. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 810-821.	2.7	17
116	A general memristor-based partial differential equation solver. Nature Electronics, 2018, 1, 411-420.	13.1	183
117	Training low bitwidth convolutional neural network on RRAM. , 2018, , .		17
118	ReCom: An efficient resistive accelerator for compressed deep neural networks. , 2018, , .		46
119	Coming Up N3XT, After 2D Scaling of Si CMOS. , 2018, , .		7
120	Enabling Scientific Computing on Memristive Accelerators. , 2018, , .		62
121	RRAM Based Buffer Design for Energy Efficient CNN Accelerator. , 2018, , .		5
122	A Robust Dual Reference Computing-in-Memory Implementation and Design Space Exploration Within STT-MRAM. , 2018, , .		5
123	Prometheus: Processing-in-memory heterogeneous architecture design from a multi-layer network theoretic strategy. , 2018, , .		15
124	Application Codesign of Near-Data Processing for Similarity Search. , 2018, , .		15
125	Design of fault-tolerant neuromorphic computing systems. , 2018, , .		14
126	Efficient Algorithms for In-Memory Fixed Point Multiplication Using MACIC. , 2018, , .		51

#	Article	IF	CITATIONS
127	Code Acceleration Using Memristor-Based Approximate Matrix Multiplier: Application to Convolutional Neural Networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 2684-2695.	2.1	16
128	Recent progress in analog memory-based accelerators for deep learning. Journal Physics D: Applied Physics, 2018, 51, 283001.	1.3	173
129	Fault-Tolerant Training Enabled by On-Line Fault Detection for RRAM-Based Neural Computing Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 1611-1624.	1.9	33
130	An Analog Neural Network Computing Engine Using CMOS-Compatible Charge-Trap-Transistor (CTT). IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 1811-1819.	1.9	28
131	Sensing of Resistive RAM. , 2019, , 31-45.		2
132	Optimal Application Mapping and Scheduling for Network-on-Chips with Computation in STT-RAM Based Router. IEEE Transactions on Computers, 2019, 68, 1174-1189.	2.4	8
133	A FerroFET-Based In-Memory Processor for Solving Distributed and Iterative Optimizations via Least-Squares Method. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2019, 5, 132-141.	1.1	6
134	Resistive Memoryâ€Based Inâ€Memory Computing: From Device and Largeâ€5cale Integration System Perspectives. Advanced Intelligent Systems, 2019, 1, 1900068.	3.3	54
135	Tightly Coupled Machine Learning Coprocessor Architecture With Analog In-Memory Computing for Instruction-Level Acceleration. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 544-561.	2.7	4
136	Processing-in-memory: A workload-driven perspective. IBM Journal of Research and Development, 2019, 63, 3:1-3:19.	3.2	83
137	8T SRAM Cell as a Multibit Dot-Product Engine for Beyond Von Neumann Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2556-2567.	2.1	93
138	R-Accelerator: An RRAM-Based CGRA Accelerator With Logic Contraction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2655-2667.	2.1	4
139	Programmable Non-Volatile Memory Design Featuring Reconfigurable In-Memory Operations. , 2019, , .		5
140	Reducing Hibernation Energy and Degradation in Bipolar ReRAM-Based Non-Volatile Processors. IEEE Nanotechnology Magazine, 2019, 18, 657-669.	1.1	4
141	Design of Processing-"Inside―Memory Optimized for DRAM Behaviors. IEEE Access, 2019, 7, 82633-82648.	2.6	15
142	Efficient Weight Mapping Scheme without Verification for RRAM Based Neuromorphic Computing. , 2019, , .		1
143	Interface modification of HfO ₂ -based ReRAM via low temperature anneal. Semiconductor Science and Technology, 2019, 34, 105021.	1.0	3
144	A Ferroelectric FET-Based Processing-in-Memory Architecture for DNN Acceleration. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2019, 5, 113-122.	1.1	40

#	Article	IF	CITATIONS
145	SparTen. , 2019, , .		144
146	Wire-Aware Architecture and Dataflow for CNN Accelerators. , 2019, , .		24
147	Sparse Tensor Core. , 2019, , .		65
148	CIMAT., 2019,,.		10
149	A Compact Memristor-based GAN Architecture with a Case Study on Single Image Super-Resolution. , 2019, , .		2
151	Cascaded Neural Network for Memristor based Neuromorphic Computing. , 2019, , .		1
152	Parallel Stateful Logic in RRAM: Theoretical Analysis and Arithmetic Design. , 2019, , .		3
153	ReBNN: in-situ acceleration of binarized neural networks in ReRAM using complementary resistive cell. CCF Transactions on High Performance Computing, 2019, 1, 196-208.	1.1	11
154	Neural network accelerator design with resistive crossbars: Opportunities and challenges. IBM Journal of Research and Development, 2019, 63, 10:1-10:13.	3.2	17
155	An Ultra-Efficient Memristor-Based DNN Framework with Structured Weight Pruning and Quantization Using ADMM. , 2019, , .		36
156	Cache memory organization for processing in memory. IEICE Electronics Express, 2019, 16, 20190393-20190393.	0.3	1
157	Enhance the Robustness to Time Dependent Variability of ReRAM-Based Neuromorphic Computing Systems with Regularization and 2R Synapse. , 2019, , .		4
158	Real Processing-in-Memory with Memristive Memory Processing Unit (mMPU). , 2019, , .		8
159	Photonic Processor for Fully Discretized Neural Networks. , 2019, , .		1
160	Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations. Materials, 2019, 12, 2745.	1.3	71
161	RED: A ReRAM-based Deconvolution Accelerator. , 2019, , .		12
162	An efficient ReRAM-based inference accelerator for convolutional neural networks via activation reuse. IEICE Electronics Express, 2019, 16, 20190396-20190396.	0.3	4
163	Accelerating Deep Neural Networks in Processing-in-Memory Platforms: Analog or Digital Approach?. , 2019, , .		22

	CHAIL	ON REPORT	
#	Article	IF	CITATIONS
164	Innovations in the Memory System. Synthesis Lectures on Computer Architecture, 2019, 14, 1-151.	1.3	7
165	Deep Learning for Edge Computing: Current Trends, Cross-Layer Optimizations, and Open Research Challenges. , 2019, , .		55
166	A Power and Area Efficient CMOS Stochastic Neuron for Neural Networks Employing Resistive Crossbar Array. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1678-1689.	2.7	7
167	Design Space Evaluation of a Memristor Crossbar Based Multilayer Perceptron for Image Processing. , 2019, , .		1
168	Edge Computing for Autonomous Driving: Opportunities and Challenges. Proceedings of the IEEE, 2019, 107, 1697-1716.	16.4	364
169	Modeling framework and comparison of memristive devices and associated STDP learning windows for neuromorphic applications. Journal Physics D: Applied Physics, 2019, 52, 393002.	1.3	10
170	Design Guidelines of RRAM based Neural-Processing-Unit. , 2019, , .		39
171	Cascaded Architecture for Memristor Crossbar Array Based Larger-Scale Neuromorphic Computing. IEEE Access, 2019, 7, 61679-61688.	2.6	11
172	DASM: Data-Streaming-Based Computing in Nonvolatile Memory Architecture for Embedded System. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2046-2059.	2.1	13
173	VIP: A Versatile Inference Processor. , 2019, , .		5
174	Optimizing Weight Mapping and Data Flow for Convolutional Neural Networks on RRAM Based Processing-In-Memory Architecture. , 2019, , .		55
175	SR-WTA: Skyrmion Racing Winner-Takes-All Module for Spiking Neural Computing. , 2019, , .		4
176	An MRAM-Based Deep In-Memory Architecture for Deep Neural Networks. , 2019, , .		28
177	LPCMsim: A Lightweight Phase Change Memory Simulator. Future Generation Computer Systems, 2019, 97, 661-673.	4.9	0
178	A Unified Framework for Training, Mapping and Simulation of ReRAM-Based Convolutional Neural Network Acceleration. IEEE Computer Architecture Letters, 2019, 18, 63-66.	1.0	7
179	Powerline Communication for Enhanced Connectivity in Neuromorphic Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1897-1906.	2.1	2
180	A General Framework to Map Neural Networks onto Neuromorphic Processor. , 2019, , .		7
181	E-LSTM: An Efficient Hardware Architecture for Long Short-Term Memory. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 280-291.	2.7	41

ARTICLE IF CITATIONS # Bit Prudent In-Cache Acceleration of Deep Convolutional Neural Networks., 2019,,. 182 24 MAPIM: Mat Parallelism for High Performance Processing in Non-volatile Memory Architecture., 2019, Processing-In-Memory Acceleration of Convolutional Neural Networks for Energy-Effciency, and 184 11 Power-Intermittency Resilience., 2019,,. Synaptic Resistors for Concurrent Inference and Learning with High Energy Efficiency. Advanced 11.1 Materials, 2019, 31, e1808032. NNBench-X: Benchmarking and Understanding Neural Network Workloads for Accelerator Designs. 186 1.0 6 IEEE Computer Architecture Letters, 2019, 18, 38-42. Memristive Devices and Networks for Brainâ€Inspired Computing. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900029. 1.2 66 NNPIM: A Processing In-Memory Architecture for Neural Network Acceleration. IEEE Transactions on 188 2.4 38 Computers, 2019, 68, 1325-1337. Machine Learning in VLSI Computer-Aided Design., 2019,,. 190 Energy-Efficient Design of Advanced Machine Learning Hardware., 2019, , 647-678. 1 <i>Neural Cache</i>: Bit-Serial In-Cache Acceleration of Deep Neural Networks. IEEE Micro, 2019, 39, 1.8 11-19. ARA: Cross-Layer approximate computing framework based reconfigurable architecture for CNNs. 192 1.1 14 Microelectronics Journal, 2019, 87, 33-44. MAX²: An ReRAM-Based Neural Network Accelerator That Maximizes Data Reuse and Area 2.7 Utilization. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 398-410. Memristive Accelerators for Dense and Sparse Linear Algebra: From Machine Learning to 194 1.8 3 High-Performance Scientific Computing. IEEE Micro, 2019, 39, 58-61. Deep Neural Network Acceleration in Non-Volatile Memory: A Digital Approach., 2019,,. 196 Making the Fault-Tolerance of Emerging Neural Network Accelerators Scalable., 2019,,. 2 Technology-Assisted Computing-In-Memory Design for Matrix Multiplication Workloads., 2019,,. 198 An Agile Precision-Tunable CNN Accelerator based on ReRAM., 2019, , . 9 PABO: Pseudo Agent-Based Multi-Objective Bayesian Hyperparameter Optimization for Efficient Neural 199 Accelerator Design., 2019, , .

#	Article	IF	CITATIONS
200	Hardware Accelerator for Adversarial Attacks on Deep Learning Neural Networks. , 2019, , .		3
201	ReRAM Crossbar-Based Analog Computing Architecture for Naive Bayesian Engine. , 2019, , .		10
202	RNA: Reconfigurable LSTM Accelerator with Near Data Approximate Processing. , 2019, , .		0
203	LHC: A Low-Power Heterogeneous Computing Method on Neural Network Accelerator. , 2019, , .		0
204	Design of a Robust Logic Gate using Magnetic Tunnel Junction. , 2019, , .		1
205	Improving Reliability of ReRAM-Based DNN Implementation through Novel Weight Distribution. , 2019, , .		1
206	REAL: Logic and Arithmetic Operations Embedded in RRAM for General-Purpose Computing. , 2019, , .		3
207	Customizing CMOS/ReRAM Hybrid Hardware Architecture for Spiking CNN. , 2019, , .		0
208	Enabling Neuromorphic Computing: BEOL Integration of CMOS RRAM Chip and Programmable Performance. , 2019, , .		5
209	Neuromorphic Hardware Accelerator for SNN Inference based on STT-RAM Crossbar Arrays. , 2019, , .		9
210	Efficient Mapping without Deadlock on the Many-core Neural Network Chip. , 2019, , .		0
211	An Event-driven Neuromorphic System with Biologically Plausible Temporal Dynamics. , 2019, , .		9
212	Faster than Flash: An In-Depth Study of System Challenges for Emerging Ultra-Low Latency SSDs. , 2019, , .		4
213	Re-Tangle: A ReRAM-based Processing-in-Memory Architecture for Transaction-based Blockchain. , 2019, , .		14
214	Testing Computation-in-Memory Architectures Based on Emerging Memories. , 2019, , .		15
215	RRAMedy: Protecting ReRAM-Based Neural Network from Permanent and Soft Faults During Its Lifetime. , 2019, , .		16
216	Fault-Tolerant Neuromorphic Computing Systems. , 2019, , .		3
217	ReNEW: Enhancing Lifetime for ReRAM Crossbar Based Neural Network Accelerators. , 2019, , .		12

#	Article	IF	CITATIONS
218	Hardware Fault Tolerance for Binary RRAM Crossbars. , 2019, , .		5
219	Enabling Secure in-Memory Neural Network Computing by Sparse Fast Gradient Encryption. , 2019, , .		21
220	An Energy-efficient Processing-in-memory Architecture for Long Short Term Memory in Spin Orbit Torque MRAM. , 2019, , .		4
221	To Stack or Not To Stack. , 2019, , .		1
222	Heterogeneous integration for artificial intelligence: Challenges and opportunities. IBM Journal of Research and Development, 2019, 63, 4:1-4:1.	3.2	15
223	ReDRAM: A Reconfigurable Processing-in-DRAM Platform for Accelerating Bulk Bit-Wise Operations. , 2019, , .		26
224	Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575, 607-617.	13.7	869
225	InS-DLA: An In-SSD Deep Learning Accelerator for Near-Data Processing. , 2019, , .		11
226	FindeR: Accelerating FM-Index-Based Exact Pattern Matching in Genomic Sequences through ReRAM Technology. , 2019, , .		21
227	MASR: A Modular Accelerator for Sparse RNNs. , 2019, , .		30
228	Non-Volatile Memory Array Based Quantization- and Noise-Resilient LSTM Neural Networks. , 2019, , .		2
229	A neuromorphic GAN system for intelligent computing on edge. , 2019, , .		0
230	Survey of Memory Management Techniques for HPC and Cloud Computing. IEEE Access, 2019, 7, 167351-167373.	2.6	4
231	The Impact of Emerging Technologies on Architectures and System-level Management: Invited Paper. , 2019, , .		0
232	FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review. IEEE Access, 2019, 7, 7823-7859.	2.6	303
233	Supporting the Momentum Training Algorithm Using a Memristor-Based Synapse. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 1571-1583.	3.5	12
234	A QoS-QoR Aware CNN Accelerator Design Approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 1995-2007.	1.9	3
235	A Robust Digital RRAM-Based Convolutional Block for Low-Power Image Processing and Learning Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 643-654.	3.5	39

#	Article	IF	CITATIONS
236	Low power & mobile hardware accelerators for deep convolutional neural networks. The Integration VLSI Journal, 2019, 65, 110-127.	1.3	4
237	TIME: A Training-in-Memory Architecture for RRAM-Based Deep Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 834-847.	1.9	44
238	Boosting Convolutional Neural Networks Performance Based on FPGA Accelerator. Advances in Intelligent Systems and Computing, 2020, , 509-517.	0.5	18
239	Low Bit-Width Convolutional Neural Network on RRAM. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1414-1427.	1.9	37
240	MRIMA: An MRAM-Based In-Memory Accelerator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1123-1136.	1.9	61
241	The Heterogeneous Deep Neural Network Processor With a Non-von Neumann Architecture. Proceedings of the IEEE, 2020, 108, 1245-1260.	16.4	26
242	Exploiting In-Memory Data Patterns for Performance Improvement on Crossbar Resistive Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2347-2360.	1.9	4
243	The Impact of Ferroelectric FETs on Digital and Analog Circuits and Architectures. IEEE Design and Test, 2020, 37, 79-99.	1.1	13
244	Vesti: Energy-Efficient In-Memory Computing Accelerator for Deep Neural Networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 48-61.	2.1	32
245	Towards an automated design flow for memristor based VLSI circuits. The Integration VLSI Journal, 2020, 70, 21-31.	1.3	1
246	Design and characterization of superconducting nanowire-based processors for acceleration of deep neural network training. Nanotechnology, 2020, 31, 025204.	1.3	8
247	SemiMap: A Semi-Folded Convolution Mapping for Speed-Overhead Balance on Crossbars. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 117-130.	1.9	15
248	NeuADC: Neural Network-Inspired Synthesizable Analog-to-Digital Conversion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1841-1854.	1.9	16
249	RowHammer: A Retrospective. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1555-1571.	1.9	95
250	Spintronic Logic-in-Memory Paradigms and Implementations. Springer Series in Advanced Microelectronics, 2020, , 215-229.	0.3	11
251	iCELIA: A Full-Stack Framework for STT-MRAM-Based Deep Learning Acceleration. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 408-422.	4.0	15
252	Enhanced test algorithm for nanoelectronic Resistive Random Access Memory testing using self check write scheme. Analog Integrated Circuits and Signal Processing, 2020, 104, 145-155.	0.9	2
253	Handling Stuck-at-Fault Defects Using Matrix Transformation for Robust Inference of DNNs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2448-2460.	1.9	25

#	Article	IF	CITATIONS
254	ApGAN: Approximate GAN for Robust Low Energy Learning From Imprecise Components. IEEE Transactions on Computers, 2020, 69, 349-360.	2.4	22
255	TraNNsformer: Clustered Pruning on Crossbar-Based Architectures for Energy-Efficient Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2361-2374.	1.9	7
256	SearcHD: A Memory-Centric Hyperdimensional Computing With Stochastic Training. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2422-2433.	1.9	43
257	Optimizing Weight Mapping and Data Flow for Convolutional Neural Networks on Processing-in-Memory Architectures. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1333-1343.	3.5	47
258	ERA-LSTM: An Efficient ReRAM-Based Architecture for Long Short-Term Memory. IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 1328-1342.	4.0	26
259	3D Memristor Crossbar Architecture for a Multicore Neuromorphic System. , 2020, , .		6
260	Neuromorphic Computing Using Emerging Synaptic Devices: A Retrospective Summary and an Outlook. Electronics (Switzerland), 2020, 9, 1414.	1.8	35
261	A Neural Network Decomposition Algorithm for Mapping on Crossbar-Based Computing Systems. Electronics (Switzerland), 2020, 9, 1526.	1.8	2
262	In-Memory Computing in Emerging Memory Technologies for Machine Learning: An Overview. , 2020, , .		28
263	ReSiPE: ReRAM-based Single-Spiking Processing-In-Memory Engine. , 2020, , .		9
264	Algorithm/Hardware Co-Design for In-Memory Neural Network Computing with Minimal Peripheral Circuit Overhead. , 2020, , .		8
265	Controlling Real Memristors in Embedded Systems. , 2020, , .		0
266	SIMBA: A Skyrmionic In-Memory Binary Neural Network Accelerator. IEEE Transactions on Magnetics, 2020, 56, 1-12.	1.2	3
267	Lattice: An ADC/DAC-less ReRAM-based Processing-In-Memory Architecture for Accelerating Deep Convolution Neural Networks. , 2020, , .		21
268	Resistive Crossbars as Approximate Hardware Building Blocks for Machine Learning: Opportunities and Challenges. Proceedings of the IEEE, 2020, 108, 2276-2310.	16.4	55
269	ReGra: Accelerating Graph Traversal Applications Using ReRAM With Lower Communication Cost. IEEE Access, 2020, 8, 116605-116616.	2.6	2
270	A Heterogeneous PIM Hardware-Software Co-Design for Energy-Efficient Graph Processing. , 2020, , .		24
271	aCortex: An Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 98-106	1.1	5

#	Article	IF	CITATIONS
272	Spara: An Energy-Efficient ReRAM-Based Accelerator for Sparse Graph Analytics Applications. , 2020, , .		22
273	Hyper-Ap: Enhancing Associative Processing Through A Full-Stack Optimization. , 2020, , .		11
274	Integrated CAM-RAM Functionality using Ferroelectric FETs. , 2020, , .		4
275	MINT: Mixed-Precision RRAM-Based IN-Memory Training Architecture. , 2020, , .		15
276	X-VS: Crossbar-Based Processing-in-Memory Architecture for Video Summarization. , 2020, , .		0
277	Reliability of NAND Flash Memory as a Weight Storage Device of Artificial Neural Network. IEEE Transactions on Device and Materials Reliability, 2020, 20, 596-603.	1.5	7
278	NEBULA: A Neuromorphic Spin-Based Ultra-Low Power Architecture for SNNs and ANNs. , 2020, , .		23
279	Efficient Organization of Digital Periphery to Support Integer Datatype for Memristor-Based CIM. , 2020, , .		8
280	Design of Almost-Nonvolatile Embedded DRAM Using Nanoelectromechanical Relay Devices. , 2020, , .		2
281	iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture. , 2020, , .		34
282	PIM-Prune: Fine-Grain DCNN Pruning for Crossbar-Based Process-In-Memory Architecture. , 2020, , .		29
283	Flex-PIM: A Ferroelectric FET based Vector Matrix Multiplication Engine with Dynamical Bitwidth and Floating Point Precision. , 2020, , .		4
284	Learning to Predict IR Drop with Effective Training for ReRAM-based Neural Network Hardware. , 2020, , .		25
285	A New MRAM-Based Process In-Memory Accelerator for Efficient Neural Network Training with Floating Point Precision. , 2020, , .		10
286	Enabling Secure NVM-Based in-Memory Neural Network Computing by Sparse Fast Gradient Encryption. IEEE Transactions on Computers, 2020, 69, 1596-1610.	2.4	15
287	PattPIM: A Practical ReRAM-Based DNN Accelerator by Reusing Weight Pattern Repetitions. , 2020, , .		9
288	RaQu: An automatic high-utilization CNN quantization and mapping framework for general-purpose RRAM Accelerator. , 2020, , .		18
289	RF-Rate Hybrid CNN Accelerator Based on Analog-CMOS and Xilinx RFSoC. , 2020, , .		2

#	Article	IF	CITATIONS
290	Efficient Time-Domain In-Memory Computing Based on TST-MRAM. , 2020, , .		4
291	Supported-BinaryNet: Bitcell Array-Based Weight Supports for Dynamic Accuracy-Energy Trade-Offs in SRAM-Based Binarized Neural Network. , 2020, , .		5
292	On Minimizing Analog Variation Errors to Resolve the Scalability Issue of ReRAM-Based Crossbar Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3856-3867.	1.9	10
293	High-Throughput In-Memory Computing for Binary Deep Neural Networks With Monolithically Integrated RRAM and 90-nm CMOS. IEEE Transactions on Electron Devices, 2020, 67, 4185-4192.	1.6	92
294	Tunable Non-Volatile Analog Resistive Memory and Its Application in Al. , 2020, , .		1
295	An Overview of Efficient Interconnection Networks for Deep Neural Network Accelerators. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 268-282.	2.7	46
296	Inâ€Memory Vectorâ€Matrix Multiplication in Monolithic Complementary Metal–Oxide–Semiconductorâ€Memristor Integrated Circuits: Design Choices, Challenges, and Perspectives. Advanced Intelligent Systems, 2020, 2, 2000115.	3.3	100
297	DeepRecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation Inference. , 2020, , .		72
298	A Kernel Unfolding Approach to Trade Data Movement with Computation Power for CNN Acceleration. , 2020, , .		0
299	Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory. Nanomaterials, 2020, 10, 1821.	1.9	28
300	Computing-in-Memory for Performance and Energy-Efficient Homomorphic Encryption. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 2300-2313.	2.1	19
301	Near Data Acceleration with Concurrent Host Access. , 2020, , .		9
302	SpinalFlow: An Architecture and Dataflow Tailored for Spiking Neural Networks. , 2020, , .		36
303	Planaria: Dynamic Architecture Fission for Spatial Multi-Tenant Acceleration of Deep Neural Networks. , 2020, , .		42
304	An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs. , 2020, , .		11
305	An Improved K-Spare Decomposing Algorithm for Mapping Neural Networks onto Crossbar-Based Neuromorphic Computing Systems. Journal of Low Power Electronics and Applications, 2020, 10, 40.	1.3	0
306	Memristor Overwrite Logic (MOL) for Energy-Efficient In-Memory DNN. , 2020, , .		0
307	NeuroMem: Analog Graphene-Based Resistive Memory for Artificial Neural Networks. Scientific Reports, 2020, 10, 9473.	1.6	37

#	Article	IF	CITATIONS
308	Coherency overhead of Processing-in-Memory in the presence of shared data. , 2020, , .		0
309	C3SRAM: An In-Memory-Computing SRAM Macro Based on Robust Capacitive Coupling Computing Mechanism. IEEE Journal of Solid-State Circuits, 2020, 55, 1888-1897.	3.5	144
310	PANTHER: A Programmable Architecture for Neural Network Training Harnessing Energy-Efficient ReRAM. IEEE Transactions on Computers, 2020, 69, 1128-1142.	2.4	54
311	Accelerating Deep Neural Network In-Situ Training With Non-Volatile and Volatile Memory Based Hybrid Precision Synapses. IEEE Transactions on Computers, 2020, 69, 1113-1127.	2.4	36
312	In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications. , 2020, , .		5
313	Benchmark of the Compute-in-Memory-Based DNN Accelerator With Area Constraint. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1945-1952.	2.1	11
314	CIMAT: A Compute-In-Memory Architecture for On-chip Training Based on Transpose SRAM Arrays. IEEE Transactions on Computers, 2020, , 1-1.	2.4	35
315	DM-IMCA: A dual-mode in-memory computing architecture for general purpose processing. IEICE Electronics Express, 2020, 17, 20200005-20200005.	0.3	5
316	A Robust 8-Bit Non-Volatile Computing-in-Memory Core for Low-Power Parallel MAC Operations. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1867-1880.	3.5	29
317	A Compact Model of Analog RRAM With Device and Array Nonideal Effects for Neuromorphic Systems. IEEE Transactions on Electron Devices, 2020, 67, 1593-1599.	1.6	29
318	Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey. Proceedings of the IEEE, 2020, 108, 485-532.	16.4	441
319	Self-Aware Neural Network Systems: A Survey and New Perspective. Proceedings of the IEEE, 2020, 108, 1047-1067.	16.4	7
320	Memory devices and applications for in-memory computing. Nature Nanotechnology, 2020, 15, 529-544.	15.6	968
321	A Flexible Processing-in-Memory Accelerator for Dynamic Channel-Adaptive Deep Neural Networks. , 2020, , .		8
322	Benchmark Non-volatile and Volatile Memory Based Hybrid Precision Synapses for In-situ Deep Neural Network Training. , 2020, , .		3
323	Eva-CiM: A System-Level Performance and Energy Evaluation Framework for Computing-in-Memory Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 5011-5024.	1.9	27
324	Vector multiplications using memristive devices and applications thereof. , 2020, , 221-254.		2
325	Ultralow Power Neuromorphic Accelerator for Deep Learning Using Ni/HfO ₂ /TiN Resistive Random Access Memory. , 2020, , .		9

#	Article	IF	CITATIONS
326	SCRIMP: A General Stochastic Computing Architecture using ReRAM in-Memory Processing. , 2020, , .		8
327	Memory-Logic Hybrid Gate With 3-D Stackable Complementary Latches. IEEE Transactions on Electron Devices, 2020, 67, 3109-3114.	1.6	3
328	Go Unary: A Novel Synapse Coding and Mapping Scheme for Reliable ReRAM-based Neuromorphic Computing. , 2020, , .		14
329	Tianjic: A Unified and Scalable Chip Bridging Spike-Based and Continuous Neural Computation. IEEE Journal of Solid-State Circuits, 2020, 55, 2228-2246.	3.5	78
330	Highly Reliable Low-Voltage Memristive Switching and Artificial Synapse Enabled by van der Waals Integration. Matter, 2020, 2, 965-976.	5.0	40
331	Survey on memory management techniques in heterogeneous computing systems. IET Computers and Digital Techniques, 2020, 14, 47-60.	0.9	11
332	A Highly Parallelized PIM-Based Accelerator for Transaction-Based Blockchain in IoT Environment. IEEE Internet of Things Journal, 2020, 7, 4072-4083.	5.5	7
333	Resistive switching materials forÂinformation processing. Nature Reviews Materials, 2020, 5, 173-195.	23.3	668
334	Hybrid Spin-CMOS Polymorphic Logic Gate With Application in In-Memory Computing. IEEE Transactions on Magnetics, 2020, 56, 1-15.	1.2	17
335	A Survey of Accelerator Architectures for Deep Neural Networks. Engineering, 2020, 6, 264-274.	3.2	174
336	AccPar: Tensor Partitioning for Heterogeneous Deep Learning Accelerators. , 2020, , .		24
337	Fulcrum: A Simplified Control and Access Mechanism Toward Flexible and Practical In-Situ Accelerators. , 2020, , .		17
338	EFLOPS: Algorithm and System Co-Design for a High Performance Distributed Training Platform. , 2020, , .		21
339	Demonstration of 3D Convolution Kernel Function Based on 8-Layer 3D Vertical Resistive Random Access Memory. IEEE Electron Device Letters, 2020, 41, 497-500.	2.2	19
340	WooKong: A Ubiquitous Accelerator for Recommendation Algorithms with Custom Instruction Sets on FPGA. IEEE Transactions on Computers, 2020, , 1-1.	2.4	11
341	Recurrent Neural Networks: An Embedded Computing Perspective. IEEE Access, 2020, 8, 57967-57996.	2.6	54
342	NS-CIM: A Current-Mode Computation-in-Memory Architecture Enabling Near-Sensor Processing for Intelligent IoT Vision Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2909-2922.	3.5	25
343	A Parallel Multibit Programing Scheme With High Precision for RRAM-Based Neuromorphic Systems. IEEE Transactions on Electron Devices, 2020, 67, 2213-2217.	1.6	34

#	Article	IF	CITATIONS
344	Representable Matrices: Enabling High Accuracy Analog Computation for Inference of DNNs using Memristors. , 2020, , .		1
345	Short-Term Long-Term Compute-in-Memory Architecture: A Hybrid Spin/CMOS Approach Supporting Intrinsic Consolidation. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 62-70.	1.1	8
346	RED: A ReRAM-Based Efficient Accelerator for Deconvolutional Computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4736-4747.	1.9	8
347	A deadlock-free physical mapping method on the many-core neural network chip. Neurocomputing, 2020, 401, 327-337.	3.5	8
348	ITT-RNA: Imperfection Tolerable Training for RRAM-Crossbar-Based Deep Neural-Network Accelerator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 129-142.	1.9	15
349	PermCNN: Energy-Efficient Convolutional Neural Network Hardware Architecture With Permuted Diagonal Structure. IEEE Transactions on Computers, 2021, 70, 163-173.	2.4	15
350	A Reduced Architecture for ReRAM-Based Neural Network Accelerator and Its Software Stack. IEEE Transactions on Computers, 2021, 70, 316-331.	2.4	2
351	Efficient and Robust RRAM-Based Convolutional Weight Mapping With Shifted and Duplicated Kernel. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 287-300.	1.9	11
352	Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators. IEEE Transactions on Computers, 2021, 70, 595-605.	2.4	37
353	RxNN: A Framework for Evaluating Deep Neural Networks on Resistive Crossbars. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 326-338.	1.9	54
354	Safety evaluation method of hoisting machinery based on neural network. Neural Computing and Applications, 2021, 33, 565-576.	3.2	5
355	Merged Logic and Memory Fabrics for Accelerating Machine Learning Workloads. IEEE Design and Test, 2021, 38, 39-68.	1.1	10
356	STAR: Synthesis of Stateful Logic in RRAM Targeting High Area Utilization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 864-877.	1.9	2
357	AccuReD: High Accuracy Training of CNNs on ReRAM/GPU Heterogeneous 3-D Architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 971-984.	1.9	28
358	Evaluating Neural Network-Inspired Analog-to-Digital Conversion With Low-Precision RRAM. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 808-821.	1.9	9
359	LrGAN: A Compact and Energy Efficient PIM-Based Architecture for GAN Training. IEEE Transactions on Computers, 2021, 70, 1427-1442.	2.4	1
360	In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective. Proceedings of the IEEE, 2021, 109, 14-42.	16.4	96
361	A Data-Driven Asynchronous Neural Network Accelerator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1874-1886.	1.9	3

#	Article	IF	CITATIONS
362	DLUX: A LUT-Based Near-Bank Accelerator for Data Center Deep Learning Training Workloads. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1586-1599.	1.9	7
363	ReLOPE: Resistive RAM-Based Linear First-Order Partial Differential Equation Solver. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 237-241.	2.1	6
364	Flash Memory Array for Efficient Implementation of Deep Neural Networks. Advanced Intelligent Systems, 2021, 3, 2000161.	3.3	14
365	CKFO: Convolution Kernel First Operated Algorithm With Applications in Memristor-Based Convolutional Neural Network. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1640-1647.	1.9	52
366	Diagonal Matrix Regression Layer: Training Neural Networks on Resistive Crossbars With Interconnect Resistance Effect. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 1662-1671.	1.9	15
367	Effective Spare Line Allocation Built-in Redundancy Analysis With Base Common Spare for Yield Improvement of 3D Memory. IEEE Access, 2021, 9, 76716-76729.	2.6	0
368	Polymorphic Accelerators for Deep Neural Networks. IEEE Transactions on Computers, 2022, 71, 534-546.	2.4	7
369	A Fast Precision Tuning Solution for Always-On DNN Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1236-1248.	1.9	1
370	Custom Hardware Architectures for Deep Learning on Portable Devices: A Review. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 6068-6088.	7.2	21
371	A Survey of Neuromorphic Computing-in-Memory: Architectures, Simulators, and Security. IEEE Design and Test, 2022, 39, 90-99.	1.1	19
372	Unary Coding and Variation-Aware Optimal Mapping Scheme for Reliable ReRAM-Based Neuromorphic Computing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 2495-2507.	1.9	13
373	Exploring the Feasibility of Using 3-D XPoint as an In-Memory Computing Accelerator. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2021, 7, 88-96.	1.1	1
374	A Practical Highly Paralleled ReRAM-Based DNN Accelerator by Reusing Weight Pattern Repetitions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 922-935.	1.9	4
375	An Automated Quantization Framework for High-Utilization RRAM-Based PIM. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 583-596.	1.9	6
376	Robust Processing-In-Memory With Multibit ReRAM Using Hessian-Driven Mixed-Precision Computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1006-1019.	1.9	7
377	DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks. IEEE Access, 2021, 9, 134457-134502.	2.6	30
378	XMAP: Programming Memristor Crossbars for Analog Matrix–Vector Multiplication: Toward High Precision Using Representable Matrices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1827-1841.	1.9	5
379	TAICHI: A Tiled Architecture for In-Memory Computing and Heterogeneous Integration. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 559-563.	2.2	5

#	Article	IF	CITATIONS
380	Compute-in-Memory Chips for Deep Learning: Recent Trends and Prospects. IEEE Circuits and Systems Magazine, 2021, 21, 31-56.	2.6	115
381	Efficient Identification of Critical Faults in Memristor-Based Inferencing Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 2301-2314.	1.9	0
382	DetectX—Adversarial Input Detection Using Current Signatures in Memristive XBar Arrays. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4482-4494.	3.5	3
383	PIMCaffe: Functional Evaluation of a Machine Learning Framework for In-Memory Neural Processing Unit. IEEE Access, 2021, 9, 96629-96640.	2.6	4
384	Efficient and Optimized Methods for Alleviating the Impacts of IR-Drop and Fault in RRAM Based Neural Computing Systems. IEEE Journal of the Electron Devices Society, 2021, 9, 645-652.	1.2	14
385	A Universal RRAM-Based DNN Accelerator With Programmable Crossbars Beyond MVM Operator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 2094-2106.	1.9	Ο
386	Hardware-Aware Design for Edge Intelligence. IEEE Open Journal of Circuits and Systems, 2021, 2, 113-127.	1.4	7
387	SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory Accelerator. , 2021, , .		30
388	Efficient Identification of Critical Faults in Memristor Crossbars for Deep Neural Networks. , 2021, , .		5
389	GradPIM: A Practical Processing-in-DRAM Architecture for Gradient Descent. , 2021, , .		15
390	Receptive-Field and Switch-Matrices Based ReRAM Accelerator with Low Digital-Analog Conversion for CNNs. , 2021, , .		0
391	3D Ferrimagnetic Device for Multi-Bit Storage and Efficient In-Memory Computing. IEEE Electron Device Letters, 2021, 42, 152-155.	2.2	8
392	An Analog Preconditioner for Solving Linear Systems. , 2021, , .		9
393	A Runtime Reconfigurable Design of Compute-in-Memory based Hardware Accelerator. , 2021, , .		3
394	Perspectives on Emerging Computation-in-Memory Paradigms. , 2021, , .		9
395	Time-Domain Computing in Memory Using Spintronics for Energy-Efficient Convolutional Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 1193-1205.	3.5	39
396	Image Recognizing Based on the Architecture Integrated with CIM and CIS. , 2021, , .		0
397	Can Emerging Computing Paradigms Help Enhancing Reliability Towards the End of Technology Roadmap?. , 2021, , .		3

	CITATION	Report	
#	Article	IF	CITATIONS
398	Beetle Antennae Search Strategy for Neural Network Model Optimization with Application to Glomerular Filtration Rate Estimation. Neural Processing Letters, 2021, 53, 1501-1522.	2.0	3
399	Microprocessor Processes and Devices in Post Exascale Computing Era. , 2021, , .		0
400	Clean-prefetcher: look-ahead prefetching without cache pollution. IEICE Electronics Express, 2021, 18, 20210027-20210027.	0.3	0
401	Application of the fruit fly optimization algorithm to an optimized neural network model in radar target recognition. Computer Optics, 2021, 45, .	1.3	3
402	A RRAM based Max-Pooling Scheme for Convolutional Neural Network. , 2021, , .		5
403	A Compute Cache System for Signal Processing Applications. Journal of Signal Processing Systems, 2021, 93, 1173-1186.	1.4	2
404	multiPULPly. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-27.	1.8	4
405	Modeling-Based Design of Memristive Devices for Brain-Inspired Computing. Frontiers in Nanotechnology, 2021, 3, .	2.4	5
406	Improving DNN Fault Tolerance using Weight Pruning and Differential Crossbar Mapping for ReRAM-based Edge AI. , 2021, , .		19
407	Enabling Highly Efficient Capsule Networks Processing Through Software-Hardware Co-Design. IEEE Transactions on Computers, 2021, 70, 495-510.	2.4	6
408	NAS4RRAM: neural network architecture search for inference on RRAM-based accelerators. Science China Information Sciences, 2021, 64, 1.	2.7	16
409	Recent progress of integrated circuits and optoelectronic chips. Science China Information Sciences, 2021, 64, 1.	2.7	56
410	HPM: High-Precision Modeling of a Low-Power Inverter-Based Memristive Neural Network. Journal of Circuits, Systems and Computers, 2021, 30, .	1.0	1
411	Energy-efficient computing-in-memory architecture for Al processor: device, circuit, architecture perspective. Science China Information Sciences, 2021, 64, 1.	2.7	13
412	Hybrid In-Memory Computing Architecture for the Training of Deep Neural Networks. , 2021, , .		0
413	Intermittent Undefined State Fault in RRAMs. , 2021, , .		16
414	NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function Combinational Logic. , 2021, , .		6
415	Resistive Memory Process Optimization for High Resistance Switching Toward Scalable Analog Compute Technology for Deep Learning. IEEE Electron Device Letters, 2021, 42, 759-762.	2.2	7

#	Article	IF	CITATIONS
416	GoSPA: An Energy-efficient High-performance Globally Optimized SParse Convolutional Neural Network Accelerator. , 2021, , .		34
417	FORMS: Fine-grained Polarized ReRAM-based In-situ Computation for Mixed-signal DNN Accelerator. , 2021, , .		28
418	RaPiD: AI Accelerator for Ultra-low Precision Training and Inference. , 2021, , .		30
419	QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips. , 2021, , .		20
420	Distance-in-time versus distance-in-space. , 2021, , .		1
421	Compute-in-RRAM with Limited On-chip Resources. , 2021, , .		1
422	Accelerating AI Applications using Analog In-Memory Computing. , 2021, , .		4
423	A Survey Describing Beyond Si Transistors and Exploring Their Implications for Future Processors. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-44.	1.8	7
424	Compact Reliability Model of Analog RRAM for Computation-in-Memory Device-to-System Codesign and Benchmark. IEEE Transactions on Electron Devices, 2021, 68, 2686-2692.	1.6	9
425	Stable and compact design of Memristive GoogLeNet Neural Network. Neurocomputing, 2021, 441, 52-63.	3.5	20
426	Eliminating Iterations of Iterative Methods. , 2021, , .		8
427	Communication Algorithm-Architecture Co-Design for Distributed Deep Learning. , 2021, , .		11
428	Magnetoresistive Circuits and Systems: Embedded Non-Volatile Memory to Crossbar Arrays. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 2281-2294.	3.5	7
429	A Survey on Silicon Photonics for Deep Learning. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-57.	1.8	44
430	High-Throughput, Area-Efficient, and Variation-Tolerant 3-D In-Memory Compute System for Deep Convolutional Neural Networks. IEEE Internet of Things Journal, 2021, 8, 9219-9232.	5.5	12
431	NASA: Accelerating Neural Network Design with a NAS Processor. , 2021, , .		3
432	AUTO-PRUNE. , 2021, , .		19
433	Energy-Efficient Hybrid-RAM with Hybrid Bit-Serial based VMM Support. , 2021, , .		0

	Сітатіс	on Report	
#	Article	IF	CITATIONS
434	Processing-in-Memory Acceleration of MAC-based Applications Using Residue Number System. , 2021, , .		5
435	Robotic Computing on FPGAs. Synthesis Lectures on Computer Architecture, 2021, 16, 1-218.	1.3	7
436	Efficient Pipelined Execution of CNNs Based on In-Memory Computing and Graph Homomorphism Verification. IEEE Transactions on Computers, 2021, 70, 922-935.	2.4	9
437	Re2PIM., 2021,,.		2
438	An ultra-low power, ±0.3ÂV supply, fully-tunable Gaussian function circuit architecture for radial-basis functions analog hardware implementation. AEU - International Journal of Electronics and Communications, 2021, 136, 153755.	1.7	11
439	Case Study on Integrated Architecture for In-Memory and In-Storage Computing. Electronics (Switzerland), 2021, 10, 1750.	1.8	3
440	The viability of analog-based accelerators for neuromorphic computing: a survey. Neuromorphic Computing and Engineering, 2021, 1, 012001.	2.8	16
441	FPRA: A Fine-grained Parallel RRAM Architecture. , 2021, , .		3
442	Space-efficient Graph Data Placement to Save Energy of ReRAM Crossbar. , 2021, , .		2
443	An In-Memory Analog Computing Co-Processor for Energy-Efficient CNN Inference on Mobile Devices. , 2021, , .		8
444	Enabling Robust SOT-MTJ Crossbars for Machine Learning using Sparsity-Aware Device-Circuit Co-design. , 2021, , .		7
445	Architecting for Artificial Intelligence with Emerging Nanotechnology. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-33.	1.8	3
446	A Design of Sparse Neural Network Accelerator for Memory Access Optimization. , 2021, , .		0
447	In-/Near-Memory Computing. Synthesis Lectures on Computer Architecture, 2021, 16, 1-140.	1.3	2
448	Spintronic Computing-in-Memory Architecture Based on Voltage-Controlled Spin–Orbit Torque Devices for Binary Neural Networks. IEEE Transactions on Electron Devices, 2021, 68, 4944-4950.	1.6	13
449	Rescuing RRAM-Based Computing From Static and Dynamic Faults. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 2049-2062.	1.9	8
450	FTT-NAS: Discovering Fault-tolerant Convolutional Neural Architecture. ACM Transactions on Design Automation of Electronic Systems, 2021, 26, 1-24.	1.9	9
451	Polyhedral-Based Compilation Framework for In-Memory Neural Network Accelerators. ACM Journal on Emerging Technologies in Computing Systems, 2022, 18, 1-23.	1.8	0

#	Article	IF	Citations
452	GIRAF: General Purpose In-Storage Resistive Associative Framework. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 276-287.	4.0	10
453	Look-up-Table Based Processing-in-Memory Architecture With Programmable Precision-Scaling for Deep Learning Applications. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 263-275.	4.0	8
454	Cross-layer Design for Computing-in-Memory. , 2021, , .		2
455	FeFET-Based Binarized Neural Networks Under Temperature-Dependent Bit Errors. IEEE Transactions on Computers, 2022, 71, 1681-1695.	2.4	10
456	MARS: Multimacro Architecture SRAM CIM-Based Accelerator With Co-Designed Compressed Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1550-1562.	1.9	8
457	Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with Application to Neural Architecture Search. , 2021, , .		13
458	Merged Logic and Memory Fabrics for AI Workloads. , 2021, , .		0
459	SRIF: Scalable and Reliable Integrate and Fire Circuit ADC for Memristor-Based CIM Architectures. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 1917-1930.	3.5	10
460	S-FLASH: A NAND Flash-based Deep Neural Network Accelerator Exploiting Bit-level Sparsity. IEEE Transactions on Computers, 2021, , 1-1.	2.4	10
461	OCC: An Automated End-to-End Machine Learning Optimizing Compiler for Computing-In-Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1674-1686.	1.9	7
462	Performance and Accuracy Tradeoffs for Training Graph Neural Networks on ReRAM-Based Architectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1743-1756.	2.1	12
463	CMOS-integrated memristive non-volatile computing-in-memory for Al edge processors. Nature Electronics, 2019, 2, 420-428.	13.1	161
464	Deep Learning Acceleration with Neuron-to-Memory Transformation. , 2020, , .		14
465	Enabling Highly Efficient Capsule Networks Processing Through A PIM-Based Architecture Design. , 2020, , .		15
466	DUAL: Acceleration of Clustering Algorithms using Digital-based Processing In-Memory. , 2020, , .		51
467	Building the Computing System for Autonomous Micromobility Vehicles: Design Constraints and Architectural Optimizations. , 2020, , .		42
468	TensorDIMM. , 2019, , .		93
469	GenCache. , 2019, , .		26

#	Article	IF	CITATIONS
470	3D-ReG. ACM Journal on Emerging Technologies in Computing Systems, 2020, 16, 1-24.	1.8	14
471	ReTransformer. , 2020, , .		35
472	Energy-efficient XNOR-free in-memory BNN accelerator with input distribution regularization. , 2020, ,		7
473	Hessian-driven unequal protection of DNN parameters for robust inference. , 2020, , .		5
474	SMAUG. Transactions on Architecture and Code Optimization, 2020, 17, 1-26.	1.6	32
475	Jointly optimizing preprocessing and inference for DNN-based visual analytics. Proceedings of the VLDB Endowment, 2020, 14, 87-100.	2.1	19
481	NC-Net: Efficient Neuromorphic Computing Using Aggregated Subnets on a Crossbar-Based Architecture With Nonvolatile Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 2957-2969.	1.9	6
482	Policy Gradient-Based Core Placement Optimization for Multichip Many-Core Systems. IEEE Transactions on Neural Networks and Learning Systems, 2021, PP, 1-15.	7.2	1
483	Network-on-ReRAM for Scalable Processing-in-Memory Architecture Design. , 2021, , .		0
484	NLP-Fast: A Fast, Scalable, and Flexible System to Accelerate Large-Scale Heterogeneous NLP Models. , 2021, , .		6
485	Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication. , 0, , .		2
486	PIM-DL: Boosting DNN Inference on Digital Processing In-Memory Architectures via Data Layout Optimizations. , 2021, , .		3
487	Analog Gaussian Function Circuit: Architectures, Operating Principles and Applications. Electronics (Switzerland), 2021, 10, 2530.	1.8	18
488	ROA: A Rapid Learning Scheme for In-Situ Memristor Networks. Frontiers in Artificial Intelligence, 2021, 4, 692065.	2.0	2
489	ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory based SSDs. , 2021, , .		5
490	High performance accelerators for deep neural networks: A review. Expert Systems, 2022, 39, e12831.	2.9	5
492	Efficient Mini-Batch Training on Memristor Neural Network Integrating Gradient Calculation and Weight Update. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, E101.A, 1092-1100.	0.2	1
493	Active Storage. , 2019, , 11-18.		0

IF ARTICLE CITATIONS # A Data-Centric Accelerator Design Based on Processing in Memory., 2019,,. 494 0 Accelerating Inference on Binary Neural Networks with Digital RRAM Processing. IFIP Advances in Information and Communication Technology, 2020, , 257-278. FPGA-based Near Data Processing Platform Selection Using Fast Performance Modeling (WiP Paper)., 496 2 2020,,. A Device Non-Ideality Resilient Approach for Mapping Neural Networks to Crossbar Arrays., 2020, , . Cross-layer Caching/Buffering Design for Search Trees based on Non-volatile Main Memories., 2020,,. 498 0 499 Deep Learning Acceleration using Digital-Based Processing In-Memory., 2020, , . 500 A Magnetic Reconfigurable Ternary NOR/NAND Logic for Logic-in-Memory Applications. Spin, 0, , . 0.6 2 NNBench-X. Transactions on Architecture and Code Optimization, 2020, 17, 1-25. 1.6 Neural-PIM: Efficient Processing-In-Memory with Neural Approximation of Peripherals. IEEE 502 2.4 3 Transactions on Computers, 2021, , 1-1. Resistive Crossbar-Aware Neural Network Design and Optimization. IEEE Access, 2020, 8, 229066-229085. TDO-CIM: Transparent Detection and Offloading for Computation In-memory., 2020,,. 504 6 In-memory computing with emerging nonvolatile memory devices. Science China Information Sciences, 2.7 2021, 64, 1. Fault-free: A Fault-resilient Deep Neural Network Accelerator based on Realistic ReRAM Devices., 2021, 506 5 ,. F3D: Accelerating 3D Convolutional Neural Networks in Frequency Space Using ReRAM., 2021, , . 508 Pruning of Deep Neural Networks for Fault-Tolerant Memristor-based Accelerators., 2021,,. 7 TinyML: Current Progress, Research Challenges, and Future Roadmap., 2021, , . 509 39 BRAHMS: Beyond Conventional RRAM-based Neural Network Accelerators Using Hybrid Analog Memory 510 5 System., 2021, , . PIMGCN: A ReRAM-Based PIM Design for Graph Convolutional Network Acceleration., 2021, , .

#	Article	IF	CITATIONS
512	TARe: Task-Adaptive in-situ ReRAM Computing for Graph Learning. , 2021, , .		4
513	TiM-DNN: Ternary In-Memory Accelerator for Deep Neural Networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1567-1577.	2.1	20
514	Monitoring the Health of Emerging Neural Network Accelerators with Cost-effective Concurrent Test. , 2020, , .		4
515	Interstice: Inverter-Based Memristive Neural Networks Discretization for Function Approximation Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 1578-1588.	2.1	9
516	Generating Representative Test Sequences from Real Workload for Minimizing DRAM Verification Overhead. ACM Transactions on Design Automation of Electronic Systems, 2020, 25, 1-23.	1.9	0
517	RNNFast. ACM Journal on Emerging Technologies in Computing Systems, 2020, 16, 1-27.	1.8	6
518	SWIPE., 2020, , .		6
519	HitM. , 2020, , .		11
520	Unlocking wordline-level parallelism for fast inference on RRAM-based DNN accelerator. , 2020, , .		5
521	A thermal-aware optimization framework for ReRAM-based deep neural network acceleration. , 2020, , .		13
522	MobiLatice. , 2020, , .		7
523	Accelerating 3D vertical resistive memories with opportunistic write latency reduction. , 2020, , .		1
524	A Low Power In-DRAM Architecture for Quantized CNNs using Fast Winograd Convolutions. , 2020, , .		9
525	Current injection: a hardware method of adapting non-ideal effects of ReRAM based deep learning accelerator. IEICE Electronics Express, 2020, 17, 20200273-20200273.	0.3	3
526	SuperNPU: An Extremely Fast Neural Processing Unit Using Superconducting Logic Devices. , 2020, , .		32
527	Accuracy Optimization With the Framework of Non-Volatile Computing-In-Memory Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 518-529.	3.5	4
528	Software-Hardware Co-Optimization on Partial-Sum Problem for PIM-based Neural Network Accelerator. , 2021, , .		1
529	Challenges and Opportunities of Energy-Efficient CIM SoC Design for Edge Al Devices. , 2021, , .		Ο

#	Article	IF	CITATIONS
530	Sparse Vector-Matrix Multiplication Acceleration in Diode-Selected Crossbars. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 2186-2196.	2.1	0
531	SCARE: Side Channel Attack on In-Memory Computing for Reverse Engineering. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 2040-2051.	2.1	3
532	A Framework for Accelerating Transformer-Based Language Model on ReRAM-Based Architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 3026-3039.	1.9	6
533	A Low-Power DNN Accelerator Enabled by a Novel Staircase RRAM Array. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4416-4427.	7.2	3
534	ReHy: A ReRAM-based Digital/Analog Hybrid PIM Architecture for Accelerating CNN Training. IEEE Transactions on Parallel and Distributed Systems, 2021, , 1-1.	4.0	7
535	An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1480-1493.	3.5	11
536	New paradigm of FPGA-based computational intelligence from surveying the implementation of DNN accelerators. Design Automation for Embedded Systems, 2022, 26, 1-27.	0.7	5
537	Processing-in-Memory Accelerator for Dynamic Neural Network with Run-Time Tuning of Accuracy, Power and Latency. , 2020, , .		1
538	A Ferroelectric FET Based In-memory Architecture for Multi-Precision Neural Networks. , 2020, , .		6
539	C2IM: A Compact Computing-In-Memory Unit of 10 Transistors with Standard 6T SRAM. , 2020, , .		0
540	NATSA: A Near-Data Processing Accelerator for Time Series Analysis. , 2020, , .		24
541	TrainBox: An Extreme-Scale Neural Network Training Server Architecture by Systematically Balancing Operations. , 2020, , .		5
542	Cross-Stack Workload Characterization of Deep Recommendation Systems. , 2020, , .		11
543	ATT: A Fault-Tolerant ReRAM Accelerator for Attention-based Neural Networks. , 2020, , .		3
544	Newton: A DRAM-maker's Accelerator-in-Memory (AiM) Architecture for Machine Learning. , 2020, , .		48
545	FullReuse: A Novel ReRAM-based CNN Accelerator Reusing Data in Multiple Levels. , 2020, , .		2
546	Online Fault Detection in ReRAM-Based Computing Systems by Monitoring Dynamic Power Consumption. , 2020, , .		3
547	An Overview of Computing-in-Memory Interfaces. , 2021, , .		1

#	Article	IF	CITATIONS
548	High Area/Energy Efficiency RRAM CNN Accelerator with Pattern-Pruning-Based Weight Mapping Scheme. , 2021, , .		4
549	CIDAN: Computing in DRAM with Artificial Neurons. , 2021, , .		4
550	Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-In-Memory Hardware. , 2021, , .		20
551	On-line Functional Testing of Memristor-mapped Deep Neural Networks using Backdoored Checksums. , 2021, , .		3
552	SME: ReRAM-based Sparse-Multiplication-Engine to Squeeze-Out Bit Sparsity of Neural Network. , 2021, ,		11
553	Towards Reliable In-Memory Computing:From Emerging Devices to Post-von-Neumann Architectures. , 2021, , .		3
554	Fast and Low-Cost Mitigation of ReRAM Variability for Deep Learning Applications. , 2021, , .		4
555	A Computing-in-memory Scheme with Series Bit-cell in STT-MRAM for Efficient Multi-bit Analog Multiplication. , 2021, , .		3
556	Bit-Transformer: Transforming Bit-level Sparsity into Higher Preformance in ReRAM-based Accelerator. , 2021, , .		12
557	Device quantization policy in variation-aware in-memory computing design. Scientific Reports, 2022, 12, 112.	1.6	6
558	Memristor Parallel Computing for a Matrix-Friendly Genetic Algorithm. IEEE Transactions on Evolutionary Computation, 2022, 26, 901-910.	7.5	4
559	Online Fault Detection in ReRAM-Based Computing Systems for Inferencing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 392-405.	2.1	3
560	G-Nmp: Accelerating Graph Neural Networks with Dimm-Based Near-Memory Processing. SSRN Electronic Journal, 0, , .	0.4	1
561	Re-FeMAT: A Reconfigurable Multifunctional FeFET-Based Memory Architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5071-5084.	1.9	4
562	Full-Circuit Implementation of Transformer Network Based on Memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1395-1407.	3.5	17
563	A Survey of Near-Data Processing Architectures for Neural Networks. Machine Learning and Knowledge Extraction, 2022, 4, 66-102.	3.2	2
564	Review of ASIC accelerators for deep neural network. Microprocessors and Microsystems, 2022, 89, 104441.	1.8	25
565	COSMO: Computing with Stochastic Numbers in Memory. ACM Journal on Emerging Technologies in Computing Systems, 2022, 18, 1-25.	1.8	1

#	Article	IF	CITATIONS
566	Efficient Machine Learning execution with Near-Data Processing. Microprocessors and Microsystems, 2022, 90, 104435.	1.8	2
567	MNEMOSENE: Tile Architecture and Simulator for Memristor-based Computation-in-memory. ACM Journal on Emerging Technologies in Computing Systems, 2022, 18, 1-24.	1.8	7
568	MemUnison: A Racetrack-ReRAM-combined Pipeline Architecture for Energy-Efficient in-Memory CNNs. IEEE Transactions on Computers, 2022, , 1-1.	2.4	0
569	HAWIS: Hardware-Aware Automated WIdth Search for Accurate, Energy-Efficient and Robust Binary Neural Network on ReRAM Dot-Product Engine. , 2022, , .		5
570	STICKER-IM: A 65 nm Computing-in-Memory NN Processor Using Block-Wise Sparsity Optimization and Inter/Intra-Macro Data Reuse. IEEE Journal of Solid-State Circuits, 2022, 57, 2560-2573.	3.5	17
571	SYNTHNET: A High-throughput yet Energy-efficient Combinational Logic Neural Network. , 2022, , .		1
572	Research Progress on Memristor: From Synapses to Computing Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1845-1857.	3.5	44
573	On-Line Fault Protection for ReRAM-Based Neural Networks. IEEE Transactions on Computers, 2023, 72, 423-437.	2.4	1
574	Memristors Enabled Computing Correlation Parameter In-Memory System: A Potential Alternative to Von Neumann Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 755-768.	2.1	12
575	Boosting ReRAM-based DNN by Row Activation Oversubscription. , 2022, , .		2
575 576		2.2	2
	Boosting ReRAM-based DNN by Row Activation Oversubscription. , 2022, , . Bit-Aware Fault-Tolerant Hybrid Retraining and Remapping Schemes for RRAM-Based Computing-in-Memory Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69,	2.2	
576	Boosting ReRAM-based DNN by Row Activation Oversubscription. , 2022, , . Bit-Aware Fault-Tolerant Hybrid Retraining and Remapping Schemes for RRAM-Based Computing-in-Memory Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3144-3148. IVQ: In-Memory Acceleration of DNN Inference Exploiting Varied Quantization. IEEE Transactions on		2
576 577	 Boosting ReRAM-based DNN by Row Activation Oversubscription. , 2022, , . Bit-Aware Fault-Tolerant Hybrid Retraining and Remapping Schemes for RRAM-Based Computing-in-Memory Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3144-3148. NQ: In-Memory Acceleration of DNN Inference Exploiting Varied Quantization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5313-5326. Sparsity-Aware Non-Volatile Computing-In-Memory Macro with Analog Switch Array and 		2
576 577 579	 Boosting ReRAM-based DNN by Row Activation Oversubscription. , 2022, , . Bit-Aware Fault-Tolerant Hybrid Retraining and Remapping Schemes for RRAM-Based Computing-in-Memory Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3144-3148. IVQ: In-Memory Acceleration of DNN Inference Exploiting Varied Quantization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5313-5326. Sparsity-Aware Non-Volatile Computing-In-Memory Macro with Analog Switch Array and Low-Resolution Current-Mode ADC. , 2022, , . A Survey on Machine Learning Accelerators and Evolutionary Hardware Platforms. IEEE Design and 	1.9	2 2 2
576 577 579 580	Boosting ReRAM-based DNN by Row Activation Oversubscription., 2022, , . Bit-Aware Fault-Tolerant Hybrid Retraining and Remapping Schemes for RRAM-Based Computing-in-Memory Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3144-3148. NQ: In-Memory Acceleration of DNN Inference Exploiting Varied Quantization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5313-5326. Sparsity-Aware Non-Volatile Computing-In-Memory Macro with Analog Switch Array and Low-Resolution Current-Mode ADC., 2022, , . A Survey on Machine Learning Accelerators and Evolutionary Hardware Platforms. IEEE Design and Test, 2022, 39, 91-116. A Simulation Framework for Memristor-Based Heterogeneous Computing Architectures. IEEE	1.9	2 2 2 17
5776 5777 5799 5800	Boosting ReRAM-based DNN by Row Activation Oversubscription., 2022, , . Bit-Aware Fault-Tolerant Hybrid Retraining and Remapping Schemes for RRAM-Based Computing-in-Memory Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3144-3148. IVQ: In-Memory Acceleration of DNN Inference Exploiting Varied Quantization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5313-5326. Sparsity-Aware Non-Volatile Computing-In-Memory Macro with Analog Switch Array and Low-Resolution Current-Mode ADC., 2022, , . A Survey on Machine Learning Accelerators and Evolutionary Hardware Platforms. IEEE Design and Test, 2022, 39, 91-116. A Simulation Framework for Memristor-Based Heterogeneous Computing Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5476-5488.	1.9 1.1 1.9	2 2 2 17 4

#	Article	IF	CITATIONS
585	Energy-Efficient Advanced Data Encryption System Using Spin-Based Computing-in-Memory Architecture. IEEE Transactions on Electron Devices, 2022, 69, 1736-1742.	1.6	7
586	Phase Change Nanoelectromechanical Relay for Nonvolatile Low Leakage Switching. Advanced Electronic Materials, 2022, 8, .	2.6	5
587	NeuroVP: A System-Level Virtual Platform for Integration of Neuromorphic Accelerators. , 2021, , .		4
588	Compute RAMs: Adaptable Compute and Storage Blocks for DL-Optimized FPGAs. , 2021, , .		1
589	Massively Parallel Big Data Classification on a Programmable Processing In-Memory Architecture. , 2021, , .		0
590	A Framework for Area-efficient Multi-task BERT Execution on ReRAM-based Accelerators. , 2021, , .		2
591	A Review of Convolutional Neural Networks Hardware Accelerators for AloT Edge Computing. , 2021, ,		1
592	DARe: DropLayer-Aware Manycore ReRAM architecture for Training Graph Neural Networks. , 2021, , .		6
593	RNSiM: Efficient Deep Neural Network Accelerator Using Residue Number Systems. , 2021, , .		11
594	Multi-Objective Optimization of ReRAM Crossbars for Robust DNN Inferencing under Stochastic Noise. , 2021, , .		16
595	SSR: A Skeleton-based Synthesis Flow for Hybrid Processing-in-RRAM Modes. , 2021, , .		2
596	Rerec: In-ReRAM Acceleration with Access-Aware Mapping for Personalized Recommendation. , 2021, , .		9
597	BrainyEdge: An Al-enabled framework for IoT edge computing. ICT Express, 2023, 9, 211-221.	3.3	11
598	Genetic Algorithm-Based Energy-Aware CNN Quantization for Processing-In-Memory Architecture. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 649-662.	2.7	5
599	MSPAN: A Memristive Spike-Based Computing Engine With Adaptive Neuron for Edge Arrhythmia Detection. Frontiers in Neuroscience, 2021, 15, 761127.	1.4	6
600	Structured Term Pruning for Computational Efficient Neural Networks Inference. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 190-203.	1.9	2
601	PIMulator-NN: An Event-Driven, Cross-Level Simulation Framework for Processing-In-Memory-Based Neural Network Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 5464-5475.	1.9	3
602	Processing-in-Memory Technology for Machine Learning: From Basic to ASIC. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2598-2603.	2.2	2

#	Article	IF	CITATIONS
603	Computing-in-memory circuits and cross-layer integrated design and optimization: from SRAM to FeFET. Scientia Sinica Informationis, 2022, 52, 612.	0.2	0
604	A survey of architectures of neural network accelerators. Scientia Sinica Informationis, 2022, 52, 596.	0.2	Ο
605	Design and Simulation of Logic-In-Memory Inverter Based on a Silicon Nanowire Feedback Field-Effect Transistor. Micromachines, 2022, 13, 590.	1.4	5
606	In-Memory Computing Architecture for a Convolutional Neural Network Based on Spin Orbit Torque MRAM. Electronics (Switzerland), 2022, 11, 1245.	1.8	1
607	SDP: Co-Designing Algorithm, Dataflow, and Architecture for In-SRAM Sparse NN Acceleration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 109-121.	1.9	5
608	SoBS-X: Squeeze-Out Bit Sparsity for ReRAM-Crossbar-Based Neural Network Accelerator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 204-217.	1.9	2
609	Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System. IEEE Access, 2022, 10, 52565-52608.	2.6	31
610	Conductance-Aware Quantization Based on Minimum Error Substitution for Non-Linear-Conductance-State Tolerance in Neural Computing Systems. Micromachines, 2022, 13, 667.	1.4	1
611	Rescuing ReRAM-based Neural Computing Systems from Device Variation. ACM Transactions on Design Automation of Electronic Systems, 2023, 28, 1-17.	1.9	2
612	Speech Recovery For Real-World Self-Powered Intermittent Devices. , 2022, , .		3
613	A Survey on Memory Subsystems for Deep Neural Network Accelerators. Future Internet, 2022, 14, 146.	2.4	6
615	PASGCN: An ReRAM-Based PIM Design for GCN With Adaptively Sparsified Graphs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 150-163.	1.9	4
616	A Heterogeneous In-Memory Computing Cluster for Flexible End-to-End Inference of Real-World Deep Neural Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 422-435.	2.7	18
617	Accelerating Graph Convolutional Networks Using Crossbar-based Processing-In-Memory Architectures. , 2022, , .		17
618	PIMCloud: QoS-Aware Resource Management of Latency-Critical Applications in Clouds with Processing-in-Memory. , 2022, , .		1
619	CANDLES: Channel-Aware Novel Dataflow-Microarchitecture Co-Design for Low Energy Sparse Neural Network Acceleration. , 2022, , .		6
620	NVMExplorer: A Framework for Cross-Stack Comparisons of Embedded Non-Volatile Memories. , 2022, ,		5
621	DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators. , 2022, , .		2

#	Article	IF	CITATIONS
622	Offline Training-Based Mitigation of IR Drop for ReRAM-Based Deep Neural Network Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 521-532.	1.9	2
623	SySCIM: SystemC-AMS Simulation of Memristive Computation In-Memory. , 2022, , .		3
624	WRAP: Weight RemApping and Processing in RRAM-based Neural Network Accelerators Considering Thermal Effect. , 2022, , .		4
625	Gradient-based Bit Encoding Optimization for Noise-Robust Binary Memristive Crossbar. , 2022, , .		2
626	RePAIR: A ReRAM-based Processing-in-Memory Accelerator for Indel Realignment. , 2022, , .		0
627	Examining and Mitigating the Impact of Crossbar Non-idealities for Accurate Implementation of Sparse Deep Neural Networks. , 2022, , .		5
628	Near LLC versus near main memory processing. , 2022, , .		2
629	Nonvolatile Memories in Spiking Neural Network Architectures: Current and Emerging Trends. Electronics (Switzerland), 2022, 11, 1610.	1.8	8
630	A Novel Architecture Design for Output Significance Aligned Flow with Adaptive Control in ReRAM-based Neural Network Accelerator. ACM Transactions on Design Automation of Electronic Systems, 0, , .	1.9	0
631	Recognition Accuracy Enhancement using Interface Control with Weight Variation-Lowering in Analog Computation-in-Memory. , 2022, , .		0
632	A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives. Journal of Systems Architecture, 2022, 129, 102561.	2.5	27
633	SmartSAGE. , 2022, , .		12
634	HDnn-PIM: Efficient in Memory Design of Hyperdimensional Computing with Feature Extraction. , 2022, ,		6
635	MRAM-based Analog Sigmoid Function for In-memory Computing. , 2022, , .		3
636	täŕ, 2022, , .		3
637	Robotic Computing on FPGAs. Synthesis Lectures on Computer Architecture, 2021, , .	1.3	5
638	Non-volatile memory based in-memory computing technology. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148507.	0.2	1
639	An Energy-Efficient Inference Engine for a Configurable ReRAM-Based Neural Network Accelerator. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 740-753.	1.9	2

# 640	ARTICLE Approximations in Deep Learning. , 2022, , 467-512.	IF	Citations 2
641	High-Efficiency Data Conversion Interface for Reconfigurable Function-in-Memory Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 1193-1206.	2.1	3
642	Dotâ€Product Operation in Crossbar Array Using a Selfâ€Rectifying Resistive Device. Advanced Materials Interfaces, 2022, 9, .	1.9	5
643	G-NMP: Accelerating Graph Neural Networks with DIMM-based Near-Memory Processing. Journal of Systems Architecture, 2022, 129, 102602.	2.5	3
644	AIDA: Associative In-Memory Deep Learning Accelerator. IEEE Micro, 2022, 42, 67-75.	1.8	10
645	The evolving role of storage-class memory in servers and large systems. , 2022, , 217-251.		0
646	An Efficient Variation-tolerant Method for RRAM-based Neural Network. , 2022, , .		1
647	A General Offloading Approach for Near-DRAM Processing-In-Memory Architectures. , 2022, , .		3
648	Extreme Partial-Sum Quantization for Analog Computing-In-Memory Neural Network Accelerators. ACM Journal on Emerging Technologies in Computing Systems, 0, , .	1.8	2
650	Data and Computation Reuse in CNNs Using Memristor TCAMs. ACM Transactions on Reconfigurable Technology and Systems, 2023, 16, 1-24.	1.9	0
651	On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks. Springer Series in Reliability Engineering, 2023, , 167-190.	0.3	1
652	Accelerating Large-Scale Graph Neural Network Training on Crossbar Diet. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 3626-3637.	1.9	3
653	A computing-in-memory macro based on three-dimensional resistive random-access memory. Nature Electronics, 2022, 5, 469-477.	13.1	51
654	Ultra-Low-Power Reservoir Computing Based on Synthetic Antiferromagnetic Skyrmion Pairs. IEEE Electron Device Letters, 2022, 43, 1567-1570.	2.2	4
655	CMQ: Crossbar-Aware Neural Network Mixed-Precision Quantization via Differentiable Architecture Search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 4124-4133.	1.9	2
656	Architectures for Multimedia Processing: A Cross-Layer Perspective. , 2022, , 1-22.		0
657	Pod-racing: bulk-bitwise to floating-point compute in racetrack memory for machine learning at the edge. IEEE Micro, 2022, 42, 9-16.	1.8	1
658	A 28 nm 81 Kb 59–95.3 TOPS/W 4T2R ReRAM Computing-in-Memory Accelerator With Voltage-to-Time-to-Digital Based Output. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 846-857.	2.7	2

#	Article	IF	CITATIONS
659	Variation Enhanced Attacks Against RRAM-Based Neuromorphic Computing System. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 1588-1596.	1.9	1
660	An RRAM-Based Digital Computing-in-Memory Macro With Dynamic Voltage Sense Amplifier and Sparse-Aware Approximate Adder Tree. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 416-420.	2.2	4
661	Energy-Efficient Recurrent Neural Network With MRAM-Based Probabilistic Activation Functions. IEEE Transactions on Emerging Topics in Computing, 2023, 11, 534-540.	3.2	1
662	Compute-in-Memory Technologies and Architectures for Deep Learning Workloads. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30, 1615-1630.	2.1	3
663	SE-PIM: In-Memory Acceleration of Data-Intensive Confidential Computing. IEEE Transactions on Cloud Computing, 2022, , 1-18.	3.1	0
664	VCCIM: a voltage coupling based computing-in-memory architecture in 28Ânm for edge AI applications. CCF Transactions on High Performance Computing, 0, , .	1.1	1
665	Efficient Spectral Graph Convolutional Network Deployment on Memristive Crossbars. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 415-425.	3.4	10
666	Scalable Reasoning and Sensing Using Processing-In-Memory With Hybrid Spin/CMOS-Based Analog/Digital Blocks. IEEE Transactions on Emerging Topics in Computing, 2023, 11, 343-357.	3.2	2
667	Emerging Devices for Sensing-Memory-Computing Applications. , 2022, , 143-197.		0
668	Hardware Architectures and Circuits. , 2022, , 77-196.		0
669	Machine Learning Training on a Real Processing-in-Memory System. , 2022, , .		3
670	Exploiting Near-Data Processing to Accelerate Time Series Analysis. , 2022, , .		1
671	Heterogeneous Data-Centric Architectures for Modern Data-Intensive Applications: Case Studies in Machine Learning and Databases. , 2022, , .		0
672	Sparse Attention Acceleration with Synergistic In-Memory Pruning and On-Chip Recomputation. , 2022, , ,		6
673	3D-FPIM: An Extreme Energy-Efficient DNN Acceleration System Using 3D NAND Flash-Based In-Situ PIM Unit. , 2022, , .		0
674	Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions. Micromachines, 2022, 13, 1790.	1.4	8
675	pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables. , 2022, , .		11
676	Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND Flash Memory. , 2022, , .		2

#	Article	IF	CITATIONS
677	Software Systems Implementation and Domain-Specific Architectures towards Graph Analytics. , 2022, 2022, .		2
678	A Flexible Yet Efficient DNN Pruning Approach for Crossbar-Based Processing-in-Memory Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 3745-3756.	1.9	2
679	Innovations in the Memory System. Synthesis Lectures on Computer Architecture, 2019, , .	1.3	2
680	ESSENCE: Exploiting Structured Stochastic Gradient Pruning for Endurance-Aware ReRAM-Based In-Memory Training Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 2187-2199.	1.9	2
681	A Coordinated Model Pruning and Mapping Framework for RRAM-based DNN Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, , 1-1.	1.9	1
682	SPCIM: Sparsity-Balanced Practical CIM Accelerator With Optimized Spatial-Temporal Multi-Macro Utilization. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 214-227.	3.5	4
683	ARBiS: A Hardware-Efficient SRAM CIM CNN Accelerator With Cyclic-Shift Weight Duplication and Parasitic-Capacitance Charge Sharing for Al Edge Application. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 364-377.	3.5	2
684	Analysis of VMM Operations on 1S1R Crossbar Arrays and the Influence of Wire Resistances. , 2022, , .		2
685	HPSW-CIM: A Novel ReRAM-Based Computing-in-Memory Architecture with Constant-Term Circuit for Full Parallel Hybrid-Precision-Signed-Weight MAC Operation. , 2022, , .		3
686	Fundamental Limits on the Computational Accuracy of Resistive Crossbar-based In-memory Architectures. , 2022, , .		3
687	Technical Difficulties and Development Trend. , 2023, , 135-166.		0
688	Xbar-Partitioning: A Practical Way for Parasitics and Noise Tolerance in Analog IMC Circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 867-877.	2.7	3
689	ADC-Free ReRAM-Based In-Situ Accelerator for Energy-Efficient Binary Neural Networks. IEEE Transactions on Computers, 2024, 73, 353-365.	2.4	3
690	A Heterogeneous and Programmable Compute-In-Memory Accelerator Architecture for Analog-Al Using Dense 2-D Mesh. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31, 114-127.	2.1	14
691	Accelerating Graph Neural Network Training on ReRAM-Based PIM Architectures via Graph and Model Pruning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 2703-2716.	1.9	0
692	Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review. Proceedings of the IEEE, 2023, 111, 42-91.	16.4	18
693	Fault-Free: A Framework for Analysis and Mitigation of Stuck-At-Fault on Realistic ReRAM-Based DNN Accelerators. IEEE Transactions on Computers, 2022, , 1-14.	2.4	2
694	A Lazy Engine for High-utilization and Energy-efficient ReRAM-based Neural Network Accelerator. , 2022, , .		0

#	Article	IF	CITATIONS
695	Evaluating Read Disturb Effect on RRAM based AI Accelerator with Multilevel States and Input Voltages. , 2022, , .		3
696	Hidden-ROM. , 2022, , .		0
697	CPR: Crossbar-grain Pruning for an RRAM-based Accelerator with Coordinate-based Weight Mapping. , 2022, , .		0
698	CNN Acceleration with Joint Optimization of Practical PIM and GPU on Embedded Devices. , 2022, , .		0
699	Toward a Behavioral-Level End-to-End Framework for Silicon Photonics Accelerators. , 2022, , .		0
700	Low Power In-Memory Computation with Reciprocal Ferromagnet/Topological Insulator Heterostructures. ACS Nano, 0, , .	7.3	0
701	Review of security techniques for memristor computing systems. Frontiers in Electronic Materials, 0, 2, .	1.6	3
702	XMA2: A crossbar-aware multi-task adaption framework via 2-tier masks. Frontiers in Electronics, 0, 3, .	2.0	1
704	On the Accuracy of Analog Neural Network Inference Accelerators. IEEE Circuits and Systems Magazine, 2022, 22, 26-48.	2.6	8
705	Development of DNN Accelerator and Its Application in Avionics System. Lecture Notes in Electrical Engineering, 2023, , 170-177.	0.3	0
706	Performance estimation for the memristor-based computing-in-memory implementation of extremely factorized network for real-time and low-power semantic segmentation. Neural Networks, 2023, 160, 202-215.	3.3	4
707	MVSTT: A Multi-Value Computation-in-Memory based on Spin-Transfer Torque Memories. , 2022, , .		0
708	Enabling Edge Computing Using Emerging Memory Technologies: From Device to Architecture. , 2023, , 415-464.		0
710	To PiM or Not to PiM. Queue, 2022, 20, 9-34.	0.8	0
711	BNN An Ideal Architecture for Acceleration With Resistive in Memory Computation. IEEE Transactions on Emerging Topics in Computing, 2023, 11, 281-291.	3.2	2
712	Aligner-D: Leveraging In-DRAM Computing to Accelerate DNA Short Read Alignment. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13, 332-343.	2.7	1
713	Testability and Dependability of AI Hardware: Survey, Trends, Challenges, and Perspectives. IEEE Design and Test, 2023, 40, 8-58.	1.1	8
714	A Systematic Literature Review on Binary Neural Networks. IEEE Access, 2023, 11, 27546-27578.	2.6	4

	CITATION	Report	
# 715	ARTICLE A Heterogeneous Microprocessor Based on All-Digital Compute-in-Memory for End-to-End AloT Inference. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 3099-3103.	IF 2.2	CITATIONS
716	MNSIM 2.0: A Behavior-Level Modeling Tool for Processing-In-Memory Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 4112-4125.	1.9	3
717	Neuromorphic Computing between Reality and Future Needs. Artificial Intelligence, 0, , .	2.0	0
718	Multilevel Fully Logic-Compatible Latch Array for Computing-in-Memory. IEEE Transactions on Electron Devices, 2023, 70, 2001-2008.	1.6	0
719	Security Threat to the Robustness of RRAM-based Neuromorphic Computing System. , 2022, , .		0
720	NAND-SPIN-based processing-in-MRAM architecture for convolutional neural network acceleration. Science China Information Sciences, 2023, 66, .	2.7	3
721	SE-CNN: Convolution Neural Network Acceleration via Symbolic Value Prediction. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13, 73-85.	2.7	2
722	Partial Sum Quantization for Computing-In-Memory-Based Neural Network Accelerator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 3049-3053.	2.2	1
723	EmuNoC: Hybrid Emulation for Fast and Flexible Network-on-Chip Prototyping on FPGAs. , 2022, , .		0
724	Fault-Tolerant Deep Learning Processors. , 2023, , 243-302.		0
725	Casper: Accelerating Stencil Computations Using Near-Cache Processing. IEEE Access, 2023, 11, 22136-22154.	2.6	2
726	SAMBA: <u>S</u> parsity <u>A</u> ware In- <u>M</u> emory Computing <u>B</u> ased Machine Learning <u>A</u> ccelerator. IEEE Transactions on Computers, 2023, 72, 2615-2627.	2.4	3
727	Al Accelerators for Standalone Computer. , 2023, , 53-93.		0
728	INCA: Input-stationary Dataflow at Outside-the-box Thinking about Deep Learning Accelerators. , 2023, ,		2
729	EVE: Ephemeral Vector Engines. , 2023, , .		1
730	Gibbon: An Efficient Co-Exploration Framework of NN Model and Processing-In-Memory Architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42, 4075-4089.	1.9	0
731	Efficient Signed Arithmetic Multiplication on Memristor-Based Crossbar. IEEE Access, 2023, 11, 33964-33978.	2.6	2
732	PRAP-PIM: A weight pattern reusing aware pruning method for ReRAM-based PIM DNN accelerators. High-Confidence Computing, 2023, 3, 100123.	2.2	2

#	Article	IF	CITATIONS
733	Cross-Layer Reliability Modeling of Dual-Port FeFET: Device-Algorithm Interaction. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70, 2891-2903.	3.5	5
735	AGNI: In-Situ, Iso-Latency Stochastic-to-Binary Number Conversion for In-DRAM Deep Learning. , 2023, , .		0
737	Accelerating Low Bit-width Neural Networks at the Edge, PIM or FPGA: A Comparative Study. , 2023, , .		1
738	Lightspeed Binary Neural Networks using Optical Phase-Change Materials. , 2023, , .		1
739	Minimizing Communication Conflicts in Network-On-Chip Based Processing-In-Memory Architecture. , 2023, , .		0
741	Hierarchical Non-Structured Pruning for Computing-In-Memory Accelerators with Reduced ADC Resolution Requirement. , 2023, , .		1
742	CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression and Compensation. , 2023, , .		3
743	Countering Uncertainties in In-Memory-Computing Platforms with Statistical Training, Accuracy Compensation and Recursive Test. , 2023, , .		1
744	ENASA: Towards Edge Neural Architecture Search based on CIM acceleration. , 2023, , .		0
747	Evaluating Machine LearningWorkloads on Memory-Centric Computing Systems. , 2023, , .		2
749	TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems. , 2023, , .		1
754	XOR-CiM: An Efficient Computing-in-SOT-MRAM Design for Binary Neural Network Acceleration. , 2023, ,		1
757	Attacking Memristor-Mapped Graph Neural Network by Inducing Slow-to-Write Errors. , 2023, , .		0
758	A User-Friendly Fast and Accurate Simulation Framework for Non-Ideal Factors in Computing-in-Memory Architecture. , 2023, , .		0
765	Framework and Quantization Method Design for CIM. , 2023, , .		0
767	In-memory computing based on phase change memory for high energy efficiency. Science China Information Sciences, 2023, 66, .	2.7	0
768	Memristive dynamics enabled neuromorphic computing systems. Science China Information Sciences, 2023, 66, .	2.7	4
770	Memristor-based LSTM neuromorphic circuits for offshore wind turbine blade fault detection. , 2023,		Ο

#	Article	IF	CITATIONS
771	A/D Alleviator: Reducing Analog-to-Digital Conversions in Compute-In-Memory with Augmented Analog Accumulation. , 2023, , .		0
772	A 40nm 150 TOPS/W High Row-Parallel MRAM Compute-in-Memory Macro with Series 3T1MTJ Bitcell for MAC Operation. , 2023, , .		0
774	Scalable andÂEnergy-Efficient NN Acceleration withÂGPU-ReRAM Architecture. Lecture Notes in Computer Science, 2023, , 230-244.	1.0	0
775	Emerging Trends in Multi-Accelerator and Distributed System for ML: Devices, Architectures, Tools and Applications. , 2023, , .		0
776	A Convolution Neural Network Accelerator Design with Weight Mapping and Pipeline Optimization. , 2023, , .		1
777	PIM-HLS: An Automatic Hardware Generation Tool for Heterogeneous Processing-In-Memory-based Neural Network Accelerators. , 2023, , .		0
778	Accelerating Sparse Attention with a Reconfigurable Non-volatile Processing-In-Memory Architecture. , 2023, , .		0
779	AmgR: Algebraic Multigrid Accelerated on ReRAM. , 2023, , .		0
780	A Light-Weight Vision Transformer Toward Near Memory Computation onÂanÂFPGA. Lecture Notes in Computer Science, 2023, , 338-353.	1.0	0
781	Lightning Talk: Memory-Centric Computing. , 2023, , .		0
782	AR-PIM: An Adaptive-Range Processing-in-Memory Architecture. , 2023, , .		0
784	Exploring Bit-Level Sparsity for Partial Sum Quantization in Computing-In-Memory Accelerator. , 2023, ,		0
786	New Non-Volatile Memory Technologies and Neuromorphic Computing. , 2023, , .		0
787	SieveMem: A Computation-in-Memory Architecture for Fast and Accurate Pre-Alignment. , 2023, , .		2
790	Hardware–Software Co-design of Deep Neural Architectures: From FPGAs and ASICs to Computing-in-Memories. , 2024, , 271-301.		0
795	ReFloat: Low-Cost Floating-Point Processing in ReRAM for Accelerating Iterative Linear Solvers. , 2023,		0
796	ExtendLife: Weights Mapping Framework toÂImprove RRAM Lifetime forÂAccelerating CNN. Lecture Notes in Computer Science, 2024, , 40-53.	1.0	0
800	Mapping of CNNs on multi-core RRAM-based CIM architectures. , 2023, , .		0

~		_
CITA	TION	Report

#	Article	IF	CITATIONS
801	Runtime Row/Column Activation Pruning for ReRAM-based Processing-in-Memory DNN Accelerators. , 2023, , .		0
802	A Novel and Efficient Block-Based Programming for ReRAM-Based Neuromorphic Computing. , 2023, , .		Ο
804	NAS-SE: Designing A Highly-Efficient In-Situ Neural Architecture Search Engine for Large-Scale Deployment. , 2023, , .		0
805	MVC: Enabling Fully Coherent Multi-Data-Views through the Memory Hierarchy with Processing in Memory. , 2023, , .		0
806	Spintronic devices towards advanced computing framework. , 2023, , .		0
808	PSQ: An Automatic Search Framework for Data-Free Quantization on PIM-based Architecture. , 2023, , .		0
811	ARES: A Mapping Framework of DNNs Towards Diverse PIMs with General Abstractions. , 2023, , .		0
812	PBA: Percentile-Based Level Allocation for Multiple-Bits-Per-Cell RRAM. , 2023, , .		0
813	VECOM: Variation-Resilient Encoding and Offset Compensation Schemes for Reliable ReRAM-Based DNN Accelerator. , 2023, , .		0
814	LIORAT: NN Layer I/O Range Training for Area/Energy-Efficient Low-Bit A/D Conversion System Design in Error-Tolerant Computation-in-Memory. , 2023, , .		0
816	An 1.38nJ/Inference Clock-Free Mixed-Signal Neuromorphic Architecture Using ReL-PSP Function and Computing-in-Memory. , 2023, , .		0