Parasol and GreenSwitch

ACM SIGPLAN Notices 48, 51-64 DOI: 10.1145/2499368.2451123

Citation Report

#	Article	IF	CITATIONS
1	Towards Automated Provisioning and Emergency Handling in Renewable Energy Powered Datacenters. Journal of Computer Science and Technology, 2014, 29, 618-630.	0.9	4
2	SEED: solar energyâ€aware efficient scheduling for data centers. Concurrency Computation Practice and Experience, 2014, 26, 2811-2835.	1.4	3
3	Customer satisfactionâ€aware scheduling for utility maximization on geoâ€distributed data centers. Concurrency Computation Practice and Experience, 2015, 27, 1334-1354.	1.4	4
4	Towards energy management in Cloud federation: A survey in the perspective of future sustainable and cost-saving strategies. Computer Networks, 2015, 91, 438-452.	3.2	36
5	A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center. Computers and Operations Research, 2016, 75, 103-117.	2.4	64
6	Multiobjective evolutionary algorithms for energy and service level scheduling in a federation of distributed datacenters. International Transactions in Operational Research, 2017, 24, 199-228.	1.8	17
7	An Energy Aware Cost Effective Scheduling Framework for Heterogeneous Cluster System. Future Generation Computer Systems, 2017, 71, 73-88.	4.9	22
8	Heat to Power: Thermal Energy Harvesting and Recycling for Warm Water-Cooled Datacenters. , 2020, , \cdot		5
9	Optimized Energy Cost and Carbon Emission-Aware Virtual Machine Allocation in Sustainable Data Centers. Sustainability, 2020, 12, 6383.	1.6	15
10	Adaptive Preference-Aware Co-Location for Improving Resource Utilization of Power Constrained Datacenters. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 441-456.	4.0	7
11	Not All Doom and Gloom:ÂHow Energy-Intensive and Temporally Flexible Data Center Applications May Actually Promote Renewable Energy Sources. Business and Information Systems Engineering, 2021, 63, 243-256.	4.0	13
12	Transitive Power Modeling for Improving Resource Efficiency in a Hyperscale Datacenter. , 2021, , .		2
13	Task aware optimized energy cost and carbon emission-based virtual machine placement in sustainable data centers. Journal of Intelligent and Fuzzy Systems, 2021, 41, 5677-5689.	0.8	4
14	FollowMe@LS: Electricity price and source aware resource management in geographically distributed heterogeneous datacenters. Journal of Systems and Software, 2021, 175, 110907.	3.3	3
15	Energy, performance and cost efficient cloud datacentres: A survey. Computer Science Review, 2021, 40, 100390.	10.2	16
16	A Guide to Reducing Carbon Emissions through Data Center Geographical Load Shifting. , 2021, , .		8
17	Deep Reinforcement Learning for Tropical Air Free-cooled Data Center Control. ACM Transactions on Sensor Networks, 2021, 17, 1-28.	2.3	11
18	Optimized Renewable Energy Use in Green Cloud Data Centers. Lecture Notes in Computer Science, 2019, , 314-330.	1.0	12

CITATION REPORT

#	Article	IF	CITATIONS
19	Performance and Economic Evaluations in Adopting Low Power Architectures: A Real Case Analysis. Lecture Notes in Computer Science, 2017, , 177-189.	1.0	2
20	Optimal Capacity Planning for Cloud Service Providers with Periodic, Time-Varying Demand. SSRN Electronic Journal, 0, , .	0.4	1
21	Cloud Computing Value Chains: Research from the Operations Management Perspective. SSRN Electronic Journal, 0, , .	0.4	1
22	Scheduling Challenges for Variable Capacity Resources. Lecture Notes in Computer Science, 2021, , 190-209.	1.0	2
23	Multiobjective Energy-Aware Datacenter Planning Accounting for Power Consumption Profiles. Communications in Computer and Information Science, 2014, , 128-142.	0.4	1
24	A Deep Reinforcement Learning Approach to Resource Management in Hybrid Clouds Harnessing Renewable Energy and Task Scheduling. , 2021, , .		12
25	PowerMorph: QoS-Aware Server Power Reshaping for Data Center Regulation Service. Transactions on Architecture and Code Optimization, 2022, 19, 1-27.	1.6	2
26	Information batteries. , 2021, 1, 1-11.		4
28	Using geographic load shifting to reduce carbon emissions. Electric Power Systems Research, 2022, 212, 108586.	2.1	1
29	Optimization of Data and Energy Migrations in Mini Data Centers for Carbon-Neutral Computing. IEEE Transactions on Sustainable Computing, 2023, 8, 68-81.	2.2	7
30	Carbon footprint and service coverage tradeoffs in geo-diverse sites. Future Generation Computer Systems, 2023, 143, 1-14.	4.9	0
31	Carbon Efficient Placement of Data Center Locations. , 2022, , .		0
32	Carbon Explorer: A Holistic Framework for Designing Carbon Aware Datacenters. , 2023, , .		13
33	Power and thermal-aware virtual machine scheduling optimization in cloud data center. Future Generation Computer Systems, 2023, 145, 578-589.	4.9	2
34	Cloud Computing Value Chains: Research from the Operations Management Perspective. Manufacturing and Service Operations Management, 2023, 25, 1338-1356.	2.3	3
37	Enriching Cloud-native Applications with Sustainability Features. , 2023, , .		0