Requirement of poly(rC) binding protein 2 for translation

Journal of Virology 71, 6243-6246 DOI: 10.1128/jvi.71.8.6243-6246.1997

Citation Report

#	Article	IF	CITATIONS
1	RNA Determinants of Picornavirus Cap-Independent Translation Initiation. Seminars in Virology, 1997, 8, 242-255.	4.1	58
2	Switch from translation to RNA replication in a positive-stranded RNA virus. Genes and Development, 1998, 12, 2293-2304.	2.7	442
3	Translation Initiation of a Cardiac Voltage-gated Potassium Channel by Internal Ribosome Entry. Journal of Biological Chemistry, 1998, 273, 20109-20113.	1.6	36
4	Translational Inhibition in Vitro of Human Papillomavirus Type 16 L2 mRNA Mediated through Interaction with Heterogenous Ribonucleoprotein K and Poly(rC)-binding Proteins 1 and 2. Journal of Biological Chemistry, 1998, 273, 22648-22656.	1.6	178
5	Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. Rna, 1999, 5, 344-359.	1.6	139
6	Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. Rna, 1999, 5, 1570-1585.	1.6	133
7	In Vitro Translation Extracts from Tissue Culture Cells. , 1999, 118, 449-458.		1
8	Structure and function of a small RNA that selectively inhibits internal ribosome entry site-mediated translation. Nucleic Acids Research, 1999, 27, 562-572.	6.5	14
9	The N-terminal K Homology Domain of the Poly(rC)-binding Protein Is a Major Determinant for Binding to the Poliovirus 5â€2-Untranslated Region and Acts as an Inhibitor of Viral Translation. Journal of Biological Chemistry, 1999, 274, 38163-38170.	1.6	64
10	Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology, 1999, 10, 458-464.	3.3	181
11	Intracellular determinants of picornavirus replication. Trends in Microbiology, 1999, 7, 76-82.	3.5	85
12	Rhinovirus 2A proteinase mediated stimulation of rhinovirus RNA translation is additive to the stimulation effected by cellular RNA binding proteins. Virus Research, 1999, 62, 119-128.	1.1	17
13	A long-range pseudoknot in Qβ RNA is essential for replication. Journal of Molecular Biology, 1999, 294, 875-884.	2.0	46
14	Purification and RNA Binding Properties of the Polycytidylate-Binding Proteins αCP1 and αCP2. Methods, 1999, 17, 84-91.	1.9	23
15	Differentiation-Induced Internal Translation of c- <i>sis</i> mRNA: Analysis of the <i>cis</i> Elements and Their Differentiation-Linked Binding to the hnRNP C Protein. Molecular and Cellular Biology, 1999, 19, 5429-5440.	1.1	103
16	An mRNA Stability Complex Functions with Poly(A)-Binding Protein To Stabilize mRNA In Vitro. Molecular and Cellular Biology, 1999, 19, 4552-4560.	1.1	226
17	unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes and Development, 1999, 13, 437-448.	2.7	231
18	Synthesis of the translational apparatus is regulated at the translational level. FEBS Journal, 2000, 267, 6321-6330.	0.2	465

#	Article	IF	CITATIONS
19	The RNA Encompassing the Internal Ribosome Entry Site in the Poliovirus 5′ Nontranslated Region Enhances the Encapsidation of Genomic RNA. Virology, 2000, 273, 391-399.	1.1	19
20	Identification of an erythroid-enriched endoribonuclease activity involved in specific mRNA cleavage. EMBO Journal, 2000, 19, 295-305.	3.5	73
21	The structure and function of initiation factors in eukaryotic protein synthesis. Cellular and Molecular Life Sciences, 2000, 57, 651-674.	2.4	68
22	Internal ribosome entry sites of viral and cellular RNAs. Molecular Biology, 2000, 34, 157-167.	0.4	2
23	Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. Rna, 2000, 6, 1781-1790.	1.6	186
24	A Group B Coxsackievirus/Poliovirus 5′ Nontranslated Region Chimera Can Act as an Attenuated Vaccine Strain in Mice. Journal of Virology, 2000, 74, 4047-4056.	1.5	51
25	Cytopathogenesis and Inhibition of Host Gene Expression by RNA Viruses. Microbiology and Molecular Biology Reviews, 2000, 64, 709-724.	2.9	153
26	Translation and Replication of Human Rhinovirus Type 14 and Mengovirus in Xenopus Oocytes. Journal of Virology, 2000, 74, 11983-11987.	1.5	26
27	Functional Characterization of the X-Linked Inhibitor of Apoptosis (XIAP) Internal Ribosome Entry Site Element: Role of La Autoantigen in XIAP Translation. Molecular and Cellular Biology, 2000, 20, 4648-4657.	1.1	209
28	Functional Significance of the Interaction of Hepatitis A Virus RNA with Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH): Opposing Effects of GAPDH and Polypyrimidine Tract Binding Protein on Internal Ribosome Entry Site Function. Journal of Virology, 2000, 74, 6459-6468.	1.5	104
29	Transient Expression of Cellular Polypyrimidine-Tract Binding Protein Stimulates Cap-Independent Translation Directed by Both Picornaviral and Flaviviral Internal Ribosome Entry Sites In Vivo. Molecular and Cellular Biology, 2000, 20, 1583-1595.	1.1	126
30	Interaction of Cellular Proteins with the 5′ End of Norwalk Virus Genomic RNA. Journal of Virology, 2000, 74, 8558-8562.	1.5	41
31	Interactions of Viral Protein 3CD and Poly(rC) Binding Protein with the 5′ Untranslated Region of the Poliovirus Genome. Journal of Virology, 2000, 74, 2219-2226.	1.5	211
32	Differentiation-Dependent Cytoplasmic Distribution and in Vivo RNA Association of Proteins Recognized by the 3′-UTR Stability Element of α-Globin mRNA in Erythroleukemic Cells. Biochemical and Biophysical Research Communications, 2000, 279, 40-46.	1.0	9
33	Polypyrimidine tract-binding protein inhibits translation of bip mRNA. Journal of Molecular Biology, 2000, 304, 119-133.	2.0	65
34	Picornavirus RNA translation: roles for cellular proteins. Trends in Microbiology, 2000, 8, 330-335.	3.5	115
35	Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. Journal of Molecular Biology, 2000, 298, 395-405.	2.0	172
36	Translational Control of Viral Gene Expression in Eukaryotes. Microbiology and Molecular Biology Reviews, 2000, 64, 239-280.	2.9	285

		CITATION REPORT	
#	Article	IF	CITATIONS
37	Internal ribosome entry sites in eukaryotic mRNA molecules. Genes and Development, 2001, 15, 1593-1612.	2.7	850
38	Interaction of poly(rC)-binding protein 2 with the 5′-terminal stem loop of the hepatitis C-virus genome. Virus Research, 2001, 73, 67-79.	1.1	53
39	Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Research, 2001, 76, 17-29.	1.1	74
40	Poly(rC) binding proteins mediate poliovirus mRNA stability. Rna, 2001, 7, 1126-1141.	1.6	66
41	A novel protein–RNA binding assay: Functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. Rna, 2001, 7, 114-122.	1.6	32
42	Translational Control of the Picornavirus Phenotype. , 2001, 35, 591-599.		9
43	Title is missing!. Molecular Biology, 2001, 35, 536-543.	0.4	4
44	Cell-specific proteins regulate viral RNA translation and virus-induced disease. EMBO Journal, 2001, 20, 6899-6908.	3.5	97
45	5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO Journal, 2001, 20, 1439-1448.	3.5	242
46	Translation of the human c-myc PO tricistronic mRNA involves two independent internal ribosome entry sites. Oncogene, 2001, 20, 4270-4280.	2.6	31
47	La autoantigen enhances translation of BiP mRNA. Nucleic Acids Research, 2001, 29, 5009-5016.	6.5	82
48	Novel Fluorescence-Based Screen To Identify Small Synthetic Internal Ribosome Entry Site Elements. Molecular and Cellular Biology, 2001, 21, 2826-2837.	1.1	32
49	Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus Replication Complex. Journal of Virology, 2001, 75, 9808-9818.	1.5	200
50	A Predicted Secondary Structural Domain within the Internal Ribosome Entry Site of Echovirus 12 Mediates a Cell-Type-Specific Block to Viral Replication. Journal of Virology, 2001, 75, 6472-6481.	1.5	26
51	Ribosomal Protein S5 Interacts with the Internal Ribosomal Entry Site of Hepatitis C Virus. Journal of Biological Chemistry, 2001, 276, 20824-20826.	1.6	97
52	The Heterogeneous Nuclear Ribonucleoprotein K (hnRNP K) Interacts with Dengue Virus Core Protein. DNA and Cell Biology, 2001, 20, 569-577.	0.9	82
53	Translational control of gene expression: Role of IRESs and consequences for cell transformation and angiogenesis. Progress in Molecular Biology and Translational Science, 2002, 72, 367-413.	1.9	51
54	Distinct Poly(rC) Binding Protein KH Domain Determinants for Poliovirus Translation Initiation and Viral RNA Replication. Journal of Virology, 2002, 76, 12008-12022.	1.5	126

#	Article	IF	Citations
	Identification of Target Messenger RNA Substrates for the Murine Deleted in Azoospermia-Like		
55	RNA-Binding Protein 1. Biology of Reproduction, 2002, 66, 475-485.	1.2	97
56	Eukaryotic Elongation Factor 1A Interacts with the Upstream Pseudoknot Domain in the 3′ Untranslated Region of Tobacco Mosaic Virus RNA. Journal of Virology, 2002, 76, 5678-5691.	1.5	95
57	Internal ribosome entry site-mediated translation of Smad5 in vivo: requirement for a nuclear event. Nucleic Acids Research, 2002, 30, 2851-2861.	6.5	26
58	Cell Proteins TIA-1 and TIAR Interact with the 3′ Stem-Loop of the West Nile Virus Complementary Minus-Strand RNA and Facilitate Virus Replication. Journal of Virology, 2002, 76, 11989-12000.	1.5	188
59	Translation of Polioviral mRNA Is Inhibited by Cleavage of Polypyrimidine Tract-Binding Proteins Executed by Polioviral 3C pro. Journal of Virology, 2002, 76, 2529-2542.	1.5	132
60	Control of Insulin mRNA Stability in Rat Pancreatic Islets. Journal of Biological Chemistry, 2002, 277, 1099-1106.	1.6	140
61	La autoantigen is required for the internal ribosome entry site-mediated translation of Coxsackievirus B3 RNA. Nucleic Acids Research, 2002, 30, 4500-4508.	6.5	79
62	Interaction of Translation Initiation Factor eIF4B with the Poliovirus Internal Ribosome Entry Site. Journal of Virology, 2002, 76, 2113-2122.	1.5	44
63	The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms. Rna, 2002, 8, 265-278.	1.6	388
64	Continuous heat shock enhances translational initiation directed by internal ribosomal entry site. Biochemical and Biophysical Research Communications, 2002, 297, 224-231.	1.0	51
65	Specific interactions of HeLa cell proteins with Coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5′ untranslated region. Virus Research, 2002, 90, 23-36.	1.1	21
66	IRES elements: features of the RNA structure contributing to their activity. Biochimie, 2002, 84, 755-763.	1.3	23
67	Targeting a KH-domain protein with RNA decoys. Rna, 2002, 8, 1160-1173.	1.6	23
68	Recombination of Poliovirus RNA Proceeds in Mixed Replication Complexes Originating from Distinct Replication Start Sites. Journal of Virology, 2002, 76, 10960-10971.	1.5	40
69	BCR-ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2. Nature Genetics, 2002, 30, 48-58.	9.4	301
70	Translation Elongation Factor-1α, La, and PTB Interact with the 3′ Untranslated Region of Dengue 4 Virus RNA. Virology, 2002, 295, 337-347.	1.1	165
71	A 25 kDa cleavage product of polypyrimidine tract binding protein (PTB) present in mouse tissues prevents PTB binding to the 5′ untranslated region and inhibits translation of hepatitis A virus RNA. Virus Research, 2003, 98, 141-149.	1.1	19
72	Cell cycle regulation of hepatitis C and encephalomyocarditis virus internal ribosome entry site-mediated translation in human embryonic kidney 293 cells. Virus Research, 2003, 94, 85-95.	1.1	31

#	Article	IF	CITATIONS
73	Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3' nontranslated region. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15125-15130.	3.3	53
74	Unr Is Required In Vivo for Efficient Initiation of Translation from the Internal Ribosome Entry Sites of both Rhinovirus and Poliovirus. Journal of Virology, 2003, 77, 3353-3359.	1.5	106
75	Identification of mRNAs Associated with $\hat{I}\pm CP2$ -Containing RNP Complexes. Molecular and Cellular Biology, 2003, 23, 7055-7067.	1.1	67
76	Heterogeneous Nuclear Ribonucleoprotein C Modulates Translation of c- myc mRNA in a Cell Cycle Phase-Dependent Manner. Molecular and Cellular Biology, 2003, 23, 708-720.	1.1	156
77	The KH-Domain Protein αCP Has a Direct Role in mRNA Stabilization Independent of Its Cognate Binding Site. Molecular and Cellular Biology, 2003, 23, 1125-1134.	1.1	39
78	Long-range RNA-RNA interaction between the 5' nontranslated region and the core-coding sequences of hepatitis C virus modulates the IRES-dependent translation. Rna, 2003, 9, 599-606.	1.6	67
79	Impaired Binding of Standard Initiation Factors Mediates Poliovirus Translation Attenuation. Journal of Virology, 2003, 77, 115-122.	1.5	66
80	Molecular Mechanisms of Attenuation of the Sabin Strain of Poliovirus Type 3. Journal of Virology, 2004, 78, 11097-11107.	1.5	97
81	Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress. Rna, 2004, 10, 469-481.	1.6	63
82	Replication of Poliovirus RNA with Complete Internal Ribosome Entry Site Deletions. Journal of Virology, 2004, 78, 1393-1402.	1.5	32
83	Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides. Nucleic Acids Research, 2004, 32, 1308-1317.	6.5	46
84	A Peptide from Autoantigen La Blocks Poliovirus and Hepatitis C Virus Cap-Independent Translation and Reveals a Single Tyrosine Critical for La RNA Binding and Translation Stimulation. Journal of Virology, 2004, 78, 3763-3776.	1.5	43
85	Specific Recognition of the C-rich Strand of Human Telomeric DNA and the RNA Template of Human Telomerase by the First KH Domain of Human Poly(C)-binding Protein-2. Journal of Biological Chemistry, 2004, 279, 48126-48134.	1.6	16
86	Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. Rna, 2004, 10, 720-730.	1.6	129
87	Sequence and secondary structure requirements in a highly conserved element for foot-and-mouth disease virus internal ribosome entry site activity and eIF4G binding. Journal of General Virology, 2004, 85, 2555-2565.	1.3	22
88	Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA viruses. FEMS Microbiology Letters, 2004, 234, 189-199.	0.7	24
89	Translational regulation by the p210 BCR/ABL oncoprotein. Oncogene, 2004, 23, 3222-3229.	2.6	29
90	Regulation of picornavirus gene expression. Microbes and Infection, 2004, 6, 702-713.	1.0	140

ARTICLE IF CITATIONS # Targeting internal ribosome entry site (IRES)-mediated translation to block hepatitis C and other RNA 0.7 33 91 viruses*1. FEMS Microbiology Letters, 2004, 234, 189-199. Foot-and-Mouth Disease. Clinical Microbiology Reviews, 2004, 17, 465-493. 1,179 93 BCR/ABL, mRNA translation and apoptosis. Cell Death and Differentiation, 2005, 12, 534-540. 5.0 16 Formation of an αCP1-KH3 complex with UC-rich RNA. European Biophysics Journal, 2005, 34, 423-429. 1.2 94 Translation of Eukaryotic Translation Initiation Factor 4GI (eIF4GI) Proceeds from Multiple mRNAs Containing a Novel Cap-dependent Internal Ribosome Entry Site (IRES) That Is Active during Poliovirus 95 1.6 56 Infection. Journal of Biological Chemistry, 2005, 280, 18610-18622. Hepatitis C Virus Internal Ribosome Entry Site-Dependent Translation in Saccharomyces cerevisiae Is Independent of Polypyrimidine Tract-Binding Protein, Poly(rC)-Binding Protein 2, and La Protein. Journal of Virology, 2005, 79, 10126-10137. 1.5 Functional Interaction of Heterogeneous Nuclear Ribonucleoprotein C with Poliovirus RNA Synthesis 97 1.5 91 Initiation Complexes. Journal of Virology, 2005, 79, 3254-3266. Stem-Loop IV in the 5â€² Untranslated Region Is a cis -Acting Element in Bovine Coronavirus Defective 1.5 Interfering RNA Replication. Journal of Virology, 2005, 79, 12434-12446. Rna Viruses Redirect Host Factors to Better Amplify Their Genome. Advances in Virus Research, 2005, 99 0.9 10 65, 29-61. The Acute Box cis-Element in Human Heavy Ferritin mRNA 5â€²-Untranslated Region Is a Unique Translation 1.6 Enhancer That Binds Poly(C)-binding Proteins. Journal of Biological Chemistry, 2005, 280, 30032-30045. Structure and RNA binding of the third KH domain of poly(C)-binding protein 1. Nucleic Acids Research, 101 6.5 30 2005, 33, 1213-1221. Characterization of an infectious cDNA copy of the genome of a naturally occurring, avirulent coxsackievirus B3 clinical isolate. Journal of General Virology, 2005, 86, 197-210. 1.3 38 Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus 103 1.6 74 translation. Rna, 2005, 11, 1809-1824. Poliovirus Proteins Induce Membrane Association of GTPase ADP-Ribosylation Factor. Journal of 104 1.5 Virology, 2005, 79, 7207-7216. Crystal Structure of the First KH Domain of Human Poly(C)-binding Protein-2 in Complex with a C-rich 105 1.6 54 Strand of Human Telomeric DNA at 1.7 Ã.... Journal of Biological Chemistry, 2005, 280, 38823-38830. Amino Acid Changes in Proteins 2B and 3A Mediate Rhinovirus Type 39 Growth in Mouse Cells. Journal of Virology, 2005, 79, 5363-5373. Two cellular proteins that interact with a stem loop in the simian hemorrhagic fever virus $3\hat{e}^{2}(+)NCR$ 107 1.1 15 RNA. Virus Research, 2005, 109, 109-124. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells. Biochemical and Biophysical Research Communications, 2006, 349, 1378-1386.

#	Article	IF	CITATIONS
109	End-to-end communication in the modulation of translation by mammalian RNA viruses. Virus Research, 2006, 119, 43-51.	1.1	53
110	Translational control by viral proteinases. Virus Research, 2006, 119, 76-88.	1.1	111
111	Internal initiation: IRES elements of picornaviruses and hepatitis c virus. Virus Research, 2006, 119, 2-15.	1.1	65
112	Nucleocytoplasmic Traffic Disorder Induced by Cardioviruses. Journal of Virology, 2006, 80, 2705-2717.	1.5	93
113	Proteome alterations in human host cells infected with coxsackievirus B3. Journal of General Virology, 2006, 87, 2631-2638.	1.3	24
114	Role of the Alpha/Beta Interferon Response in the Acquisition of Susceptibility to Poliovirus by Kidney Cells in Culture. Journal of Virology, 2006, 80, 4313-4325.	1.5	28
116	Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA. Rna, 2007, 13, 1366-1374.	1.6	79
117	Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Research, 2007, 35, 424-432.	6.5	80
118	The 3′ Untranslated Region Complex Involved in Stabilization of Human α- globin mRNA Assembles in the Nucleus and Serves an Independent Role as a Splice Enhancer. Molecular and Cellular Biology, 2007, 27, 3290-3302.	1.1	32
119	Novel function of the poly(C)â€binding protein αCP3 as a transcriptional repressor of the mu opioid receptor gene. FASEB Journal, 2007, 21, 3963-3973.	0.2	26
120	Replication of Poliovirus Requires Binding of the Poly(rC) Binding Protein to the Cloverleaf as Well as to the Adjacent C-Rich Spacer Sequence between the Cloverleaf and the Internal Ribosomal Entry Site. Journal of Virology, 2007, 81, 10017-10028.	1.5	72
121	Crystal structure of the third KH domain of human poly(C)-binding protein-2 in complex with a C-rich strand of human telomeric DNA at 1.6 A resolution. Nucleic Acids Research, 2007, 35, 2651-2660.	6.5	32
122	X-ray crystallographic and NMR studies of protein-protein and protein-nucleic acid interactions involving the KH domains from human poly(C)-binding protein-2. Rna, 2007, 13, 1043-1051.	1.6	50
123	Cellular Protein Modification by Poliovirus: the Two Faces of Poly(rC)-Binding Protein. Journal of Virology, 2007, 81, 8919-8932.	1.5	135
124	The Myotonic Dystrophy Type 2 Protein ZNF9 Is Part of an ITAF Complex That Promotes Cap-independent Translation. Molecular and Cellular Proteomics, 2007, 6, 1049-1058.	2.5	51
125	Epidemics to eradication: the modern history of poliomyelitis. Virology Journal, 2007, 4, 70.	1.4	77
126	A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO Journal, 2007, 26, 459-467.	3.5	156
127	The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation. Virology, 2008, 378, 243-253.	1.1	38

#	Article	IF	CITATIONS
128	Identification of an Arabidopsis thaliana protein that binds to tomato mosaic virus genomic RNA and inhibits its multiplication. Virology, 2008, 380, 402-411.	1.1	44
129	Mass Spectrometry Analysis of a Protein Kinase CK2β Subunit Interactome Isolated from Mouse Brain by Affinity Chromatography. Journal of Proteome Research, 2008, 7, 990-1000.	1.8	33
130	Structure of a Construct of a Human Poly(C)-binding Protein Containing the First and Second KH Domains Reveals Insights into Its Regulatory Mechanisms. Journal of Biological Chemistry, 2008, 283, 28757-28766.	1.6	50
131	Poly(rC) Binding Proteins and the 5′ Cloverleaf of Uncapped Poliovirus mRNA Function during De Novo Assembly of Polysomes. Journal of Virology, 2008, 82, 5835-5846.	1.5	17
132	Cleavage of Poly(A)-Binding Protein by Poliovirus 3C Proteinase Inhibits Viral Internal Ribosome Entry Site-Mediated Translation. Journal of Virology, 2008, 82, 9389-9399.	1.5	55
133	New insights into internal ribosome entry site elements relevant for viral gene expression. Journal of General Virology, 2008, 89, 611-626.	1.3	120
134	Introduction: RNA viruses. , 2008, , 1-2.		0
135	Neurotropic picornaviruses. , 2008, , 3-25.		1
136	Depletion of the Poly(C)-binding Proteins αCP1 and αCP2 from K562 Cells Leads to p53-independent Induction of Cyclin-dependent Kinase Inhibitor (CDKN1A) and G1 Arrest. Journal of Biological Chemistry, 2009, 284, 9039-9049.	1.6	54
137	Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Research, 2009, 37, 47-59.	6.5	132
138	Altered interactions between stem-loop IV within the 5′ noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: Effects on IRES-mediated translation and viral infectivity. Virology, 2009, 389, 45-58.	1.1	58
139	A cell-permeable peptide inhibits hepatitis C virus replication by sequestering IRES transacting factors. Virology, 2009, 394, 82-90.	1.1	28
140	Viral and host proteins involved in picornavirus life cycle. Journal of Biomedical Science, 2009, 16, 103.	2.6	152
141	Internal translation initiation of picornaviruses and hepatitis C virus. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 529-541.	0.9	64
142	Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 518-528.	0.9	151
143	Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochemical and Biophysical Research Communications, 2009, 380, 431-436.	1.0	117
144	Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Research, 2009, 139, 172-182.	1.1	104
145	Chapter 3 Virus Versus Host Cell Translation. Advances in Virus Research, 2009, 73, 99-170.	0.9	9

#	Article	IF	CITATIONS
146	The role of IRES <i>trans</i> -acting factors in regulating translation initiation. Biochemical Society Transactions, 2010, 38, 1581-1586.	1.6	104
147	The 5′CL-PCBP RNP complex, 3′ poly(A) tail and 2Apro are required for optimal translation of poliovirus RNA. Virology, 2010, 397, 14-22.	1.1	21
148	Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO Journal, 2010, 29, 3710-3722.	3.5	71
149	Mechanistic Consequences of hnRNP C Binding to Both RNA Termini of Poliovirus Negative-Strand RNA Intermediates. Journal of Virology, 2010, 84, 4229-4242.	1.5	56
150	Stable Formation of Compositionally Unique Stress Granules in Virus-Infected Cells. Journal of Virology, 2010, 84, 3654-3665.	1.5	106
151	Insights into the Biology of IRES Elements through Riboproteomic Approaches. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-12.	3.0	57
152	Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic Acids Research, 2011, 39, 9633-9648.	6.5	76
153	Mechanistic Intersections Between Picornavirus Translation and RNA Replication. Advances in Virus Research, 2011, 80, 1-24.	0.9	24
154	Incrimination of Heterogeneous Nuclear Ribonucleoprotein E1 (hnRNP-E1) as a Candidate Sensor of Physiological Folate Deficiency. Journal of Biological Chemistry, 2011, 286, 39100-39115.	1.6	26
155	Poliovirus Unlinks TIA1 Aggregation and mRNA Stress Granule Formation. Journal of Virology, 2011, 85, 12442-12454.	1.5	60
156	Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biology, 2011, 8, 305-315.	1.5	139
157	Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1. Nucleic Acids Research, 2011, 39, 7791-7802.	6.5	29
158	Re-localization of Cellular Protein SRp20 during Poliovirus Infection: Bridging a Viral IRES to the Host Cell Translation Apparatus. PLoS Pathogens, 2011, 7, e1002127.	2.1	52
159	Influence of Physiologic Folate Deficiency on Human Papillomavirus Type 16 (HPV16)-harboring Human Keratinocytes in Vitro and in Vivo. Journal of Biological Chemistry, 2012, 287, 12559-12577.	1.6	29
160	Viral subversion of host functions for picornavirus translation and RNA replication. Future Virology, 2012, 7, 179-191.	0.9	50
161	Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation. Nucleic Acids Research, 2012, 40, 5602-5614.	6.5	54
162	Involvement of heterogeneous nuclear ribonucleoproteins in viral multiplication. Future Virology, 2012, 7, 575-591.	0.9	3
163	Picornavirus Modification of a Host mRNA Decay Protein. MBio, 2012, 3, e00431-12.	1.8	56

#	Article	IF	Citations
164	Novel dual-binding function of a poly (C)-binding protein 3, transcriptional factor which binds the double-strand and single-stranded DNA sequence. Gene, 2012, 501, 33-38.	1.0	10
165	Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides. Nucleic Acids Research, 2012, 40, 5101-5114.	6.5	37
166	Role of RNA Structure Motifs in IRES-Dependent Translation Initiation of the Coxsackievirus B3: New Insights for Developing Live-Attenuated Strains for Vaccines and Gene Therapy. Molecular Biotechnology, 2013, 55, 179-202.	1.3	12
167	In Vitro Molecular Characterization of RNA–Proteins Interactions During Initiation of Translation of a Wild-Type and a Mutant Coxsackievirus B3 RNAs. Molecular Biotechnology, 2013, 54, 515-527.	1.3	5
168	Thiouracil Cross-Linking Mass Spectrometry: a Cell-Based Method To Identify Host Factors Involved in Viral Amplification. Journal of Virology, 2013, 87, 8697-8712.	1.5	39
169	Enterovirus 71 Infection Cleaves a Negative Regulator for Viral Internal Ribosomal Entry Site-Driven Translation. Journal of Virology, 2013, 87, 3828-3838.	1.5	38
170	Viral Proteinase Requirements for the Nucleocytoplasmic Relocalization of Cellular Splicing Factor SRp20 during Picornavirus Infections. Journal of Virology, 2013, 87, 2390-2400.	1.5	38
171	Norovirus Genome Circularization and Efficient Replication Are Facilitated by Binding of PCBP2 and hnRNP A1. Journal of Virology, 2013, 87, 11371-11387.	1.5	33
172	Poly(C)-Binding Protein 1, a Novel N ^{pro} -Interacting Protein Involved in Classical Swine Fever Virus Growth. Journal of Virology, 2013, 87, 2072-2080.	1.5	24
173	Novel function of the poly(c)-binding protein α-CP2 as a transcriptional activator that binds to single-stranded DNA sequences. International Journal of Molecular Medicine, 2013, 32, 1187-1194.	1.8	5
174	Polypyrimidine Tract Binding Protein-1 (PTB1) Is a Determinant of the Tissue and Host Tropism of a Human Rhinovirus/Poliovirus Chimera PV1(RIPO). PLoS ONE, 2013, 8, e60791.	1.1	15
175	PolyC-Binding Protein 1 Interacts with 5′-Untranslated Region of Enterovirus 71 RNA in Membrane-Associated Complex to Facilitate Viral Replication. PLoS ONE, 2014, 9, e87491.	1.1	44
176	A cytoplasmic RNA virus generates functional viral small RNAs and regulates viral IRES activity in mammalian cells. Nucleic Acids Research, 2014, 42, 12789-12805.	6.5	53
177	The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO Journal, 2014, 33, 76-92.	3.5	135
178	Host-cell factors involved in the calicivirus replicative cycle. Future Virology, 2014, 9, 147-160.	0.9	6
179	Specific enrichment of the RNA-binding proteins PCBP1 and PCBP2 in chief cells of the murine gastric mucosa. Gene Expression Patterns, 2014, 14, 78-87.	0.3	10
180	Differential cleavage of IRES trans-acting factors (ITAFs) in cells infected by human rhinovirus. Virology, 2014, 449, 35-44.	1.1	9
181	hnRNP L and NF90 Interact with Hepatitis C Virus 5′-Terminal Untranslated RNA and Promote Efficient Replication. Journal of Virology, 2014, 88, 7199-7209.	1.5	69

#	Article	IF	CITATIONS
182	Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA Replication. Journal of Virology, 2014, 88, 3192-3201.	1.5	34
183	Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Frontiers in Microbiology, 2015, 6, 594.	1.5	73
184	Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice. Cell Death and Disease, 2015, 6, e1739-e1739.	2.7	33
185	Picornavirus IRES elements: RNA structure and host protein interactions. Virus Research, 2015, 206, 62-73.	1.1	110
186	Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome. Cell Reports, 2015, 11, 1686-1693.	2.9	78
187	Functions of the 5′ and 3′ ends of calicivirus genomes. Virus Research, 2015, 206, 134-143.	1.1	41
188	AtLa1 protein initiates IRESâ€dependent translation of <i>WUSCHEL</i> mRNA and regulates the stem cell homeostasis of <i>Arabidopsis</i> in response to environmental hazards. Plant, Cell and Environment, 2015, 38, 2098-2114.	2.8	38
189	RNA–protein interaction methods to study viral IRES elements. Methods, 2015, 91, 3-12.	1.9	24
190	Secondary structure conservation of the stem-loop IV sub-domain of internal ribosomal entry sites in human rhinovirus clinical isolates. International Journal of Infectious Diseases, 2015, 41, 21-28.	1.5	5
191	Overexpression of PCBP2 contributes to poor prognosis and enhanced cell growth in human hepatocellular carcinoma. Oncology Reports, 2016, 36, 3456-3464.	1.2	29
192	Poliovirus. , 2016, , 1-26.		0
193	Poly (C)-binding protein 2 (PCBP2) promotes the progression of esophageal squamous cell carcinoma (ESCC) through regulating cellular proliferation and apoptosis. Pathology Research and Practice, 2016, 212, 717-725.	1.0	12
194	PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Nucleic Acids Research, 2016, 44, gkw609.	6.5	11
195	Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus. Nucleic Acids Research, 2016, 44, 3390-3407.	6.5	19
196	β2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression. Cancer Letters, 2016, 373, 67-76.	3.2	30
197	HMGB1 Promotes Hepatitis C Virus Replication by Interaction with Stem-Loop 4 in the Viral 5′ Untranslated Region. Journal of Virology, 2016, 90, 2332-2344.	1.5	39
198	The Poly(C) Binding Protein Pcbp2 and Its Retrotransposed Derivative Pcbp1 Are Independently Essential to Mouse Development. Molecular and Cellular Biology, 2016, 36, 304-319.	1.1	55
199	Spatiotemporal Expression of Poly(rC)-Binding Protein PCBP2 Modulates Schwann Cell Proliferation After Sciatic Nerve Injury. Cellular and Molecular Neurobiology, 2016, 36, 725-735.	1.7	7

#	Article	IF	CITATIONS
200	Structure of RNA Stem Loop B from the Picornavirus Replication Platform. Biochemistry, 2017, 56, 2549-2557.	1.2	7
201	Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection. Tumor Biology, 2017, 39, 101042831769754.	0.8	20
202	Quantitative Proteomics Analysis Reveals Novel Targets of miR-21 in Zebrafish Embryos. Scientific Reports, 2017, 7, 4022.	1.6	9
203	Control of the negative IRES <i>trans</i> -acting factor KHSRP by ubiquitination. Nucleic Acids Research, 2017, 45, 271-287.	6.5	231
204	Enterovirus 71 antagonizes the inhibition of the host intrinsic antiviral factor A3G. Nucleic Acids Research, 2018, 46, 11514-11527.	6.5	37
205	Molecular mechanism of poliovirus Sabin vaccine strain attenuation. Journal of Biological Chemistry, 2018, 293, 15471-15482.	1.6	15
206	Exploitation of nuclear functions by human rhinovirus, a cytoplasmic RNA virus. PLoS Pathogens, 2018, 14, e1007277.	2.1	16
207	Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. Journal of Virology, 2019, 93, .	1.5	8
208	The mammalian host protein DAP5 facilitates the initial round of translation of Coxsackievirus B3 RNA. Journal of Biological Chemistry, 2019, 294, 15386-15394.	1.6	7
209	KH-Domain Poly(C)-Binding Proteins as Versatile Regulators of Multiple Biological Processes. Biochemistry (Moscow), 2019, 84, 205-219.	0.7	15
210	eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. Rna, 2019, 25, 757-767.	1.6	14
211	Staufen1 Protein Participates Positively in the Viral RNA Replication of Enterovirus 71. Viruses, 2019, 11, 142.	1.5	18
212	Conformational flexibility in the enterovirus RNA replication platform. Rna, 2019, 25, 376-387.	1.6	9
213	Translation control of Enterovirus A71 gene expression. Journal of Biomedical Science, 2020, 27, 22.	2.6	8
214	The new role of poly (rC)-binding proteins as iron transport chaperones: Proteins that could couple with inter-organelle interactions to safely traffic iron. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129685.	1.1	34
215	PCBP1 and PCBP2 both bind heavily oxidized RNA but cause opposing outcomes, suppressing or increasing apoptosis under oxidative conditions. Journal of Biological Chemistry, 2020, 295, 12247-12261.	1.6	19
216	Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses, 2020, 12, 984.	1.5	92
217	Structure of the PCBP2/stem–loop IV complex underlying translation initiation mediated by the poliovirus type I IRES. Nucleic Acids Research, 2020, 48, 8006-8021.	6.5	18

#	Article	IF	CITATIONS
218	Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses, 2020, 12, 612.	1.5	23
219	hnRNP K Is a Novel Internal Ribosomal Entry Site-Transacting Factor That Negatively Regulates Foot-and-Mouth Disease Virus Translation and Replication and Is Antagonized by Viral 3C Protease. Journal of Virology, 2020, 94, .	1.5	28
220	<i>PCBP2</i> Posttranscriptional Modifications Induce Breast Cancer Progression via Upregulation of UFD1 and NT5E. Molecular Cancer Research, 2021, 19, 86-98.	1.5	13
221	Advances in poly(rC)-binding protein 2: Structure, molecular function, and roles in cancer. Biomedicine and Pharmacotherapy, 2021, 139, 111719.	2.5	14
222	The long-lasting enigma of polycytidine (polyC) tract. PLoS Pathogens, 2021, 17, e1009739.	2.1	5
223	Anlotinib Inhibits PFKFB3-Driven Glycolysis in Myofibroblasts to Reverse Pulmonary Fibrosis. Frontiers in Pharmacology, 2021, 12, 744826.	1.6	14
224	The Role of RNA-Binding Proteins in IRES-Dependent Translation. Growth Hormone, 2002, , 1-33.	0.2	3
225	CVB Translation: Lessons from the Polioviruses. , 2008, 323, 123-147.		14
226	Cap-independent translation initiation of the unspliced RNA of retroviruses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194583.	0.9	14
227	Finding the right RNA: Identification of cellular mRNA substrates for RNA-binding proteins. Rna, 1999, 5, 1071-1082.	1.6	44
228	Binding of a cellular factor to the 3' untranslated region of the RNA genomes of entero- and rhinoviruses plays a role in virus replication Journal of General Virology, 1998, 79, 1715-1723.	1.3	36
229	Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA Journal of General Virology, 1999, 80, 917-920.	1.3	28
230	Poly(C)-binding protein interacts with the hepatitis C virus 5' untranslated region Journal of General Virology, 1999, 80, 1371-1376.	1.3	52
231	Lower concentration of La protein required for internal ribosome entry on hepatitis C virus RNA than on poliovirus RNA. Journal of General Virology, 1999, 80, 2319-2327.	1.3	47
232	Functional interactions in internal translation initiation directed by viral and cellular IRES elements. Journal of General Virology, 2001, 82, 973-984.	1.3	115
233	A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes and Development, 2000, 14, 2028-2045.	2.7	256
234	Picornavirus Genome: an Overview. , 0, , 125-148.		17
235	Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site. , 0, , 157-169.		13

		CITATION REPORT	
#	Article	IF	CITATIONS
236	Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites. , 0, , 171-183.		6
237	Heterogeneous Nuclear Ribonucleoprotein L Interacts with the 3′ Border of the Internal Riboso Entry Site of Hepatitis C Virus. Journal of Virology, 1998, 72, 8782-8788.	omal 1.5	144
238	Interaction of Poly(rC) Binding Protein 2 with the 5′ Noncoding Region of Hepatitis A Virus RN Effects on Translation. Journal of Virology, 1998, 72, 9668-9675.	IA and Its 1.5	78
239	Coding Sequences Enhance Internal Initiation of Translation by Hepatitis A Virus RNA In Vitro. Jou of Virology, 1998, 72, 3571-3577.	ırnal 1.5	29
240	A Small Yeast RNA Blocks Hepatitis C Virus Internal Ribosome Entry Site (HCV IRES)-Mediated Translation and Inhibits Replication of a Chimeric Poliovirus under Translational Control of the HC IRES Element. Journal of Virology, 1998, 72, 5638-5647.	CV 1.5	39
241	Intracellular Redistribution of Truncated La Protein Produced by Poliovirus 3C ^{pro} -Mediated Cleavage. Journal of Virology, 1999, 73, 2193-2200.	1.5	105
242	Absence of Internal Ribosome Entry Site-Mediated Tissue Specificity in the Translation of a Bicistr Transgene. Journal of Virology, 1999, 73, 2729-2738.	ronic 1.5	34
243	Genome Organisation, Translation and Replication of Foot-and-Mouth Disease Virus RNA. , 2004,	, 21-52.	2
244	Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a v IRES. Rna, 2004, 10, 1266-1276.	viral 1.6	44
245	Functional Analysis of the $5\hat{a} \in 2$ Genomic Sequence of a Bovine Norovirus. PLoS ONE, 2008, 3, e2	.169. 1.1	2
246	The 3′-Terminal Hexamer Sequence of Classical swine fever virus RNA Plays a Role in Negativel Regulating the IRES-Mediated Translation. PLoS ONE, 2012, 7, e33764.	у 1.1	14
247	Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLoS Pathogens, 20 e1005959.	16, 12, 2.1	. 38
248	Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody BMB Reports, 2017, 50, 318-322.	. 1.1	7
249	Poly-C Binding Proteins: Cellular Regulators of mRNA Fate and Function. Growth Hormone, 2002, 53-69.	,, 0.2	2 0
254	Genome Replication I: the Players. , 0, , 105-125.		0
255	Translation and Protein Processing. , 0, , 141-161.		4
256	Host Restriction Factor A3G Inhibits the Replication of Enterovirus D68 by Competitively Binding Untranslated Region with PCBP1. Journal of Virology, 2022, 96, JVI0170821.	the 5′ 1.5	4
263	A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes ar Development, 2000, 14, 2028-45.	nd 2.7	246

#	Article	IF	CITATIONS
265	RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses, 2022, 14, 188.	1.5	8
266	Long noncoding RNA <i>EIF1AXâ€AS1</i> promotes endometrial cancer cell apoptosis by affecting <i>EIF1AX</i> mRNA stabilization. Cancer Science, 2022, 113, 1277-1291.	1.7	8
267	PCBP2 knockdown promotes ferroptosis in malignant mesothelioma. Pathology International, 2022, 72, 242-251.	0.6	9
268	Poly(C)-binding Protein 2 Regulates the p53 Expression via Interactions with the 5′-Terminal Region of p53 mRNA. International Journal of Molecular Sciences, 2021, 22, 13306.	1.8	6
271	Engineering circular RNA for enhanced protein production. Nature Biotechnology, 2023, 41, 262-272.	9.4	83
272	Research progress on RNAâ~'binding proteins in breast cancer. Frontiers in Oncology, 0, 12, .	1.3	7
273	lron as spirit of life to share under monopoly. Journal of Clinical Biochemistry and Nutrition, 2022, 71, 78-88.	0.6	6
274	Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Frontiers in Immunology, 0, 13, .	2.2	11
275	A Proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication. PLoS Pathogens, 2022, 18, e1010906.	2.1	4
276	Poliomyelitis is a current challenge: long-term sequelae and circulating vaccine-derived poliovirus. GeroScience, 0, , .	2.1	6
277	Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements. International Journal of Molecular Sciences, 2022, 23, 15497.	1.8	2
278	Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. Frontiers in Virology, 0, 2, .	0.7	1
279	Current progress on innate immune evasion mediated by Npro protein of pestiviruses. Frontiers in Immunology, 0, 14, .	2.2	0
280	Advances and Breakthroughs in IRES-Directed Translation and Replication of Picornaviruses. MBio, 2023, 14, .	1.8	5
285	Circular RNA vaccine in disease prevention and treatment. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	3