Poliovirus 2C protein determinants of membrane bindir mammalian cells

Journal of Virology 71, 8962-8972 DOI: 10.1128/jvi.71.12.8962-8972.1997

Citation Report

#	Article	IF	CITATIONS
1	Induction of Intracellular Membrane Rearrangements by HAV Proteins 2C and 2BC. Virology, 1997, 237, 66-77.	1.1	96
2	Two Types of Death of Poliovirus-Infected Cells: Caspase Involvement in the Apoptosis but Not Cytopathic Effect. Virology, 1998, 252, 343-353.	1.1	91
3	Membrane Permeability Induced by Hepatitis A Virus Proteins 2B and 2BC and Proteolytic Processing of HAV 2BC. Virology, 1998, 252, 218-227.	1.1	56
4	Genetics, Pathogenesis and Evolution of Picornaviruses. , 1999, , 287-343.		49
5	Characterization of the Nucleoside Triphosphatase Activity of Poliovirus Protein 2C Reveals a Mechanism by Which Guanidine Inhibits Poliovirus Replication. Journal of Biological Chemistry, 1999, 274, 6992-7001.	1.6	156
6	Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO Journal, 1999, 18, 3164-3172.	3.5	152
7	Paradoxes of the replication of picornaviral genomes. Virus Research, 1999, 62, 129-147.	1.1	100
8	Echovirus 9 strain Barty non-structural protein 2C has NTPase activity. Virus Research, 1999, 65, 155-160.	1.1	24
9	MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13790-13795.	3.3	137
10	Evolution of the Sabin Strain of Type 3 Poliovirus in an Immunodeficient Patient during the Entire 637-Day Period of Virus Excretion. Journal of Virology, 2000, 74, 3001-3010.	1.5	152
11	A Cysteine-Rich Motif in Poliovirus Protein 2C ^{ATPase} Is Involved in RNA Replication and Binds Zinc In Vitro. Journal of Virology, 2000, 74, 334-343.	1.5	78
12	Formation of the Poliovirus Replication Complex Requires Coupled Viral Translation, Vesicle Production, and Viral RNA Synthesis. Journal of Virology, 2000, 74, 6570-6580.	1.5	152
13	Remodeling the Endoplasmic Reticulum by Poliovirus Infection and by Individual Viral Proteins: an Autophagy-Like Origin for Virus-Induced Vesicles. Journal of Virology, 2000, 74, 8953-8965.	1.5	456
14	Competing Death Programs in Poliovirus-Infected Cells: Commitment Switch in the Middle of the Infectious Cycle. Journal of Virology, 2000, 74, 5534-5541.	1.5	88
15	Perinuclear accumulation of hepatitis A virus proteins, RNA, and particles and ultrastructural alterations in infected cells. Archives of Virology, 2001, 146, 2291-2307.	0.9	10
16	Identification of Sequences in Brome Mosaic Virus Replicase Protein 1a That Mediate Association with Endoplasmic Reticulum Membranes. Journal of Virology, 2001, 75, 12370-12381.	1.5	107
17	Poliovirus Protein 3A Inhibits Tumor Necrosis Factor (TNF)-Induced Apoptosis by Eliminating the TNF Receptor from the Cell Surface. Journal of Virology, 2001, 75, 10409-10420.	1.5	119
18	Polypeptide p41 of a Norwalk-Like Virus Is a Nucleic Acid-Independent Nucleoside Triphosphatase. Journal of Virology, 2001, 75, 1611-1619.	1.5	68

ARTICLE IF CITATIONS # Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus 19 1.5 200 Replication Complex. Journal of Virology, 2001, 75, 9808-9818. Requirements for Assembly of Poliovirus Replication Complexes and Negative-Strand RNA Synthesis. 1.5 Journal of Virology, 2001, 75, 3841-3850. Isolation of Enzymatically Active Replication Complexes from Feline Calicivirus-Infected Cells. Journal 21 1.5 60 of Virology, 2002, 76, 8582-8595. Aichi Virus Leader Protein Is Involved in Viral RNA Replication and Encapsidation. Journal of Virology, 2003, 77, 10799-10807. Initiation of Poliovirus Negative-Strand RNA Synthesis Requires Precursor Forms of P2 Proteins. 23 1.5 21 Journal of Virology, 2003, 77, 1075-1083. Changes in Rhinovirus Protein 2C Allow Efficient Replication in Mouse Cells. Journal of Virology, 1.5 2003, 77, 4773-4780. Amphipathic Helix-Dependent Localization of NS5A Mediates Hepatitis C Virus RNA Replication. Journal 25 1.5 158 of Virology, 2003, 77, 6055-6061. Strand-Specific RNA Synthesis Defects in a Poliovirus with a Mutation in Protein 3A. Journal of 1.5 26 Virology, 2003, 77, 12679-12691. Membrane Requirements for Uridylylation of the Poliovirus VPg Protein and Viral RNA Synthesis In 27 1.5 31 Vitro. Journal of Virology, 2003, 77, 11408-11416. Evidence for neuronal localisation of enteroviral sequences in motor neurone disease/amyotrophic lateral sclerosis by in situ hybridization. European Journal of Histochemistry, 2004, 48, 129. Structure and Function of the Membrane Anchor Domain of Hepatitis C Virus Nonstructural Protein 29 1.6 249 5A. Journal of Biological Chemistry, 2004, 279, 40835-40843. Regulation of Poliovirus 3C Protease by the 2C Polypeptide. Journal of Virology, 2004, 78, 9243-9256. 1.5 30 34 Intracellular Topology and Epitope Shielding of Poliovirus 3A Protein. Journal of Virology, 2004, 78, $\mathbf{31}$ 1.5 18 5973-5982. An N-Terminal Amphipathic Helix in Hepatitis C Virus (HCV) NS4B Mediates Membrane Association, Correct Localization of Replication Complex Proteins, and HCV RNA Replication. Journal of Virology, 1.5 148 2004, 78, 11393-11400. Differential Rescue of Poliovirus RNA Replication Functions by Genetically Modified RNA Polymerase 33 12 1.5 Precursors. Journal of Virology, 2004, 78, 13007-13018. Avian encephalomyelitis virus nonstructural protein 2C induces apoptosis by activating cytochrome c /caspase-9 pathway. Virology, 2004, 318, 169-182. Viral RNA Replication in Association with Cellular Membranes. Current Topics in Microbiology and 35 308 0.7 Immunology, 2004, 285, 139-173. Poliovirus, Pathogenesis of Poliomyelitis, and Apoptosis., 2005, 289, 25-56.

#	Article	IF	CITATIONS
37	Wrapping Things up about Virus RNA Replication. Traffic, 2005, 6, 967-977.	1.3	223
38	Subversion of Cellular Autophagosomal Machinery by RNA Viruses. PLoS Biology, 2005, 3, e156.	2.6	717
39	Interactions Between Virus Proteins and Host Cell Membranes During the Viral Life Cycle. International Review of Cytology, 2005, 245, 171-244.	6.2	50
40	The Carboxy-Terminal Sequence of the Pestivirus Glycoprotein E rns Represents an Unusual Type of Membrane Anchor. Journal of Virology, 2005, 79, 11901-11913.	1.5	51
41	Effects of Foot-and-Mouth Disease Virus Nonstructural Proteins on the Structure and Function of the Early Secretory Pathway: 2BC but Not 3A Blocks Endoplasmic Reticulum-to-Golgi Transport. Journal of Virology, 2005, 79, 4382-4395.	1.5	117
42	Poliovirus Proteins Induce Membrane Association of GTPase ADP-Ribosylation Factor. Journal of Virology, 2005, 79, 7207-7216.	1.5	91
43	Amino Acid Changes in Proteins 2B and 3A Mediate Rhinovirus Type 39 Growth in Mouse Cells. Journal of Virology, 2005, 79, 5363-5373.	1.5	42
44	Poliovirus and poliomyelitis: A tale of guts, brains, and an accidental event. Virus Research, 2005, 111, 175-193.	1.1	110
45	Testing the modularity of the N-terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein. Virology, 2006, 344, 453-467.	1.1	49
46	Evidence for Functional Protein Interactions Required for Poliovirus RNA Replication. Journal of Virology, 2006, 80, 5327-5337.	1.5	47
47	Characterization of Membrane Association Domains within the Tomato Ringspot Nepovirus X2 Protein, an Endoplasmic Reticulum-Targeted Polytopic MembraneProtein. Journal of Virology, 2006, 80, 10847-10857.	1.5	18
48	Activation of Cellular Arf GTPases by Poliovirus Protein 3CD Correlates with Virus Replication. Journal of Virology, 2007, 81, 9259-9267.	1.5	58
49	Involvement of Cellular Membrane Traffic Proteins in Poliovirus Replication. Cell Cycle, 2007, 6, 36-38.	1.3	55
50	Role of the Amphipathic Peptide of Semliki Forest Virus Replicase Protein nsP1 in Membrane Association and Virus Replication. Journal of Virology, 2007, 81, 872-883.	1.5	98
51	Poliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex. Journal of Cell Science, 2007, 120, 3207-3218.	1.2	47
52	Complete protein linkage map between the P2 and P3 non-structural proteins of poliovirus. Journal of General Virology, 2007, 88, 2259-2267.	1.3	34
53	Coxsackievirus B3 Proteins Directionally Complement Each Other To Downregulate Surface Major Histocompatibility Complex Class I. Journal of Virology, 2007, 81, 6785-6797.	1.5	60
54	Universal and mutation-resistant anti-enteroviral activity: potency of small interfering RNA complementary to the conserved cis-acting replication element within the enterovirus coding region. Journal of General Virology, 2007, 88, 2003-2012.	1.3	26

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Epidemics to eradication: the modern history of poliomyelitis. Virology Journal, 2007, 4,	70.	1.4	77
56	Coxsackievirus B RNA Replication: Lessons from Poliovirus. , 2008, 323, 89-121.			26
57	Dynamics of picornavirus RNA replication within infected cells. Journal of General Virolog 485-493.	şy, 2008, 89,	1.3	23
58	Characterization of pharmacologically active compounds that inhibit poliovirus and ente infectivity. Journal of General Virology, 2008, 89, 2518-2530.	rovirus 71	1.3	87
59	Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hy Domains of nsp3 and nsp6 Are Membrane Spanning. Journal of Virology, 2008, 82, 1239		1.5	138
60	The Thiazolobenzimidazole TBZE-029 Inhibits Enterovirus Replication by Targeting a Sho Immediately Downstream from Motif C in the Nonstructural Protein 2C. Journal of Virolo 4720-4730.	rt Region 99, 2008, 82,	1.5	71
61	Role of Microtubules in Extracellular Release of Poliovirus. Journal of Virology, 2009, 83,	6599-6609.	1.5	96
62	Conversion of VPg into VPgpUpU _{OH} before and during Poliovirus Negative Synthesis. Journal of Virology, 2009, 83, 12660-12670.	e-Strand RNA	1.5	17
63	Poliovirus 2C Protein Forms Homo-oligomeric Structures Required for ATPase Activity. Jo Biological Chemistry, 2009, 284, 22012-22021.	ournal of	1.6	52
64	Biochemical Characterization of Recombinant Hepatitis C Virus Nonstructural Protein 4 for ATP/GTP Hydrolysis and Adenylate Kinase Activity. Biochemistry, 2009, 48, 906-916.	8: Evidence	1.2	46
65	Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Research, 2009,	139, 240-252.	1.1	102
66	Amino acid substitutions within the 2C coding sequence of Theiler's Murine Encephalon alter virus growth and affect protein distribution. Virus Research, 2009, 144, 74-82.	ıyelitis virus	1.1	8
67	Localisation of Theiler's murine encephalomyelitis virus protein 2C to the Golgi apparatu antibodies generated against a peptide region. Journal of Virological Methods, 2010, 16	s using 8, 162-169.	1.0	6
68	Poliovirus replication requires the N-terminus but not the catalytic Sec7 domain of ArfG Cellular Microbiology, 2010, 12, 1463-1479.	EF GBF1.	1.1	59
69	Direct Interaction between Two Viral Proteins, the Nonstructural Protein 2CATPase and Protein VP3, Is Required for Enterovirus Morphogenesis. PLoS Pathogens, 2010, 6, e100		2.1	111
70	Cytoplasmic Viral Replication Complexes. Cell Host and Microbe, 2010, 8, 77-85.		5.1	306
71	Overall linkage map of the nonstructural proteins of Aichi virus. Virus Research, 2010, 1	47, 77-84.	1.1	7
72	Organelle-Like Membrane Compartmentalization of Positive-Strand RNA Virus Replicatic Annual Review of Microbiology, 2010, 64, 241-256.	n Factories.	2.9	389

#	Article	IF	CITATIONS
73	Mechanistic Intersections Between Picornavirus Translation and RNA Replication. Advances in Virus Research, 2011, 80, 1-24.	0.9	24
74	Analysis of Poliovirus Protein 3A Interactions with Viral and Cellular Proteins in Infected Cells. Journal of Virology, 2011, 85, 4284-4296.	1.5	45
75	Alanine Scanning of Poliovirus 2C ^{ATPase} Reveals New Genetic Evidence that Capsid Protein/2C ^{ATPase} Interactions Are Essential for Morphogenesis. Journal of Virology, 2012, 86, 9964-9975.	1.5	46
76	ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO Journal, 2012, 31, 754-766.	3.5	159
77	Evolution of Poliovirus Defective Interfering Particles Expressing Gaussia Luciferase. Journal of Virology, 2012, 86, 1999-2010.	1.5	12
78	Identification of domains in p27 auxiliary replicase protein essential for its association with the endoplasmic reticulum membranes in Red clover necrotic mosaic virus. Virology, 2012, 433, 131-141.	1.1	37
79	A critical role of N-myc and STAT interactor (Nmi) in foot-and-mouth disease virus (FMDV) 2C-induced apoptosis. Virus Research, 2012, 170, 59-65.	1.1	35
80	Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication. Current Opinion in Microbiology, 2012, 15, 519-524.	2.3	52
81	Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles. PLoS Pathogens, 2013, 9, e1003401.	2.1	85
82	Polyprotein Context Regulates the Activity of Poliovirus 2C ^{ATPase} Bound to Bilayer Nanodiscs. Journal of Virology, 2013, 87, 5994-6004.	1.5	10
83	The Nonstructural Protein 2C of a Picorna-Like Virus Displays Nucleic Acid Helix Destabilizing Activity That Can Be Functionally Separated from Its ATPase Activity. Journal of Virology, 2013, 87, 5205-5218.	1.5	26
84	Selective Serotonin Reuptake Inhibitor Fluoxetine Inhibits Replication of Human Enteroviruses B and D by Targeting Viral Protein 2C. Antimicrobial Agents and Chemotherapy, 2013, 57, 1952-1956.	1.4	81
85	Origin and Evolution of the <i>Picornaviridae</i> Proteome. , 0, , 253-270.		0
86	A critical role of interferon-induced protein IFP35 in the type I interferon response in cells induced by foot-and-mouth disease virus (FMDV) protein 2C. Archives of Virology, 2014, 159, 2925-2935.	0.9	21
87	A Complex Comprising Phosphatidylinositol 4-Kinase IIIβ, ACBD3, and Aichi Virus Proteins Enhances Phosphatidylinositol 4-Phosphate Synthesis and Is Critical for Formation of the Viral Replication Complex. Journal of Virology, 2014, 88, 6586-6598.	1.5	51
88	A C-terminal, cysteine-rich site in poliovirus 2CATPase is required for morphogenesis. Journal of General Virology, 2014, 95, 1255-1265.	1.3	23
89	Strategies for purifying variants of human rhinovirus 14 2C protein. Protein Expression and Purification, 2014, 95, 28-37.	0.6	4
90	Poliovirus-induced changes in cellular membranes throughout infection. Current Opinion in Virology, 2014, 9, 67-73.	2.6	37

#	Article	IF	CITATIONS
91	The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains. Virology, 2014, 468-470, 36-46.	1.1	5
92	Picornavirus Morphogenesis. Microbiology and Molecular Biology Reviews, 2014, 78, 418-437.	2.9	180
93	Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses, 2015, 7, 4529-4562.	1.5	117
94	The Role of Electron Microscopy in Studying the Continuum of Changes in Membranous Structures during Poliovirus Infection. Viruses, 2015, 7, 5305-5318.	1.5	7
95	Coxsackievirus A16 Elicits Incomplete Autophagy Involving the mTOR and ERK Pathways. PLoS ONE, 2015, 10, e0122109.	1.1	39
96	Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathogens, 2015, 11, e1005067.	2.1	68
97	RNA chaperones encoded by RNA viruses. Virologica Sinica, 2015, 30, 401-409.	1.2	6
98	Initiation of protein-primed picornavirus RNA synthesis. Virus Research, 2015, 206, 12-26.	1.1	78
99	Ultrastructure of the replication sites of positive-strand RNA viruses. Virology, 2015, 479-480, 418-433.	1.1	130
100	Morphogenesis of Endoplasmic Reticulum Membrane-Invaginated Vesicles during Beet Black Scorch Virus Infection: Role of Auxiliary Replication Protein and New Implications of Three-Dimensional Architecture. Journal of Virology, 2015, 89, 6184-6195.	1.5	56
101	On the interaction and localization of the beet necrotic yellow vein virus replicase. Virus Research, 2015, 196, 94-104.	1.1	6
102	The Amino Acid Substitution Q65H in the 2C Protein of Swine Vesicular Disease Virus Confers Resistance to Golgi Disrupting Drugs. Frontiers in Microbiology, 2016, 7, 612.	1.5	1
103	A Single Amino Acid Substitution in Poliovirus Nonstructural Protein 2C ^{ATPase} Causes Conditional Defects in Encapsidation and Uncoating. Journal of Virology, 2016, 90, 6174-6186.	1.5	23
104	Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism. Virology, 2016, 494, 257-266.	1.1	29
105	Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease. Scientific Reports, 2016, 6, 33663.	1.6	15
106	Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virology Journal, 2016, 13, 107.	1.4	82
107	T135I substitution in the nonstructural protein 2C enhances foot-and-mouth disease virus replication. Virus Genes, 2017, 53, 840-847.	0.7	6
108	Studies on Picornaviral Proteases and Their Inhibitors. , 2017, , 263-315.		0

#	Article	IF	CITATIONS
109	Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1. Journal of Virology, 2018, 92, .	1.5	48
110	Crystal structure of a soluble fragment of poliovirus 2CATPase. PLoS Pathogens, 2018, 14, e1007304.	2.1	28
111	Multiple poliovirus-induced organelles suggested by comparison of spatiotemporal dynamics of membranous structures and phosphoinositides. PLoS Pathogens, 2018, 14, e1007036.	2.1	19
112	Viral Discovery in the Invasive Australian Cane Toad (Rhinella marina) Using Metatranscriptomic and Genomic Approaches. Journal of Virology, 2018, 92, .	1.5	13
113	Fluoxetine Inhibits Enterovirus Replication by Targeting the Viral 2C Protein in a Stereospecific Manner. ACS Infectious Diseases, 2019, 5, 1609-1623.	1.8	50
114	Viral Generated Inter-Organelle Contacts Redirect Lipid Flux for Genome Replication. Cell, 2019, 178, 275-289.e16.	13.5	106
115	Viperin Inhibits Enterovirus A71 Replication by Interacting with Viral 2C Protein. Viruses, 2019, 11, 13.	1.5	21
116	Viperin inhibits classical swine fever virus replication by interacting with viral nonstructural 5A protein. Journal of Medical Virology, 2020, 92, 149-160.	2.5	20
117	The Structure, Function, and Mechanisms of Action of Enterovirus Non-structural Protein 2C. Frontiers in Microbiology, 2020, 11, 615965.	1.5	28
118	An Amphipathic Alpha-Helix Domain from Poliovirus 2C Protein Tubulate Lipid Vesicles. Viruses, 2020, 12, 1466.	1.5	9
119	Development of broad-spectrum enterovirus antivirals based on quinoline scaffold. Bioorganic Chemistry, 2020, 101, 103981.	2.0	19
120	Charged Residues in the Membrane Anchor of the Pestiviral Erns Protein Are Important for Processing and Secretion of Erns and Recovery of Infectious Viruses. Viruses, 2021, 13, 444.	1.5	4
121	A comparative analysis of parechovirus protein structures with other picornaviruses. Open Biology, 2021, 11, 210008.	1.5	2
122	Development of an experimental inactivated vaccine from Vero cell adapted Enterovirus D68. Virus Research, 2021, 304, 198528.	1.1	6
123	Poliovirus and Apoptosis. Progress in Molecular and Subcellular Biology, 2004, 36, 151-169.	0.9	3
124	The 3C Proteinases of Picornaviruses and Other Positive-Sense, Single-Stranded RNA Viruses. Handbook of Experimental Pharmacology, 2000, , 117-143.	0.9	2
125	Picornavirus Genome: an Overview. , 0, , 125-148.		17
126	Role of Cellular Structures in Viral RNA Replication. , 0, , 247-253.		13

#	Article	IF	CITATIONS
127	Poliovirus RNA-Dependent RNA Polymerase (3Dpol): Structure, Function, and Mechanism. , 0, , 255-267.		8
128	Effects of Viral Replication on Cellular Membrane Metabolism and Function. , 0, , 337-354.		6
129	Rescue of Defective Poliovirus RNA Replication by 3AB-Containing Precursor Polyproteins. Journal of Virology, 1998, 72, 7191-7200.	1.5	63
130	Brome Mosaic Virus RNA Replication Proteins 1a and 2a Colocalize and 1a Independently Localizes on the Yeast Endoplasmic Reticulum. Journal of Virology, 1999, 73, 10303-10309.	1.5	119
131	Open Reading Frame 1a-Encoded Subunits of the Arterivirus Replicase Induce Endoplasmic Reticulum-Derived Double-Membrane Vesicles Which Carry the Viral Replication Complex. Journal of Virology, 1999, 73, 2016-2026.	1.5	260
132	Rational design of highly potent broad-spectrum enterovirus inhibitors targeting the nonstructural protein 2C. PLoS Biology, 2020, 18, e3000904.	2.6	17
133	Deletion Mutants of VPg Reveal New Cytopathology Determinants in a Picornavirus. PLoS ONE, 2010, 5, e10735.	1.1	19
134	Membrane alterations induced by nonstructural proteins of human norovirus. PLoS Pathogens, 2017, 13, e1006705.	2.1	64
135	Picornaviral 2C proteins: A unique ATPase family critical in virus replication. The Enzymes, 2021, 49, 235-264.	0.7	3
136	Proteolytic Enzymes of the Viruses of the Family Picornaviridae. , 1999, , 139-163.		4
137	Remodeling Cellular Membranes. , 0, , 181-193.		1
138	Genome Replication I: the Players. , 0, , 105-125.		0
144	Development of Enterovirus Antiviral Agents That Target the Viral 2C Protein. ChemMedChem, 2023, 18,	1.6	1