Î²-GLUCOSIDASE SYSTEM OF <i>NEUROSPORA CRASS

Journal of Bacteriology 87, 761-770 DOI: 10.1128/jb.87.4.761-770.1964

Citation Report

#	Article	IF	CITATIONS
1	Aryl β-glucosidase of some neurospora strains. Biochimica Et Biophysica Acta - General Subjects, 1964, 90, 214-215.	2.4	12
2	The β-glucosidase system of Neurospora crassa. Archives of Biochemistry and Biophysics, 1964, 108, 22-29.	3.0	27
3	The β-glucosidase system of Neurospora crassa. Archives of Biochemistry and Biophysics, 1964, 108, 30-35.	3.0	9
4	An Inducible System for the Hydrolysis and Transport of ß-Glucosides in Yeast. Journal of General Physiology, 1965, 48, 873-886.	1.9	20
5	Regulation of cellulase and cellobiase in Neurospora, crassa. Biochemical and Biophysical Research Communications, 1966, 24, 782-785.	2.1	33
6	PURIFICATION AND PROPERTIES OF AN INDUCIBLE Î ² -GLUCOSIDASE OF BAKERS' YEAST. Canadian Journal of Biochemistry, 1966, 44, 1099-1108.	1.4	27
7	The ß-Glucosidase of the Yeast Cell Surface. Journal of General Physiology, 1966, 50, 9-24.	1.9	17
9	Extracellular enzyme system utilized by the rot fungus Stereum sanguinolentum for the breakdown of cellulose. Archives of Biochemistry and Biophysics, 1969, 129, 416-420.	3.0	28
10	Enzyme patterns and protein synthesis during synchronous conidiation in Neurospora crassa. Developmental Biology, 1971, 26, 17-27.	2.0	34
11	The purification and properties of extracellular β-glucosidase from Botryodiplodia theobromae Pat Biochimica Et Biophysica Acta - Biomembranes, 1971, 227, 419-428.	2.6	39
12	The β-glucosidase system of the thermophilic fungus Chaetomium thermophile var. Coprophile n. var Biochimica Et Biophysica Acta - General Subjects, 1973, 329, 5-16.	2.4	47
13	An aryl β-d-glucosidase of the aquatic fungus Lagenidium giganteum, a parasite of mosquito larvae. Archives of Microbiology, 1974, 101, 343-350.	2.2	6
14	Glucosidase Activity inAcanthamoeba(Mayorella)palestinensis. The Effect of Glucose and Natural Glucosides on α- and β-Glucosidases. Journal of Protozoology, 1975, 22, 435-437.	0.8	6
15	Increase of enzyme activities in Neurospora crassa during incubation at low temperatures. Biochimica Et Biophysica Acta - Biomembranes, 1976, 422, 309-315.	2.6	3
16	β-glucosidase in the cellulolytic fungus Sporotrichum thermophile Apinis. Experimental Mycology, 1979, 3, 203-214.	1.6	23
17	Characteristics of the cellulase produced by Myceliophthora thermophila D-14. Canadian Journal of Microbiology, 1982, 28, 271-277.	1.7	25
18	β-Clucosidase: Its role in cellulase synthesis and hydrolysis of cellulose. International Journal of Biochemistry & Cell Biology, 1982, 14, 435-443.	0.5	146
19	Enhanced production of extracellular ?-glucosidase by penicillium funiculosum in submerged culture. Biotechnology Letters, 1983, 5, 649-652.	2.2	7

CITATION REPORT

#	Article	IF	CITATIONS
20	Cellulase and ethanol production from cellulose by Neurospora crassa. Enzyme and Microbial Technology, 1983, 5, 133-136.	3.2	45
21	Effect of glucose and other sugars on the ?-1,4-glucosidase activity ofThermomonospora fusca. Biotechnology and Bioengineering, 1983, 25, 2855-2864.	3.3	20
22	Fluorimetric estimation of exo-cellobiohydrolase and β-d-glucosidase activities in cellulase from Aspergillus fumigatus Fresenius. Enzyme and Microbial Technology, 1986, 8, 70-74.	3.2	20
23	Cellulolytic Ability of the Scab Fungus, <i>Venturia inaequalis</i> . Journal of Phytopathology, 1988, 123, 217-221.	1.0	5
24	Effects of cell wall deficiency on the synthesis of polysaccharide-degrading exoenzymes: a study on mycelial and wall-less phenotypes of the fz; sg; os-1 ('slime') triple mutant of Neurospora crassa. Journal of General Microbiology, 1990, 136, 1463-1468.	2.3	10
25	Isolation of mutants of Aspergillus awamori with enhanced production of extracellular xylanase and ?-xylosidase. World Journal of Microbiology and Biotechnology, 1991, 7, 343-354.	3.6	9
26	Relationship between in vitro cellulase production of uv-induced mutants of Trichoderma harzianum and their bean rhizosphere competence. Mycological Research, 1997, 101, 1389-1392.	2.5	23
27	Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Applied Microbiology and Biotechnology, 2007, 75, 319-328.	3.6	133
28	Characterization of a novel β-glucosidase-like activity from a soil metagenome. Journal of Microbiology, 2009, 47, 542-548.	2.8	40
29	A cold-active β-glucosidase (Bgl1C) from a sea bacteria Exiguobacterium oxidotolerans A011. World Journal of Microbiology and Biotechnology, 2010, 26, 1427-1435.	3.6	31
31	A quick screening method to identify β-glucosidase activity in native wine yeast strains: application of Esculin Glycerol Agar (EGA) medium. World Journal of Microbiology and Biotechnology, 2011, 27, 47-55.	3.6	64
32	Biochemical characterization of two novel β-glucosidase genes by metagenome expression cloning. Bioresource Technology, 2011, 102, 3272-3278.	9.6	50
33	Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Research Notes, 2012, 5, 566.	1.4	60
34	Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresource Technology, 2012, 123, 15-22.	9.6	83
35	Cloning and biochemical characterization of a glucosidase from a marine bacterium Aeromonas sp. HC11e-3. World Journal of Microbiology and Biotechnology, 2012, 28, 3337-3344.	3.6	5
36	Discovery of (hemi-) cellulase genes in a metagenomic library from a biogas digester using 454 pyrosequencing. Applied Microbiology and Biotechnology, 2013, 97, 8173-8182.	3.6	40
37	Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome. Acta Biochimica Et Biophysica Sinica, 2013, 45, 664-673.	2.0	51
38	Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?. Applied Microbiology and Biotechnology, 2013, 97, 1457-1473.	3.6	46

#	Article	IF	CITATIONS
39	Cloning and characterization of a new β-Glucosidase from a metagenomic library of Rumen of cattle feeding with Miscanthus sinensis. BMC Biotechnology, 2014, 14, 85.	3.3	17
40	Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiology Letters, 2014, 351, 147-155.	1.8	25
41	Engineering a novel glucose-tolerant \hat{l}^2 -glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnology for Biofuels, 2015, 8, 202.	6.2	89
42	Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester. Frontiers in Microbiology, 2015, 6, 509.	3.5	18
43	Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure. Antonie Van Leeuwenhoek, 2016, 109, 1217-1233.	1.7	16
44	Identification and characterization of a novel β-glucosidase via metagenomic analysis of Bursaphelenchus xylophilus and its microbial flora. Scientific Reports, 2017, 7, 14850.	3.3	25
45	Loss of a conserved salt bridge in bacterial glycosyl hydrolase BgIM-G1 improves substrate binding in temperate environments. Communications Biology, 2018, 1, 171.	4.4	12
46	Novel Ethanol- and 5-Hydroxymethyl Furfural-Stimulated β-Clucosidase Retrieved From a Brazilian Secondary Atlantic Forest Soil Metagenome. Frontiers in Microbiology, 2018, 9, 2556.	3.5	15
47	Engineering of β-Glucosidase Bgl15 with Simultaneously Enhanced Glucose Tolerance and Thermostability To Improve Its Performance in High-Solid Cellulose Hydrolysis. Journal of Agricultural and Food Chemistry, 2020, 68, 5391-5401.	5.2	14
49	Glucosidase Inhibitors Screening in Microalgae and Cyanobacteria Isolated from the Amazon and Proteomic Analysis of Inhibitor Producing Synechococcus sp. GFB01. Microorganisms, 2021, 9, 1593.	3.6	6
50	ABSENCE OF DOMINANCE OF THE <i>B</i> GENE IN INFLUENCING ß-GLUCOSIDASE ACTIVITY IN <i>MELILOTUS ALBA</i> . Genetics, 1965, 51, 733-738.	2.9	11
51	Structural studies of a glycoside hydrolase family 3 β-glucosidase from the model fungus <i>Neurospora crassa</i> . Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 787-796.	0.8	7
52	Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates. Applied and Environmental Microbiology, 1985, 49, 1265-1269.	3.1	95
53	Localization of the β-Glucosidases in <i>Neurospora crassa</i> . Journal of Bacteriology, 1970, 101, 408-417.	2.2	50
54	Biochemical and Genetic Characterization of β-Glucosidase Mutants in <i>Saccharomyces lactis</i> . Journal of Bacteriology, 1972, 110, 196-201.	2.2	18
55	Induction of β-Glucosidases in <i>Neurospora crassa</i> . Journal of Bacteriology, 1973, 116, 295-303.	2.2	39
56	Cellulase of Neurospora crassa. Journal of Bacteriology, 1977, 130, 181-186.	2.2	70
57	beta-Glucosidase activity in mycobacteria. Journal of Clinical Microbiology, 1977, 5, 383-384.	3.9	19

CITATION REPORT

	Charlow K		
#	Article	IF	CITATIONS
58	Chromosomal loci of Neurospora crassa. Microbiological Reviews, 1982, 46, 426-570.	10.1	360
59	Regulation of Cellulase and Hemicellulase Gene Expression in Fungi. Current Genomics, 2013, 14, 230-249.	1.6	212
60	Novel Approaches to Improve Cellulase Biosynthesis for Biofuel Production – Adjusting Signal Transduction Pathways in the Biotechnological Workhorse Trichoderma reesei. , 0, , .		7
62	Function. , 1967, , 340-438.		0
63	Funktion. , 1967, , 347-444.		0
72	<i>Paenibacillus</i> sp. Strain UY79, Isolated from a Root Nodule of <i>Arachis villosa</i> , Displays a Broad Spectrum of Antifungal Activity. Applied and Environmental Microbiology, 2022, 88, AEM0164521.	3.1	10
73	A Novel Neutral and Mesophilic β-Glucosidase from Coral Microorganisms for Efficient Preparation of Gentiooligosaccharides. Foods, 2021, 10, 2985.	4.3	2
74	Identifying the gluc-1 and gluc-2 mutations in Neurospora crassa by genome resequencing. Journal of Genetics, 2022, 101, .	0.7	1
75	Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Frontiers in Microbiology, 0, 13, .	3.5	2
76	Synthetic Biology Toolbox for Antarctic <i>Pseudomonas</i> sp. Strains: Toward a Psychrophilic Nonmodel Chassis for Function-Driven Metagenomics. ACS Synthetic Biology, 2023, 12, 722-734.	3.8	2
77	Conversion of Deproteinized Cheese Whey to Lactobionate by an Engineered Neurospora crassa Strain F5. Applied Biochemistry and Biotechnology, 2024, 196, 1292-1303.	2.9	0
78	Unveiling a classical mutant in the context of the GH3 β-glucosidase family in Neurospora crassa. AMB Express, 2024, 14, .	3.0	0

D.