Resistance, germination, and permeability correlates of successively divested of integument layers

Journal of Bacteriology 159, 624-632

DOI: 10.1128/jb.159.2.624-632.1984

Citation Report

#	Article	IF	CITATIONS
1	Collapse of Cortex Expansion during Germination of <i>Bacillus megaterium</i> Spores. Microbiology and Immunology, 1985, 29, 689-699.	1.4	15
2	Germination of the Decoated Spores of <i>Bacillus megaterium</i> . Microbiology and Immunology, 1985, 29, 1139-1149.	1.4	9
3	Thermal resistance variations due to postâ€harvest treatments in <i>Bacillus subtilis</i> spores. Journal of Applied Bacteriology, 1985, 59, 555-560.	1.1	7
4	Appearance of Uridine 5′â€Diphosphoâ€ <i>N</i> â€Acetylglucosamineâ€4â€Epimerase during Sporulation of <i>Bacillus megaterium</i> . Microbiology and Immunology, 1986, 30, 1085-1093.	1.4	3
5	Isolation and Characterization of Forespores from <i>Bacillus megaterium</i> . Microbiology and Immunology, 1987, 31, 101-111.	1.4	1
6	17Kâ€Spore Coat Protein Antigen in Sporulating Cells of <i>Bacillus megaterium</i> ATCC 19213. Microbiology and Immunology, 1987, 31, 597-601.	1.4	0
7	Permeability of gentamicin into the inside of Bacillus subtilisspores. FEMS Microbiology Letters, 1988, 50, 137-140.	1.8	4
8	Isolation and Characterization of Outermost Layer Deficient Mutant Spores of <i>Bacillus megaterium</i> i>. Microbiology and Immunology, 1988, 32, 973-979.	1.4	7
9	Presence of Proteins Derived from the Vegetative Cell Membrane in the Dormant Spore Coat of <i>Bacillus subtilis</i> . Microbiology and Immunology, 1989, 33, 391-401.	1.4	10
10	Surface Hydiophobicity of Spores of Bacillus spp Microbiology (United Kingdom), 1989, 135, 2717-2722.	1.8	46
11	Permeability of Gentamicin and Polymyxin B into the Inside of <i>Bacillus subtilis</i> Spores. Microbiology and Immunology, 1990, 34, 1013-1023.	1.4	6
12	Permeability of dormant spores of Bacillus subtilis to malachite green and crystal violet. Journal of General Microbiology, 1991, 137, 607-613.	2.3	9
13	Involvement of Calcium in Germination of Coatâ€Modified Spores of <i>Bacillus cereus</i> T. Microbiology and Immunology, 1992, 36, 935-946.	1.4	8
14	Biochemical defects of outermost layer deficient mutants during sporulation of Bacillus megaterium. Canadian Journal of Microbiology, 1992, 38, 354-357.	1.7	0
15	Heat killing of bacterial spores analyzed by differential scanning calorimetry. Journal of Bacteriology, 1992, 174, 4463-4474.	2.2	64
16	IMMUNOCYTOCHEMICAL LOCALIZATION OF ANTIGENS IN B. CEREUS T SPORES. Journal of Rapid Methods and Automation in Microbiology, 1993, 2, 229-233.	0.4	2
17	Effect of Organic Acids on the Swelling of Bacillus subtilis Spores During Germination Nippon Suisan Gakkaishi, 1993, 59, 847-850.	0.1	1
18	Role of Calcium in Biphasic Germination of <i>Bacillus cereus</i> T Spores Sensitized to Lysozyme. Microbiology and Immunology, 1993, 37, 187-194.	1.4	7

#	Article	IF	CITATIONS
19	The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. Journal of Bacteriology, 1995, 177, 4721-4729.	2.2	84
20	Roles of Low-Molecular-Weight Penicillin-Binding Proteins in <i>Bacillus subtilis</i> Peptidoglycan Synthesis and Spore Properties. Journal of Bacteriology, 1999, 181, 126-132.	2.2	81
21	<i>Bacillus subtilis</i> Spore Coat. Microbiology and Molecular Biology Reviews, 1999, 63, 1-20.	6.6	468
22	Role of the Spore Coat Layers in Bacillus subtilis Spore Resistance to Hydrogen Peroxide, Artificial UV-C, UV-B, and Solar UV Radiation. Applied and Environmental Microbiology, 2000, 66, 620-626.	3.1	251
23	Mutations in the gerP Locus ofBacillus subtilis and Bacillus cereus Affect Access of Germinants to Their Targets in Spores. Journal of Bacteriology, 2000, 182, 1987-1994.	2.2	91
24	Localization of a Germinant Receptor Protein (GerBA) to the Inner Membrane of Bacillus subtilis Spores. Journal of Bacteriology, 2001, 183, 3982-3990.	2.2	131
25	Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cellular and Molecular Life Sciences, 2002, 59, 426-433.	5.4	114
26	Photodynamic Inactivation of Bacillus Spores, Mediated by Phenothiazinium Dyes. Applied and Environmental Microbiology, 2005, 71, 6918-6925.	3.1	89
27	Glassy state in Bacillus subtilis spores analyzed by differential scanning calorimetry. International Journal of Food Microbiology, 2006, 106, 286-290.	4.7	13
28	Use of the fluorescent probe LAURDAN to label and measure inner membrane fluidity of endospores of Clostridium spp Journal of Microbiological Methods, 2012, 91, 93-100.	1.6	23
29	The catalytic domain of the germinationâ€specific lytic transglycosylase SleB from <i>Bacillus anthracis</i> displays a unique active site topology. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2469-2475.	2.6	25
30	Spore formation in <scp><i>B</i></scp> <i>acillus subtilis</i> . Environmental Microbiology Reports, 2014, 6, 212-225.	2.4	285
31	Spore Peptidoglycan. Microbiology Spectrum, 2015, 3, .	3.0	51
32	The Exosporium of Bacillus megaterium QM B1551 Is Permeable to the Red Fluorescence Protein of the Coral Discosoma sp Frontiers in Microbiology, 2016, 7, 1752.	3.5	14
33	Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase. Journal of Bacteriology, 2016, 198, 1694-1707.	2.2	58
34	Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis. Microbial Cell Factories, 2016, 15, 153.	4.0	20
35	Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores. Journal of Bacteriology, 2016, 198, 168-177.	2.2	35
36	Display of the peroxiredoxin Bcp1 of Sulfolobus solfataricus on probiotic spores of Bacillus megaterium. New Biotechnology, 2018, 46, 38-44.	4.4	9

#	Article	IF	CITATIONS
37	Proteins Encoded by the <i>gerP</i> Operon Are Localized to the Inner Coat in Bacillus cereus Spores and Are Dependent on GerPA and SafA for Assembly. Applied and Environmental Microbiology, 2018, 84,	3.1	15
38	Orthologues of Bacillus subtilis Spore Crust Proteins Have a Structural Role in the Bacillus megaterium QM B1551 Spore Exosporium. Applied and Environmental Microbiology, 2018, 84, .	3.1	9
39	Identification of L-Valine-initiated-germination-active genes in Bacillus subtilis using Tn-seq. PLoS ONE, 2019, 14, e0218220.	2.5	11
40	Killing of spores of <i>Bacillus </i> species by cetyltrimethylammonium bromide. Journal of Applied Microbiology, 2019, 126, 1391-1401.	3.1	12
41	Membrane Proteomes and Ion Transporters in <i>Bacillus anthracis</i> and <ibacillus i="" subtilis<=""> Dormant and Germinating Spores. Journal of Bacteriology, 2019, 201, .</ibacillus>	2.2	11
42	Spore Peptidoglycan., 0,, 157-177.		4
43	Spore heat resistance and specific mineralization. Applied and Environmental Microbiology, 1985, 50, 1414-1421.	3.1	87
44	Involvement of the spore coat in germination of Bacillus cereus T spores. Applied and Environmental Microbiology, 1987, 53, 47-52.	3.1	34
45	Heat shock affects permeability and resistance of Bacillus stearothermophilus spores. Applied and Environmental Microbiology, 1988, 54, 2515-2520.	3.1	41
46	Heat Resistance Correlated with DNA Content in <i>Bacillus megaterium</i> Spores. Applied and Environmental Microbiology, 1990, 56, 2919-2921.	3.1	8
47	Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins. Applied and Environmental Microbiology, 1995, 61, 3633-3638.	3.1	121
48	Protoplast dehydration correlated with heat resistance of bacterial spores. Journal of Bacteriology, 1985, 162, 571-578.	2.2	56
49	Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles. Journal of Bacteriology, 1985, 162, 1250-1254.	2.2	26
50	Protoplast water content of bacterial spores determined by buoyant density sedimentation. Journal of Bacteriology, 1985, 163, 735-737.	2.2	65
51	Correlation of penicillin-binding protein composition with different functions of two membranes in Bacillus subtilis forespores. Journal of Bacteriology, 1986, 165, 498-503.	2.2	37
52	Characterization and mapping of Bacillus subtilis gerD mutants Journal of General and Applied Microbiology, 1986, 32, 303-315.	0.7	10
53	Handling Technique of Spore-forming Bacteria in Radiation Sterlization(I) Preparation of spores Radioisotopes, 1994, 43, 710-717.	0.2	2
64	New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiology and Molecular Biology Reviews, 2023, 87, .	6.6	15