Interconversion of Type C and D Strains of <i>Clostridit Bacteriophages

Applied Microbiology 27, 251-258 DOI: 10.1128/am.27.1.251-258.1974

Citation Report

#	Article	IF	CITATIONS
1	Persisting Bacteriophage Infections, Lysogeny, and Phage Conversions. Annual Review of Microbiology, 1974, 28, 265-300.	7.3	242
2	Interspecies Conversion of Clostridium botulinum Type C to Clostridium novyi Type A by Bacteriophage. Science, 1974, 186, 456-458.	12.6	122
3	Observations on Nonconverting Phage, c-n71, Obtained from a Nontoxigenic Strain ofClostridium botulinumType C. Japanese Journal of Microbiology, 1975, 19, 167-172.	0.4	23
4	Taxonomy of the Clostridia: Ribosomal Ribonucleic Acid Homologies among the Species. Journal of General Microbiology, 1975, 88, 229-244.	2.3	217
5	Clostridium botulinumin aquatic environments in Great Britain and Ireland. The Journal of Hygiene, 1978, 80, 431-438.	0.9	27
6	Chapter I Bacteriocin, Bacteriophage and other Epidemiological Typing Methods for the Genus Clostridium. Methods in Microbiology, 1979, 13, 1-30.	0.8	9
7	Isolation of two inducible bacteriophages fromClostridium botulinumtype A 190L. FEMS Microbiology Letters, 1980, 9, 23-27.	1.8	10
10	Genetic aspects of toxigenesis in bacteria. , 1981, 13, 205-217.		2
11	Characterization of Two Inducible Bacteriophages, <i>α</i> 1 and <i>α</i> 2, Isolated from <i>Clostridium botulinum</i> Type A 190L and Their Deoxyribonucleic Acids. Microbiology and Immunology, 1981, 25, 915-927.	1.4	6
12	Clostridium botulinum toxins. , 1982, 19, 165-194.		339
13	Differences and Similarities Among Proteolytic and Nonproteolytic Strains of Clostridium botulinum Types A, B, E and F: A Review. Journal of Food Protection, 1982, 45, 466-474.	1.7	49
14	Effect of a recA mutation on cholera toxin gene amplification and deletion events. Journal of Bacteriology, 1986, 165, 723-731.	2.2	126
15	Factors affecting the toxicity of rotting carcasses containingClostridium botulinumtype C. Epidemiology and Infection, 1987, 98, 345-351.	2.1	19
16	ADP-ribosylation by type C1 and D botulinum neurotoxins: Stimulation by guanine nucleotides and inhibition by guanidino-containing compounds. Biochemical and Biophysical Research Communications, 1987, 142, 1032-1038.	2.1	46
17	Factors affecting the toxicity of rotting carcasses containing Clostridium botulinum type E. Epidemiology and Infection, 1988, 100, 399-405.	2.1	10
18	Feasibility of a Heat-Pasteurization Process for the Inactivation of Nonproteolytic Clostridium botulinum types B and E in Vacuum-Packaged, Hot-Process (Smoked) Fish. Journal of Food Protection, 1988, 51, 720-726.	1.7	22
19	Recent advances in the genetics of the clostridia. FEMS Microbiology Letters, 1989, 63, 301-325.	1.8	104
20	Toxigenic clostridia. Clinical Microbiology Reviews, 1990, 3, 66-98.	13.6	709

	CITATION REI	CITATION REPORT	
#	Article	IF	CITATIONS
21	Clostridium botulinum toxins. International Journal of Food Microbiology, 1990, 10, 113-124.	4.7	8
22	Selection and evolution of virulence in bacteria: an ecumenical excursion and modest suggestion. Parasitology, 1990, 100, S103-S115.	1.5	142
23	Genetic Aspects of Clostridium Botulinum. , 1990, , 137-143.		0
24	Biological and Biophysical Characteristics of Phages Isolated from Clostridium botulinum Type C and D Strains, and Physicochemical Properties of the Phage DNAs Journal of Veterinary Medical Science, 1992, 54, 675-684.	0.9	9
25	The Complete Amino Acid Sequence of the Clostridium botulinum Type D Neurotoxin, Deduced by Nucleotide Sequence Analysis of the Encoding Phage d-16.PHI. Genome Journal of Veterinary Medical Science, 1992, 54, 905-913.	0.9	29
26	Comparative analysis of C3 and botulinal neurotoxin genes and their environment in Clostridium botulinum types C and D. Journal of Bacteriology, 1993, 175, 7260-7268.	2.2	35
27	Further Evidence for the Genetic Heterogeneity of Clostridium botulinum as Determined by 23S rDNA Oligonucleotide Probing. Systematic and Applied Microbiology, 1994, 17, 180-188.	2.8	3
28	Characterization of Nontoxicâ€Nonhemagglutinin Component of the Two Types of Progenitor Toxin (M) Tj ETQq1 457-465.	1 0.7843 1.4	514 rgBT /0 55
29	Botulism. Veterinary Clinics of North America Equine Practice, 1997, 13, 107-128.	0.7	55
30	Water and Sediment Characteristics Associated with Avian Botulism Outbreaks in Wetlands. Journal of Wildlife Management, 1999, 63, 1249.	1.8	44
31	Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Molecular Microbiology, 2000, 38, 694-705.	2.5	146
33	Clostridium botulinum types C and D and the closely related Clostridium novyi. Reviews in Medical Microbiology, 2002, 13, 75-90.	0.9	11
34	Control of Nonproteolytic Clostridium botulinum Types B and E in Crab Analogs by Combinations of Heat Pasteurization and Water Phase Salt. Journal of Food Protection, 2002, 65, 130-139.	1.7	9
35	Competitive Inhibition between Different Clostridium botulinum Types and Strains. Journal of Food Protection, 2004, 67, 2682-2687.	1.7	6
36	Susceptibility of coho salmon, Oncorhynchus kisutch (Walbaum), to different toxins of Clostridium botulinum. Aquaculture Research, 2004, 35, 594-600.	1.8	2
37	Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani. Anaerobe, 2004, 10, 93-100.	2.1	40
38	Taxonomy and Systematics. , 2005, , 19-48.		14
39	Molecular characterization and comparison of <i>Clostridium botulinum</i> type C avian strains. Avian Pathology, 2010, 39, 511-518.	2.0	47

# 40	ARTICLE Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiology, 2011, 6, 1461-1473.	IF 2.0	Citations 45
41	Horizontal gene transfer of toxin genes in <i>Clostridium botulinum</i> . Mobile Genetic Elements, 2011, 1, 213-215.	1.8	55
42	Neurotoxin Gene Profiling of Clostridium botulinum Types C and D Native to Different Countries within Europe. Applied and Environmental Microbiology, 2012, 78, 3120-3127.	3.1	85
43	Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon, 2013, 75, 63-89.	1.6	89
44	Clostridium botulinum. , 2014, , 185-212.		9
45	An Atypical Clostridium Strain Related to the Clostridium botulinum Group III Strain Isolated from a Human Blood Culture. Journal of Clinical Microbiology, 2014, 52, 339-343.	3.9	3
46	The Evolution of Bacterial Toxins. , 2014, , 167-188.		1
47	Evolutionary aspects of toxin-producing bacteria. , 2015, , 3-39.		3
48	Historical and current perspectives on Clostridium botulinum diversity. Research in Microbiology, 2015, 166, 290-302.	2.1	120
49	Genomics of Clostridium botulinum group III strains. Research in Microbiology, 2015, 166, 318-325.	2.1	11
50	Extrachromosomal and integrated genetic elements in Clostridium difficile. Plasmid, 2015, 80, 97-110.	1.4	16
51	Detection, differentiation, and identification of botulinum neurotoxin serotypes C, CD, D, and DC by highly specific immunoassays and mass spectrometry. Analyst, The, 2016, 141, 5281-5297.	3.5	20
52	Safety assessment of the <i>Clostridium butyricum</i> MIYAIRI 588 [®] probiotic strain including evaluation of antimicrobial sensitivity and presence of <i>Clostridium</i> toxin genes in vitro and teratogenicity in vivo. Human and Experimental Toxicology, 2016, 35, 818-832.	2.2	35
53	Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacological Reviews, 2017, 69, 200-235.	16.0	506
54	Phage-mediated dissemination of virulence factors in pathogenic bacteria facilitated by antibiotic growth promoters in animals: a perspective. Animal Health Research Reviews, 2017, 18, 160-166.	3.1	11
55	The Contribution of Bacteriophages to the Biology and Virulence of Pathogenic Clostridia. Advances in Applied Microbiology, 2017, 101, 169-200.	2.4	35
56	Horizontal Gene Transfer Between Bacteriophages and Bacteria: Antibiotic Resistances and Toxin Production. , 2019, , 97-142.		8
57	Public Health Risk Associated with Botulism as Foodborne Zoonoses. Toxins, 2020, 12, 17.	3.4	54

CITATION REPORT

#	Article	IF	CITATIONS
58	Are Phages Parasites or Symbionts of Bacteria?. , 2020, , 143-162.		2
59	The Distinctive Evolution of orfX Clostridium parabotulinum Strains and Their Botulinum Neurotoxin Type A and F Gene Clusters Is Influenced by Environmental Factors and Gene Interactions via Mobile Genetic Elements. Frontiers in Microbiology, 2021, 12, 566908.	3.5	11
60	Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins, 2021, 13, 473.	3.4	11
61	Clostridium botulinum Genomes and Genetic Diversity. , 2014, , 207-228.		2
62	Analysis of Antigenic Structure of Clostridium botulinum Type C1 and D Toxins by Monoclonal Antibodies. , 1985, , 159-184.		4
63	Observations on bacteriophages of Clostridium botulinum type C isolates from different sources and the role of certain phages in toxigenicity. Applied and Environmental Microbiology, 1976, 32, 145-158.	3.1	23
64	Plasmids in Clostridium botulinum and related Clostridium species. Applied and Environmental Microbiology, 1984, 48, 956-963.	3.1	61
65	Production of toxin by Clostridium botulinum type A strains cured by plasmids. Applied and Environmental Microbiology, 1986, 51, 52-56.	3.1	26
66	Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D. Applied and Environmental Microbiology, 1988, 54, 69-73.	3.1	40
67	Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Applied and Environmental Microbiology, 1988, 54, 1405-1408.	3.1	65
68	Inducible bacteriophages from ruminal bacteria. Applied and Environmental Microbiology, 1989, 55, 1630-1634.	3.1	70
69	Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Applied and Environmental Microbiology, 1993, 59, 3825-3831.	3.1	54
70	Antigenicity of converting phages obtained from Clostridium botulinum types C and D. Infection and Immunity, 1976, 13, 855-860.	2.2	55
71	Phage conversion to hemagglutinin production in Clostridium botulinum types C and D. Infection and Immunity, 1976, 14, 597-602.	2.2	51
72	Relationship of bacteriophages to alpha toxin production in Clostridium novyi types A and B. Infection and Immunity, 1976, 14, 793-803.	2.2	57
73	Clostridium botulinum type D toxin: purification, molecular structure, and some immunological properties. Infection and Immunity, 1977, 17, 395-401.	2.2	83
74	Use of ganglioside affinity filters to identify toxigenic strains of Clostridium botulinum types C and D. Infection and Immunity, 1979, 26, 150-156.	2.2	4
75	Cloning and complete nucleotide sequence of the gene for the main component of hemagglutinin produced by Clostridium botulinum type C. Infection and Immunity, 1990, 58, 3173-3177.	2.2	70

CITATION REPORT

#	Article	IF	CITATIONS
76	Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis. Journal of Clinical Microbiology, 1991, 29, 1114-1124.	3.9	55
77	Clostridium botulinum neurotoxin. Microbiological Reviews, 1980, 44, 419-448.	10.1	256
78	RELATIONSHIP OF BACTERIOPHAGES TO THE TOXIGENICITY OF CLOSTRIDIUM BOTULINUM AND CLOSELY RELATED ORGANISMS. , 1981, , 93-107.		2
94	Multi-dimensional nanoscale liquid chromatography and nano-electrospray ion-trap mass spectrometry for detection of Clostridium botulinum type C and the produced botulinum neurotoxin type C complex. Journal of Microbiological Methods, 2022, 193, 106397.	1.6	2
95	Endogenous CRISPR-Cas Systems in Group I Clostridium botulinum and Clostridium sporogenes Do Not Directly Target the Botulinum Neurotoxin Gene Cluster. Frontiers in Microbiology, 2021, 12, 787726.	3.5	8

CITATION REPORT